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Abstract

Software testing is a very important part of the software development life cycle to develop reliable and 
bug-free software but it consumes a lot of resources like development time, cost, and effort. Researchers 
have developed many techniques to get prior knowledge of fault-prone modules so that testing time and 
cost can be reduced. In this research article, a hybrid approach of distance-based pruned classification 
and regression tree (CART) and k- nearest neighbors is proposed to improve the performance of soft-
ware fault prediction. The proposed technique is tested on eleven medium to large scale software fault 
prediction datasets and performance is compared with decision tree classifier, SVM and i ts three vari-
ations, random forest, KNN, and classification and regression t ree. Four performance metrics are used 
for comparison purposes that are accuracy, precision, recall, and f1-score. Results show that our pro-
posed approach gives better performance for accuracy, precision, and f1-score performance metrics. The 
second experiment shows a significant amount of running time improvement over the standard k-nearest 
neighbor algorithm.

Keywords: Decision Tree; k- nearest neighbors; machine learning; pruning; software fault prediction.

1. Introduction

The 21st century has seen an unprecedented growth of automation and software with more emphasis 
on security, interactive graphical user interface, and faster development with more features (Singh et 
al., 2016). But all this necessitates reliable and bug-free software which can be achieved by effective 
software testing and maintenance.

Software testing is an essential part of the software development life cycle and is used to identify 
fault-prone and complex modules so that faults can be removed from fault-prone modules and refactoring 
of complex modules can be done during the software development process. But software testing and 
maintenance phase consume almost fifty percent of software development resources such as time, effort, 
and cost (Aziz et al., 2019). It is necessary to reduce the testing time and cost to develop reliable software 
within a limited budget and resources. If a somehow testing team manages to get prior knowledge about 
fault-prone and complex modules that need more attention, then the team can directly focus on those 
modules and a significant amount of testing time and effort can be reduced. Hence early identification of 
the faulty modules has caught the attention of researchers.

Many approaches have been developed in the recent past to detect and predict fault-prone modules. 
Machine learning is one of these approaches which have gained popularity in the past few years in this 
area. Decision trees (C4.5 and CART) (Quinlan et al., 1986), support vector machine and its variations 
(Noble et al., 2006), multi-layer perception (Gardner et al., 1998), k-nearest neighbors (Kozma et al., 
2008), and random forest (Biau et al., 2016) are some standard machine learning approaches that are 
the most commonly used for software fault prediction(Beygelzimer et al., 2008). But standard machine
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learning approaches usually give an average performance in most cases (Cheng et al., 2014). Researchers
are developing new and hybrid approaches by combining existing approaches to get better performance.

In this research article, we propose a hybrid approach by combining distance-based pre-pruned clas-
sification and regression tree with weighted k-nearest neighbors. The next section explains previous
works and research gaps. The third section explains the working of our proposed approach. The fourth
section discusses the experimentation and performance evaluation of our proposed approach.

2. Related works

Studies related to software fault prediction area are summarized in this section. Saravanan et al. (Sar-
avanan et al., 2021) proposed an African buffalo optimizer based convolution neural network for fast
training in the software fault prediction field. Kassaymeh et al. (Kassaymeh et al., 2021) used a salp
swarm optimizer for neural network training instead of backpropagation. Singh et al. (Singh et al.,
2021) proposed a new node splitting method for decision tree generation. Haouari et al. (Haouari et al.,
2020) presented an application of AIRS for inter-release software fault prediction. Yucalar et al. (Yu-
calar et al., 2020) compared different ensemble learning approaches like voting, bagging, and boosting
in the software fault prediction field. Alsghaier et al. (Alsghaier et al., 2020) in 2020 applied genetic
algorithm, PSO algorithm, and GA-PSO integrated algorithm to train support vector machine on twelve
software fault prediction datasets and results show that GA-PSO integrated approach gives the best re-
sults. Abuassba et al. (Abuassba et al., 2022) in 2022 developed a general plateform for ensembles
in classification context. proposed framwork is applied on twelve datasets to prove the diversity and
efficiency of ensemble learning approaches. Khan et al. (Khan et al., 2016) in 2016 explained various
machine learning approaches in their survey. Rajkumar et al. (Rajkumar et al., 2015) in 2015 applied
various machine learning approaches for thyroid problem diagnosis.

