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Abstract

In this article, we introduce a new method to solve a singular non-linear equation of the Lane-Emden type by approximating

the solution with Bernstein polynomials. This method is based on the minimization of a residual function using Taylor’s

series expansion. We also apply this method to problems that are solved by other methods and the obtained results show that

our method is efficient, applicable and has great potential than others.
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1. Introduction

We consider the following singular non-linear Lane-
Emden equation

y' + %y”rf(fv,y) =g(z), 0<z<b,

, (1)
y(0) =, y'(0) =5,

which
represents the source term, is sufficiently smooth;
f e C™Ya,b] x Dy), Dy is a closed interval in R

and @, b, v, and [3 are finite constants.

where the prescribed function ¢(z),

Lane-Emden type equations are frequently
encountered in various physical phenomena such as
reactant concentration in a chemical reactor, boundary
layer theory, control and optimization theory, flow
networks in biology, some areas of astrophysics, the
thermal behaviour of a spherical cloud of gas, isothermal
gas spheres, and the theory of thermionic currents. But
the solutions of (1) neither exists, nor are so practical
except for some spe cial cases. So, improving both
analytical and numerical schemes for finding the solution
becomes very important. So, far many methods have
been developed to provide accurate numerical solutions
as in Bengochea (2014), Marzban et al. (2008), Parand
et al. (2010), Turkyilmazoglu (2013), Wang et al. (2014),
Wazwaz (2001), Wazwaz (2014), Kajani et al. (2012) and
Yiizbag1 (2011).

Most of them reduce initial value problems to a
non-linear system of equations, which require another
approximation technique in their solutions and they

also need to guarantee the convergence. But our method
reduces the initial value problem to linear systems
of equation, so that the results give us the unknown
Bernstein coefficients of the approximate solution on
the subintervals. This creates significant advantage for
our method. So, we get an iterative method by dividing a
given interval [a, b]into subintervals. Also, we can control
the bound of error with respect to step size, instead of
degree of approximation curve. On each subinterval, we
write an initial value problem, whose initial conditions are
obtained from the approximate solution on the previous
subinterval by constructing Bezier curves with unknown
control points. Our goal is to determine the control
points in order to minimize the residual. Finally, we get
a piecewise approximate solution in the space C'! a, b].

This technique provides us a lower triangular system
with nonzero diagonals. So, most of for Let the non-linear
problems can be solved linearly using this technique. The
Bernstein polynomials give a preference to the approximate
solutions of differential equations as a consequence of
these nice properties. Some examples of these type of
approximations can be found in Evrenosoglu & Somali
(2008), Ghomanjani et al. (2012), Wu (2012) and Zheng
et al. (2004).

The organization of this paper is as follows.

In Section 2 we suggest new technique for the second
order non-linear initial value problems using the Bernstein
polynomials. Section 3 presents application of the
proposed method to the Lane-Emden type equations. The
error analysis of this method for the Bernstein polynomials



is given in Section 4. In Section 5, three problems are
presented by the numerical results to verify the theoretical
results in Section 4. Finally, in section of conclusion,
we summarize the results of the study and present our
suggestions regarding the future works.

2. Residual method for second order nonlinear
initial value problems

Consider the initial value problem
y'=F(zy.y), yla)=a, yla)=8 @
where [ € C'"_l([a,b] x Dy x Dj), Djand Dy are

the closed intervals in R and a, b, vand [3 are finite constants.
Letusdivide the interval [a, b]into subintervals[ai,l , ai]with
equal length, where a; = a + th, i = 0,1,..., N,
h = (b — a)/N, N is a positive integer. So, we can define
the initial value problem (2) piecewisely as

y;/(x) = F(xuyz(x)7y;(x))v T e SZ - [aiflaai]a (3)

forl <7 < N and

yi(ao) = a, yi(ag) = B,

“4)
yé(@z‘—ﬂ = yé—l(ai—l)a yé(ai_l) = yz{—l(ai—l)a
for2 <i¢ < N.

