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ABSTRACT
In this study, the population growth of the brain tumor GBM, is constructed such as
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where 0=t , the parameters 1212112121 r,R,R,d,d,,,,,, pγββαα  and 2r  are positive 
real numbers and [ ][ ]t  denotes the integer part of )0,8[t∈ . System (A) explains a tumor 
growth, that produces after a specific time another tumor population with different growth rate 
and different treatment susceptibilities. The local and global stability of this model is analyzed 
by using the theory of differential and difference equations. Simulations and data of GBM give 
a detailed description of system (A) at the end of the paper.

Keywords: Differential equation; difference equations; local stability; global stability; 
boundedness

INTRODUCTION

 Glioblastoma multiforme is the most aggressive of the gliomas, a collection of tumors 
arising from glia or their precursors within the central nervous system. Most patients 
with GBMs die of their disease in less than a year and essentially none has long-
term survival, Holland (2000). In the first stage of GBM, the tumor has a monoclonal 
origin, which changes after reaching a specific density. This kind of tumor can develop 
multiple sub-population with different growth rates and treatments susceptibilities. 
For this, during the treatment process a formidable obstacle can be obtained. Various 
papers about the characteristic behavior of GBM or tumor population with multiform 
are written, where some of them are Berkmann et al. (1992); Coons & Johnson (1993); 
Paulus & Peiffer (1989); Yung et al. (1982). Brain tumors are ideal candidates for 
theoretical modeling. Mathematical approaches to tumor treatment offer a perspective 
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that current in vivo/in vitro techniques cannot, Coldman & Goldie (1979); Panetta 
(1998).

By describing the tumor phenomena the best known modeling is the Gompertz’s 
model, 
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 where V describes the volume of the tumor, t denotes the time, 0V  is the volume at 
time t=0, A and B are parameters that have to be specified, Birkhead (1987).

 Coldman & Goldie (1979) proposed a model, which links a Tumor’s drug 
sensitivity to its rate of spontaneous resistance mutations such as 
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where µ  is the mean volume of the resistant strain and N the total volume of the 
tumor. The parameter α  is the mutation rate per cell generation.

 Panetta (1998) modeled the size of two sub-populations in time such as 
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where x represents the sensitive cell population, y the resistant cell population, 1r  and 
2r  are the growth rates, 1d  and 2d  are their drug sensitivities, respectively.

 Birkhead et al. (1987), have considered both cycling and resting tumor cells in 
their study. The difference between the two models is that sensitive cells could convert 
to resistant cells, while cycling and resting cells could inter-convert. Similar works 
about modeling tumor behaviors can be found in Schmitz et al. (2002); De Vlader & 
Gonzalez (2004); Gevertz & Toquato (2006); Mansury et al. (2006).

 In some biological situations Mathematical approximation for population growth 
involves nonlinear differential equations, May (1975); May & Oester (1976). It is 
generally known that for an overlapping generation of a single species, a model with 
a differential equation is preferred. If there is a non-overlapping generation of single 
species, then it is convenient to construct a model with a difference equation, Allen 
(2007); Hoppenstead (2004); Rubinow (2002). For both time situations, continuous 
and discrete, there is some population dynamics in ecosystem, which combine the 
properties of both differential and difference equations, where the use of piecewise 
constant arguments come into question. For such biological events it may be suitable 
to construct a model with piecewise constant arguments, see Cooke & Huang (1991); 
Gopalsamy & Liu (1998); Gurcan & Bozkurt (2009); Liu & Gopalsamy (1999); 
Ozturk & Bozkurt (2011).
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 According to Gopalsamy & Liu (1998), the differential equation 
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 was considered, where N(t) denotes the biomass (or population density) of a single 
species, r, a, b and t are positive numbers. Using the Lyapunov function, they proved 
sufficient condition for all positive solutions of equation (1.4). A general differential 
equation of (1.4) can be shown in Liu & Gopalsamy, (1999), were by using the lemma 
of Cooke and Huang, see Cooke & Huang (1991) the global attractivity of the positive 
equilibrium point are proven.