The decision tree was initially developed by Quinlan in 1986 (Quinlan et al., 1986). The initial
version of the decision tree is called ID3 and it can handle only categorical attributes. C4.5 is an extended
version of ID3 that can handle continuous attributes also was developed by Ross Quinlan (Quinlan et al.,
1986). Both of these decision tree generation algorithms use information as a node splitting criterion.
Ruggieri et al. (Ruggieri et al., 2002) in 2002 developed an efficient C4.5 classifier based on the quicksort
and counting sort algorithms to efficiently calculate information gain of continuous attributes. Safavian
et al. (Safavian et al., 1991) explained different types of decision tree classifiers and their building
methods in detail in their survey. k-NN is a non-parametric classifier initially developed by Evelyn Fix
and Joseph Hodges in 1951 (Fix et al., 1989). In this classifier value of k is fixed and for the prediction
of the class label of the testing sample, it checks the labels of k-nearest neighbors and assigns a label to
the testing sample based on the majority labels of nearest neighbors.Zhang et al. (Zhang et al., 2007)
in 2007 developed a lazy learning approach called ML-KNN based on a standard KNN algorithm for
a multi-label classification problem like test classification. Cheng et al. (Zhang et al., 2014) in 2014
developed a new k nearest neighbors algorithm based on sparse learning with data-driven k values and
neglecting the correlation of samples.

After studying previous literature, we develop a hybrid approach based on k-nearest neighbors and
decision tree. The main contributions of the projected work are listed below:

1. A new decision tree pruning approach called distance-based pruning is proposed to prune decision
tree nodes. Detailed steps of the distance-based decision tree pruning approach are explained in
section 3.2.

2. Standard k nearest neighbor algorithm has O(n) running cost which is reduced to O(log n) + c in
our proposed approach. KNNs are added at leaf nodes of decision tree in training phase to reduce
the running cost.

3. The CART decision tree is generated using distance based pruning approach and instead of storing
class labels, k nearest neighbors are stored on leaf nodes of the decision tree.

4. The concept of weights is introduced based on the sigmoid function in the prediction phase to make
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standard k nearest neighbors more effective. Weights are inversely proportional to the distance of
nearest neighbors from the point under consideration.

3. Proposed approach

This section of the research article explains the notations used to formulate our proposed approach,
working of proposed approach and running time cost of our proposed approach.

3.1 Notations
A variable X ∈ Rn∗m represents training data. Where n represents the total number of training

samples and m represents the total number of independent attributes (dimensions of the dataset). Symbol
K − Matrix is used to describe k-nearest neighbors matrix where each element of K − Matrix is
represented by symbol eij . Variable i means ith row, and j represents the jth column of the matrix.
Tolerance is a global parameter that contains a value between 0 and 1. Pi in m dimensional space
represents each training sample.

3.2 Working of approach
This article proposes a hybrid approach based on distance-based pre-pruned classification and re-

gression tree and weighted k-nearest neighbors. The proposed approach in this article considers all
training samples as m dimensional points, where m is number of independent attributes in the dataset.
A KNN-matrix (K − Matrix) is generated in which element eij = 0 if jth training sample is not
the nearest neighbour of ith training sample and element eij = 1 if jth training sample is considered
as the nearest neighbor of ith training sample. After calculation of KNN-matrix, maximum distance
Maxdistance among all points is calculated based on Euclidean distance formula and a constant param-
eter Tolerance is introduced to control the decision tree generation. At each decision tree node, the

Algorithm 1 Pseudo code of proposed approach (WK-Tree)
Input: Training Samples X , Training Classes Y
Output: Binary Classification Confusion Matrix

// X training samples
// Y labels attached to training samples

*Training phase of proposed approach*
Step 1: All training samples are considered as points in m dimensional space and the largest distance
among all points is computed using Euclidean distance shown in equation (4).
Step 2: KNN’s of all training samples are calculated using equation (3) and the matrix is created as
shown in section 3.
Step 3: The CART decision tree is created with distance-based pre-pruning.

// pruning strategy is explained in detail in section 4.2.
Step 4: KNN’s of all samples are stored in leaf nodes instead of storing class labels.