Let

ue) = Yo (T ®
j=0

be an'h degree Bezier curve over S;, where

are the Bernstein polynomials over the interval S; and
¢; are the unknown control points to be determined. So,
we have (1 4 1) unknown control points for u;(x) over
the interval ;-

)

Equations (4), initial conditions, should be applied to
the approximate solution, that is

uy(ag) = 3, (6)

ui(ai—) = wi—1(aiz1), uj(ai-) =u;_(ai1), (7)

Uy <a0) = Q,

for2 < ¢ < N.Thus, we provided that the continuity
of the first derivative of the approximate solution

u(@) =ui(z) = €S, ()
which means that u(x) € C'[a, b].
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By the derivation property of the Bezier curves at the
end points and Equations (6) and (7), we have

h
1 _ 1 __
Cp = @, leﬁg"i_&a

(©))
G =i, =2 —dh
fori = 2,..., N.After that we have (n — 1) unknown

control points for each subinterval S;.

Substituting Equation (5) into the differential equation

(3) for i = 1,..., N, we have the piecewise residual
function

R(z) = R;(x) x €5,

where

Ri(x) = uj(x) = F (2, ui(x), u;(z)),

(2

S Sz

Our aim is to determine such unknown control points
cé» so that the sufficiently differentiable residual function
R; () will be minimum in the interval S;. To this end, we
force the first (n — 1) terms in the Taylor expansion of
R;(x)tobe zeroatz = a;_1,ie.,
R™(a;1) =0 for k=0,...,n—2.
Since
Ri(ai-1) = u(ai-1)

— Flai1,ui(a;i1), u;<aifl))7
using the derivative property of the Bezier curves at the

end points given in Equations (9), we have the following
linear equation

(10)

nn—1) i i
%(02 — 2] + ¢p)
i i )
- F (ai_bco, E(Cl — co)> = 0.

Likewise, the rest of Equation (10)

Rz(k)(ai—l) :U§k+2)(ai—1)
—F® (a;1,ui(a;—1), uj(a;i-1))

— 07
fork =1,...,n — 2 becomes
nn—1)...n—k+1) 4.0,
hk+2 A o
— F® (ai_l, ch, %(czl — cf])) =0, (12)
where
(k) ot
FY(x,y,2) = %F(x,y, 2)
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and

k+2 i
A"

_ kf (k + 2) (D)2 i

=0\ 7

So, we solve Cg, cee Cfl from the above lower triangular
system of linear equations (11) and (12), hence, we obtain
the approximate solution u; () such that R;(x) will be

minimum in S; fori = 1,..., N.

3. Application of residual method to Lane- Emden
equation

First, we define the initial value problem on each interval
Si = [a;i—1,a:),1 < i < N asin Section 2

2

yi (2) = ——yi(@) = f (2, yi(z))+g(x),

. xr € 5;, (13)

forl1 <7< N and
yl(ao) = Q, yi(ao) =B,

yilaio1) = yi1(ai-1), yilai-1) = yioi(aic1), (14
for 2 S 1 S Nwhereai = Qo —|—ih,a0 =0.

We have to change our technique only for the first
interval since the residue function

Ry(z) = u’{(m)—i—%u’l(x)—kf(x,ul)—g(az), r e S

and its derivatives are not be defined at ag = 0.So, we
choose a point 1) € (0, a1] to force the residue function
and its derivatives to 0, i.e.,

ng)(n)ZO, for k=0,....,n—2. (15)

In this case, we have some non-linear equations to find
the unknown control points for the first interval, since
we cannot use the property of derivatives of the Bezier
curves at the end points. But this situation does not affect
the order of convergence (this be proved in Section 4).
Here, we use the Newton’s method to solve the non-
linear equations approximately. For the initial values of
the Newton’s method, we use the initial values of the
Equation (1).

After finding the unknown control points on the interval
S}, we continue our procedure as described in Section 2.
We force the residue function with the derivatives to be 0
atx =a;_1forS;, 2 <i< N, ie.,

R¥(a;-1) =0, (16)

fork = 0,...,n —2 to find the unknown control points
where

Rilw) = (@) + 2i(a) + Fl,w) — g(x). 1T

In this case, we have (n-1) linear equations to find
the unknown control points as well but for only the first
interval S1, we try to get zero from the residue function
and its derivatives at a different point from o because
Equation (17) has the singularity only at a.

4. Error analysis

Lemma 1. The residual functions R; () are of order 2"~
fori =1,...,N.

Proof.