 Gurcan & Bozkurt (2009), considered the logistic equation 
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where 0≥t  and the parameters 10 ,, ββα  and r denote positive numbers. The local 
asymptotic stability of the positive equilibrium point of equation (1.5) was proven by 
using the Linearized Stability Theorem and the global asymptotic stability by using 
a suitable Lyapunov function. A general differential equation (1.5) was shown in 
Ozturk & Bozkurt (2011), where additionally a detailed description and condition of 
semicycle and damped oscillation of the positive solutions are proved.

 In this paper, the growth of GBM has been considered. This tumor has two sub-
populations, the sensitive cells and the resistant cells, where the model is constructed 
such as 
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Here, 0≥t  and the parameters 12112121 r,d,d,,,,,, pγββαα  and 2r  denote 
positive numbers. p is the division rate of the sensitive cells and the parameter 

121 ,, βαα and 2β  are necessary parameters for the logistic differential equations 
of the tumor populations. 1γ  is the converting rate of sensitive cells to resistant cells. 
The parameters 1d  and 2d  are their dead rate caused from drugs, respectively. In 
section 2, we investigate the local and global behavior of the nonlinear difference 
solutions of (1.6) based on specific conditions. Furthermore, the boundedness nature 
of the positive solutions of (1.6) was considered. Simulations and the data of GBM 
give a detailed description of the behavior of system (1.6) at the end of the paper.
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LOCAL STABILITY AND GLOBAL ASYMPTOTIC STABILITY

 On an interval of the form [ ),1,nt +∈ n  one can write (6) as 
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where for n = 0,1,2, and t n 1→ +  the solution is 
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 In the following, we assume that 

      ( ) ( ) ( ) 0nynxdrRrp 111211 ≠−+−+ γα          (2.3)

and 

       ( ) ( ) ( )nxnydrRr 122222 ≠++− γβ  0.         (2.4)

 To investigate more about the behavior of (1.6) we continue the analysis, since (2.2) 
is a system of difference equations. First, we need to obtain the positive equilibrium 
point of (2.2), which is also the critical points of (1.6). Computations reveal that the 
positive equilibrium points of (8) is 
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Linearizing system (2.2) about the positive equilibrium point, we obtain for 
= 0,1, 2,n …  the associated characteristic equation of (2.2) as 
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Theorem 2.1. Let 12 >αα  and 
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then the positive equilibrium point of system (8) is locally asymptotically stable.

Proof. By the Linearized Stability Theorem, see Gibbons et al. (2002), the positive 
equilibrium point of (8) is locally asymptotically stable if and only if 
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From (2.13)-(2.19), the conditions to hold the second part of the inequality in 
(2.11) are obtained. Furthermore, to consider the inequalities for the left side of (2.11), 
the following ones have to be considered;
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 since A> 0. Furthermore, from 
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Considering both (2.13) and (2.23), the inequality (2.9) is obtained. In addition, 
from the inequality 
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Theorem 2.2. Suppose that the conditions in Theorem 2.1 hold. Furthermore, assume 
that 
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For 0,1,2,...=n , if
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then the positive equilibrium point of  system (8) is globally asymptotically stable.

Proof. We consider a Lyapunov function V(n) defined by 
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 By using (2.25), one can obtain 
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 Furthermore if (2.27) holds for x(n), then it is easy to obtain the following one; 
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Furthermore, since ( ) ( ) ( ) ( ),nynxdrRrp<nxr 11121111 γαα −+−+  we can write 
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 which completes the proof.