// KNN’s are stored without repetition
// all duplicate KNN’s are removed

*Testing phase of proposed approach*
Step 1: The first step is to reach the leaf node of the decision tree; the testing sample under consid-
eration belongs.
Step 2: Label of the point under consideration is assigned based on weighted labels of nearest
neighbors of the leaf node.
//smaller distance has more weight than the larger distance
Step 3: Confusion matrix is created based on predicted values by WK-Tree and actual values
Step 4: Accuracy, Recall (sensitivity), Precision, and F1-Score is calculated based on Confusion
Matrix

Maxdistance ∗Tolerance condition is checked, if the node’s training samples satisfy this condition then
that node is considered as a leaf node and instead of storing class labels, nearest neighbors based on
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KNN-matrix are stored at that leaf nodes. Detailed steps and pseudo code of the proposed approach are
given in algorithm 1.

Figure 1 represents the flow chart of our proposed approach.

Fig. 1. Flow chart of the proposed approach

3.3 WK-Tree generation
This section of the research article explains the WK-Tree generation process in detail. Steps to

develop WK-Tree are explained as below:

1. Calculation of largest distance: In the first step of proposed the approach, all training samples are
considered as points in m dimensional space and the largest distance among all points is computed
as shown in Figure 2.

Fig. 2. Grid of training samples in m dimensional space

In figure 2 distance between point P2 and point, P5 is the largest among all points. It can be con-
sidered for decision tree pruning. Distance computed among all training samples in m dimensional
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space is Euclidean distance and can be calculated based on equation (1)(Danielsson, 1980).

d(Pi, Pj) = max
1≤i,j≤n

√√√√ m∑
k=1

(
P

(k)
i − P

(k)
j

)2
(1)

Where m is the total number of dimensions/features and n is the total number of training samples.
k is variable to iterate over the number of dimensions and i & j are variable to iterate over the
number of training samples.

2. KNN matrix generation: A n ∗ n matrix of k-nearest neighbors is generated for all training
samples. Here n is the total number of training samples. sqrt(n) + c function is selected to
find the nearest neighbors and an example of 5 ∗ 5 KNN matrix is shown in equation (2) with all
diagonal elements equal to 1. If element eij of K- matrix is 1 then point j is considered as the
nearest neighbor of point i on the other hand if element eij of KNN matrix is 0 then point j is not
considered as the nearest neighbor of point i. The final matrix will be a binary square matrix with
all diagonal elements as 1. All diagonal elements are 1 because the point under consideration is
always considered as the nearest neighbor of it and stored in the leaf node of the decision tree.

K −matrix =


1 1 0 1 0
1 1 0 0 1
0 0 1 1 1
1 1 0 1 0
0 1 1 0 1

 (2)

After performing pruning of decision tree node instead of storing class label, nearest neighbors of
training samples of the pruned node are stored based on the KNN matrix.

3. Decision tree creation: A decision tree is created based on the Gini index node splitting method
with distance-based pre pruning. There are two types of decision tree node pruning methods pre-
pruning and post-pruning. Pre-pruning based on the maximum depth of each leaf node from the
root of the tree is not an effective approach so we have done distance-based pre-pruning which is
explained in section 3.4 in detail. In distance-based pruning, a constant parameter Tolerance is
initialized between 0 and 1, and Maxdistance is multiplied with Tolerance to prune decision tree
nodes.

4. Labelling of testing samples: In the labeling phase first classification and regression tree is tra-
versed to reach the leaf node and then the weighted k-nearest neighbor approach is applied to
assign the final label of the testing sample. Weights are assigned to each nearest neighbor based
on equation (3) from the testing sample.

wi =

(
1.0− 1

1 + e−dij

)
∗ Li (3)

Where wi is the weight assigned to nearest neighbor i and value of Li = −1 for non-fault prone
classes and Li = +1 for fault-prone classes.

3.4 Distance-based pruning
In distance-based pre-pruning of decision tree first, we find out the maximum distance among all

points and then take the fraction of maximum distance to prune decision tree. Maximum distance is
calculated to cover all points. Detailed steps of pre-pruning based on the fraction of maximum distance
among all training samples are explained as under:
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1. All training samples are considered as points in m dimensional space in this strategy. Here m is
the number of independent attributes.