Using (10) and Taylor expansion of R;(z)at x = a;_;
we have

hn—l .
IBi()| < g7 max 1R (@)l

Lemma 2. Let u; (:1:) be the auxiliary approximate solution
of piecewise initial value problem (3) with initial conditions
(4). Then, we have

(@

y @) =a (@), 1=0,1,....,n  (18)
ly;(z) — @(z)| < Kh"t', Va2 € S (19)
lyi(x) — a5(x)| < (n+ 1)KR", Yz eS;, 0

where y,(:B) is the corresponding exact solution and

+1
K= i s @)l
/,/T"'— LT,
Ry
,,,,/ 1
/ ———(X)
! »(x)

I I
| |
I I
! ! —it(x)
I I
I I
I I
I I

ap arp - ai-p ay-1 an

Fig. 1. An illustration of auxiliary approximate solutions
11, () approximate solution u(z) and exact solution y; ()
of non-linear initial value problem (2) on [ao, a N}.

Proof. Since both @; () and y;(x) satisfy the initial
condition (4), it is obtained that

@i(az’—l) = yi(ai—l) and ’%(%’—1) = yz{(ai—l)- 21)

Define the residual function and its derivatives as



éi(aifl) = fb?(%ﬂ)

- F(ai—la yi—l(a'i—l)a y;—l(ai—1)>

ng)(az‘—l) U(k+2)(az‘—1)
- F(k)(ai—h yi—l(ai—1>a y§_1(ai—1))7

where k = 0,1,...,n — 2and
t=1,2,..., N, which satisfy R§k)(ai—1) =0 for
k=0,1,...,n— 2asin (10).
O :ng) (CLi,l)
:agk+2) (aifl)
- F(k)(aifly ai(aifl)y %71(@1—1))
:ﬂ(k+2)(ai_1)

- F(k)<ai—1»yi 1(ai-1), yi1(aiz1))

=" (a;) =y (0, ).

~ (k42 k+2
UE i )(az— ) - yz( " )(az—l) (22)
fork = 0,1,...,n — 2. Therefore, Equations (21) and
(22) yields,
(l)(aZ 1) = y@(ai_l) forl=0,1,...,n

Writing the Taylor expansion of the difference

(yi (z)

— fLZ(I)) about T = Q-1

yi(r)—ui(x) = yi(ai-1) — ti(ai-1)
+ (2 — ai1)(yi(ai1) — wi(a;1))
O )~ )
+ “ ..

- (m_n#(yi(")(ai_l) = 4" (a:-1))
(r —ai)"™ (i
O )

where @i—1 < &1 < Z. And using Equation (18) we

get
(s (&),

~ . ( — az‘f1)n+1
yi(w) —t;(z) = W

which gives Equation (19).
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Similarly expanding the Taylor series of the difference
(yé(m) — ﬂ;(a:)) atr = a;—1and using Equation (18),
we obtain the required bound in Equation (20).

The following lemma can be proved by using the
Taylor expansion of the expressions about * = a;_1

Lemma 3. Let U; () be the auxiliary approximate solution
of the piecewise initial value problem (3) with the initial
conditions (4) and ul(:lt) be the approximate solution of
(3) with the initial conditions (6) or (7). Then,

|U,( )_u% x) < |uz 1(az 1)_uz 1(az 1)|

2 hn
1+ (2— ) 6)
+ |uz 1 al 1 u’L 1<aZ 1)|
+ + e
K T (23)

|U;($) - ﬂ;($)| < |ui—1(a;—1) — Gi—1(a;—1)|
hn—l

h2
(h—f-a—f-...—i—m)cl

+ iy (@i1) = @y (i)

h2 hnfl
<1+<h+—,+ +7‘>02)
u;(az)] < |yi—1(ai—1) — ui_l(ai_1)|

h2 hn—l

+|y§71(az‘—1) — iy (ai—1)]

(e (e ) )

i (ai)—

+(n+ 1)Kh" (25)
where
= k) }
“ k:OI,{l,?.),(n_Q { (wglj)xeg | v (:IJ, v, Z)’ (26)
Cy = { F®) }
? k:or,?f),(n_g (JB%XGQ |F2 (2,0, 2)] (27)

for @ = {(z,v,2)|z € [a,b], v € Dy, z € Dy}.