Example: The values of the parameters of (2.2) are choosen as given in Schmitz et al. 
(2002) and in view the obtained results. The table is given as follows;

 Table 1. Values of the parameter of system (2.1)

  P division rate of the sensitive cells  0.192 

 1K  
carriying capacity of the negrotic and sensitive 
cells together  4.704=83*.420 3/2

 

 2K  carriying capacity of the resistant tumor population  1.232=83*.110 3/2
 

 Γ  mutation rate of the sensitive cells to resistant cells 5 210 ,10γ − −⎡ ⎤∈ ⎣ ⎦

 iα  
logistic population rate of sensitive cell population 
Here is 0.51=1α  and 0.555=2α

[ ]0.5, 0.95iα ∈

 iβ
logistic population rate of resistant cell population  
Here, 50.0=1β  and 0.2.=2β

[ ]0.05, 0.2iβ ∈

 1d  causes of drug treatment to the sensitive cells 0.001

 2d   causes of drug treatment to the resistant cells 0.00001
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We want to consider the behaviors for the converting rates 0.01=1γ  and 
0.00001.=1γ  Both populations have different growth rates. In this example, we 

have constructed a relation between both population such as 1r=r  and ( ) .r=r*.051 2  
The initial conditions are x(0)=0.82 and y(0)=0.23, where the x-axis of the graph 
denotes the growth rate of the population and the y-axis the per capita growth of 
both population. The blue and the red graph sembolize the sensitive cells population

)(( nx ) and the resistant cells population ( )),(y n  respectively. Figure 1 show the 
behavior of the sensitive cells and resistant cells, where the mutation rate is 0.01=1γ
. Here, it is shown that at last the resistant cells will cover the sensitive cells, as also 
explained in Schmitz et al. (2002).

 

 Fig. 1 Figure for the coordinates ( )( ))(/1n,r1 nxx +  and ( )( ),)(/1n,r2 nyy +  where 0.01=1γ

 Figure 2, show the behavior of the sensitive cells and resistant cells, where 
0.00001=1γ . It is clear that during the initial phases, the volume of the sensitive 

cells are more than the resistant cells. But since the population growth rate of the 
resistant cells is greater than the sensitive cells, after a spesific time the resistant cells 
will occur on the wall of the sensitive tumor cells, see also Schmitz et al. (2002). 
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 Fig. 2. Figure for the coordinates ( )( ))(/1n,r1 nxx +  and ( )( ),)(/1n,r2 nyy +  where 0.00001.=1γ

NUMERICAL RESULTS AND COMMENTS

 In section 2, the local and global asymptotic stability of the positive equilibrium point 
of system (8) have been analyzed in Theorem 2.1 and Theorem 2.2, respectively. 
Theorem 2.3 was an important proof to show the bound of both tumor structures. The 
parameters are used from the data of Schmitz, et al. (2002), where it has been shown 
that a sensitive tumor population with the mutation rate 0.00001,=1γ  occur on 
the wall of the sensitive cells after a specific density and specific time. Furthermore, 
if the mutation rate is 0.01=1γ , then the resistant tumor population will cover the 
sensitive tumor cells, which makes the treatment process more difficult than the 
phenomena shown in Figure 1.
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نموذج مجتمع إحصائي لأورام ثنائية السلالة لها عمد ثابتة قطعة - قطعة

* فاطمة بوزكورت ، **إلهان أوزتورك

*قسم الرياضيات، كلية التربية، جامعة إرجييس، 38039 قيصري، تركيا
**قسم الرياضيات، كلية العلوم، جامعة إرجييس، 38039 قيصري، تركيا

خلاصة
نبني في هذه الدراسة نموذجاً رياضياً لمجتمع إحصائي للنمو السرطاني لأورام الدماغ. يقوم 
النموذج الذي وصفناه بإيضاح النمو للأورام ثم يقوم بعد زمن محدد بإنتاج مجتمع إحصائي 
جديد له معدل نمو مختلف وله قابلية علاج مختلفة. نقوم بتحليل الاستقرار المحلي والاستقرار 
الشامل لهذا النموذج وذلك باستخدام نظرية المعادلات التفاضلية والمعادلات الفرقية. وتقدم 

المعطيات والمحاكاة وصفاً تفصيلياً للنموذج المبني على نظامنا وذلك في نهاية البحث.