2. Parameter Maxdistance is calculated based on equation (4).

Maxdistance = max
0≤i,j≤k

(distance(xi, yj)) (4)

Where k is the total number of training samples in a particular node of the decision tree and
(distance(x)i, yj) is the distance between point xi and point (y)j .

3. Global parameter Tolerance is adjusted between 1 and 0 manually based on the density of points.
If the parameter value is adjusted to 1, it means the whole dataset is considered as nearest neighbors
and the decision tree will be able to build only root node on the other hand if the parameter value
is adjusted to 0 then the full decision tree will be built without any pruned node.

4. While building the decision tree, at each decision tree node Maxdistance ∗ Tolerance is tested
for all training samples at that node. If the condition is satisfied for all training samples then the
decision tree node is pruned and marked as a leaf node.

3.5 Time complexity
Training time is a one-time investment, so we will discuss only the testing time complexity of our

proposed approach. The Decision tree traverses from the root node to the leaf node in the prediction
phase in O(log n) time complexity. Instead of storing labels, k-nearest neighbors are stored at leaf nodes
in our proposed approach so a little constant c is added to the actual testing time complexity of the
decision tree. The total running time complexity of our proposed approach in this research article is
O(log n+ c).

4. Results and analysis

This section of the research article explains about the model validation approach, performance measure-
ment metrics, datasets used , and comparison of results of the proposed approach with other machine
learning models.

4.1 Model validation
In this research article K-fold, cross-validation is used with the value of K set to ten. Dataset is

divided into ten equal parts and then the training phase of the approach is applied on nine parts and
tested on the remaining part. The process is repeated for each part of the K-fold dataset and the final
results are the average of all ten-part results.

4.2 Performance measurement
Four performance metrics are used to evaluate the performance of proposed approach that are calcu-

lated based on equations (5), (6), (7), and (8) (Ferri et al., 2009).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(8)
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4.3 Datasets used
In this research article, we have used 11 NASA MDP datasets. Datasets are freely available and

downloaded from the PROMISE and OPENML repositories (Karim et al., 2017),(Bischl et al., 2017).
Dataset names, number of attributes, number of instances, and fault percentage per dataset are given in
Table 1.

Table 1. Datasets used for experimentation

Dataset Name Language Total attributes Total instances Fault percentage
CM1 C 22 498 9.83
KC1 C++ 22 2109 15.45
KC2 C++ 22 522 20.49
KC3 JAVA 40 458 9.38
MC1 C and C++ 39 9466 0.71
MC2 C 40 161 32.29
MW1 C 38 403 7.69
PC1 C 22 1109 6.94
PC2 C 37 5589 0.41
PC3 C 38 1563 10.23
PC4 C 38 1458 12.20

PC2 is the largest dataset with 5589 instances and MC2 is the smallest dataset with only 161 in-
stances. But MC2 has the highest fault rate 32.29% on the other hand PC2 has the lowest fault rate with
only 0.41% fault-prone modules.

4.4 Results
The proposed approach in this article is developed and tested on a machine with corei5 processor

and 8GB RAM. Anaconda3 is used to develop this approach and compare it with other machine learning
models.

4.4.1 Accuracy
In this research article proposed approach is applied to eleven open-source NASA MDP datasets

taken from the OPENML repository (Bischl et al., 2017). Table 2 compares our proposed approach with
decision tree variations (C4.5 and CART), random forest, k-nearest neighbors, and three variations of
support vector machine in terms of accuracy performance metric. The experiment is done by setting a
tolerance parameter equal to 0.05. The best results for each dataset are shown in bold letters in Table 1.
Accuracy is calculated up to five decimal places.