Theorem 4. Let y(x) be the exact solution of the second
order non-linear initial value problem (2) and () be the
corresponding nth degree approximate function (8). Then,
we have the inequality
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ly(z) —u(z)] < MR, @€ a,0], (28)
1

where M = KO — a)? (n -21- ) and

K= — 1 max [y

m
(n + 1)' z€[a,b]

Proof. Let ﬂl(x) be the auxiliary approximate solution
of the piecewise initial value problem (3) with the initial
conditions (4) and u; () be the approximate solution of
(3) with the initial conditions (6) or (7), then

|yi(2) —wi(2)] < [yi(2) =t ()| +[a:(2) —u ()],

Vr € §; fori = 1,..., N.Using Equations (19) and
(23), we obtain

Y1 (7) — wiga (2)] < wi(ai) — @i(a;)]

h? h¥ hr
<1+<2,+ TR +H>Cl)
+ui(a:) — ;(as)]

h? h* h"
<h+(2' +"'+ﬁ+”'+ﬁ>02)

+ K hn+1 (29)
Note that @1 (x) and u () are exactly same since they
are the approximate solutions of the same initial value
problem. So, from Equations (19) and (20), we get

ly1(z) — up(z)] < Kh"TY) Vo e S, (30)

y1(ar) — uy(ar)] < (n+ 1KR". (31)
Using the recurrence relations in Equations (29) and (25)
and inequalities in Equations (30) and (31), we get by
mathematical induction that

7)| < (%(n+ 1)N?

—~

lyn(z)—un

(n— 1)N> Kh™ 4 O(hn+?)

[\')||—ll\')|?—‘

< —(n+1DK(b—a)*h"t +O(h")

since N = (b — a)/h. Hence, we have

ly() — u(z)| < MA"

Lemma 5. Let ﬂ1(33) be the auxihary approximate
solution of piecewise initial value problem (13) with
initial conditions (14). Then, we have

1 (z)—us (z)| < KLA" T 4+O(h"?), Vo € S (32)

i (2) — uy(z)] < KLh"+O(h"*), Vo € S, (33)

where Y1 (fE ) is the corresponding exact solution and

(@),

= ——— Inax
(n+ 1)! z€(a,b]
L=2""—n-2
L=(n+1)2"—-1).
Proof. Using Taylor expansion of
|ugk) (z) — ygk)(x)\, k = 0,1 aboutx = agand
(@) — @) k= 2,3,

rT=1n€ (aOval],we have

, L about

Wt (2) — 3 (@)] < [uf (a0) — 91 (ao)]

+ 2 — ag[ul™ (a0) — 4 ()|

+ ...
|IE - a0|nik n n
WM (ag) — yi" (ao)|
|I’ _ a0|n—k+1 _—
m@% (I (34)
where £k, £ = 0, 1 and between ag and ;
k k k k
jui ()= (@) < Wi () — 4" ()]
k k
+ |z =l () — i ()]
+ ..
2 — 0" (n)
+ (= k)l lui () — 1 (n)]
|l’ _ nln_k+1 ’ygTH*l) (fk)’ (35)
(n—k+1)! ’

whereéy, k = 2,3, ...

(15) fork = 0,1, ..

\me—y1<ﬂ<amm>—mmn
+ Colul () — 5 ()|

, 1 are between "] and x. Equation

. n —2yields

(36)

where C1 and C2 are defined in Lemma 3. Using
inequalities in Equations (34), (35) and (36) repeatedly,
we get the results in Equations (32) and (33).

The following corollary can be proved with
mathematical induction using the recurrence relations
in Equations (29), (25) together with the inequalities in
Equations (32) and (33).

Corollary 6. Let y() be the exact solution of the Lane-
Emden type equation (1) and u(z) be the corresponding
th degree approximate function. Then, we have



ly(x) —u(z)| < MR, x € (0,5,
where M is a constant, which does not depend on h.

5. Numerical Examples

In this section, we provide some numerical ex where
we have are between and and amples to illustrate the
applicability of the proposed method. The tables and
figures demonstrate the power of the current study.