Out of all eleven datasets, our proposed approach gives better results in the case of nine datasets,
including large-scale datasets like KC1, MC1, PC2, PC3, and P4, which contain more than 1500 mod-
ules. In the case of MC1, WA-SVM and GA-SVM give similar results as our proposed approach, which
is more than 99%. In the case of MC2, the k-nearest neighbor gives slightly better performance, and
in the case of PC1, GAWA-SVM gives marginally better results. In both cases, our proposed approach
provides the second-best performance. The last row of Table 2 shows the average accuracy comparison
of all datasets. Our proposed approach gives better results than all other approaches used for comparison
purposes in the case of average accuracy.
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Table 2. Accuracy Comparison of the proposed approach with other machine learning approaches, the
value of constant Tolrance = 0.05

Dataset C4.5 GA-SVM CART RF KNN WA-SVM GAWA-SVM WK-Tree
CM1/22 0.78417 0.90351 0.78768 0.87311 0.9 0.90175 0.90505 0.93333
KC1/22 0.76352 0.85143 0.75134 0.68693 0.75941 0.84527 0.84621 0.86729
KC2/22 0.76403 0.79894 0.74316 0.82322 0.75271 0.81611 0.80061 0.83439
KC3/40 0.87568 0.90352 0.87501 0.89979 0.90646 0.90391 0.90357 0.91304
MC2/40 0.64007 0.67095 0.66471 0.70735 0.71434 0.65808 0.67022 0.71428
MW1/38 0.88087 0.91829 0.87535 0.91285 0.92285 0.92317 0.91829 0.95041
PC1/22 0.87139 0.93669 0.86678 0.92566 0.93 0.93403 0.93676 0.93093
PC2/37 0.99177 0.99588 0.99213 0.99606 0.99588 0.99588 0.99588 0.99761
PC3/38 0.8714 0.90144 0.86309 0.89447 0.89767 0.90018 0.90272 0.91257
PC4/38 0.88103 0.88206 0.87517 0.87648 0.87789 0.88337 0.87790 0.88127
MC1/39 0.99461 0.99503 0.9945 0.99408 0.71434 0.99503 0.99492 0.99503
Average 0.84714 0.88706 0.84444 0.87181 0.85195 0.88697 0.88655 0.90274

Figure 3 shows the comparison of the accuracy of our proposed approach with other machine learn-
ing approaches. The accuracy distribution of our proposed approach is shown by pink colored box plot,
which clearly shows better performance of the proposed approach in this article than other machine
learning approaches.

Fig. 3. Average accuracy comparison of all datasets in terms of box plots

4.4.2 Other performance metrics
Table 3 shows the average precision, recall, and f1-score of all techniques used for comparison

on eleven datasets. The best performance value is shown in bold letters. For precision and f1-score
performance metrics, proposed approach in this article gives better performance than all other approaches
used for the comparison but in the case of recall GA-SVM and GAWA-SVM perform slightly better than
our proposed approach. GAWA-SVM gives the best performance as shown in bold letters in Table 3.
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Table 3. Average precision, recall, and f1-score of all techniques used for comparison

Technique Precision Recall F1-Score
C4.5 0.90790 0.90950 0.89874

GA-SVM 0.89014 0.99470 0.93736
CART 0.90778 0.91206 0.89920

RF 0.88811 0.95419 0.91559
KNN 0.86958 0.96455 0.90392

WA-SVM 0.89398 0.98684 0.93670
GAWA-SVM 0.89022 0.99223 0.93665

WK-Tree 0.91053 0.98521 0.94569

Figure 4 shows the comparison of other metrics like precision, recall, and f1-score for all eight
techniques used for comparison purposes. In this parallel bar graph, red-colored bar graphs show the
precision value of different techniques, blue-colored bar graphs show recall value and green-colored bar
graphs shows the f1-score comparison of all techniques used for comparison purpose.

Fig. 4. Average precision, recall, and f1-score comparison of all datasets

4.4.3 Running time
The running time complexity of our proposed approach O(log n)+c. Figure 5 shows the comparison 

of running time in seconds of our proposed approach with k-nearest neighbors and weighted k-nearest 
neighbors.
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Fig. 5. Running time comparison of the proposed approach with KNN and WKNN

5. Conclusion

This article proposes a hybrid approach of pre-pruned classification and regression tree (CART) and
k-nearest neighbors. The decision tree is pruned based on the distance among points in m dimensional
space and leaf nodes of the decision tree store nearest neighbors of training samples on leaf nodes instead
of storing class labels. The proposed approach is applied on eleven software fault prediction datasets and
results are compared with eight machine learning models. Results show significant improvement in
performance.

In future work, more hybrid approaches based on standard machine learning approaches can be
developed to improve performance and make them work for real-life projects. Work can be done on
running time complexity reduction to make the approach practical.
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