Example 1. Consider the Lane-Emden equation in Wang
etal. (2014)

2
' + 2y +9° =0, for 0<2<1
x
y(0)=1,  y(0)=0 G7
with the exact solution
y(z) = (1422/3)7"7

Algorithm of the method for the above problem with
n = 3and N = 50 as follows
Step 1: Set N = 50, h = 1/N.
Step 2: Compute a; = thfori =1,2,..., N.
Step 3: Construct

i a;
I3 i—1
wi(z) = g chj 4),

1=1,2,...,50.
Step 4: Setcy = 1,¢f = 1.

Step 5: Solve ¢}

2
uf (z) + Zul(x) + ui (),
T

and Cé from following non-linear

equations
6
Ri(ar) = h_( —2¢3 + 1)
23
+a_ﬁ< _02)+(C3) =0,
/ 6 1
23 2 6
—G—%E(Czl), )+a_ﬁ( 3 — 2¢5 + )

5(ey) (3 — ¢3) =0
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by Newton’s method.
Step 6: Set i =2.

Step 7: Compute ¢}, = ¢ oL

1 . -
and ¢ = 25t — ¢}

Step 8: Solve Cé and Cé from the following linear equations

— 274 + CO)

3 . . ‘
+25(ch) (e — cf) =0,
Step 9: Repeat steps 7 and 8 for
1=3,4,...,N.

Step 10: Write the piecewise approximate solution as

ur(x), @ € [aog,a1]
() = us(x), x € [a,as)
un(x), = € lan_1,an]

Table 1 gives a comparison ofnumerical results with
the results of the reproducing kernel method (RKM) given
in Wang et al. (2014) and we observe that the accuracy
obtained is high enough. In Table 2, we give the observed
orders obtained using the following formulae

max |y(z)—u(x,N)|
Og(max \;l(a:)fu(x;QN)\ )

log(2) ’
where u(x;N) denotes the approximate solution of y(x)
obtained by N subintervals. It can be seen that observed

orders are well to confirm the theoretical results. Figure 2
shows the error functions for N = 50, 100, 200.

ord(N/2N) =

(38)
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Table 1. Comparison of the errors of the present method with RKM errors.

RKM Presented Method
Exact (N = 50) n=3 n=4 n=>, n=>5

x Values (in Wang et al. (2014)) N =50 N =50 N =50 N =200
0. 1. 0. 0. 0. 0. 0.

0.1 0.998337 5.115E-7 2.243E-7 1.762E-10  3.194E-11 1.893E-13
0.2 0.993399 7.322E-7 6.306E-7 1.633E-9  8.934E-11 6.780E-13
0.3 0.985329 7.218E-7 1.144E-6 5.405E-9 1.596E-10  8.862E-13
0.4 0.974355 2.963E-7 1.711E-6 1.199E-8  2.250E-10 1.556E-12
0.5 0.960769 1.077E-6 2.248E-6 2.127E-8  2.660E-10 1.960E-12
0.6 0.944911 8.175E-7 2.675E-6 3.259E-8  2.682E-10 1.169E-12
0.7 0.927146 1.459E-6 2.927E-6 4.496E-8  2.253E-10  3.251E-13
0.8 0.907841 1.701E-6 2.960E-6 5.721E-8 1.390E-10  5.829E-13
0.9 0.887357 2.491E-6 2.757E-6 6.828E-8 1.770E-11 6.768E-13
1. 0.866025 3.596E-6 2.324E-6 7.732E-8 1.265E-10  9.200E-13

Table 2. Observed orders of Example 1 with
n=3,4,5and =25, 50, 100, 200.

N | n=3 n=4 n=>5
25/50 | 2.281 3.028 4.339
50/100 | 2.119 3.017 4.176
100/200 | 2.049 3.010 3.278

3.x107%

25x1078 |-

2.x107°

1.5x1070

1.x107

5.x107

T L L 1
0.2 0.4 0.6 0.8 1.0

Fig. 2. Graphs of Error functions of Example 1 obtained
using 3rd degree approximate function with number of

intervals N = 50, 100, 200.

Example 2. Consider the Lane-Emden equation in Parand
et al. (2010) and Wang et al. (2014)

2
Y+ 4 4(2eY +e¥/?) =0, forx >0
x
y(0)=0,  y(0)=0 <
with the exact solution ¥(%) = —21In(1 + $2)-

Table 5 gives a comparison of numerical results with
the results of Hermite functions collocation method (HFC)
and RKM given in Parand ef al. (2010) and Wang et al.
(2014), respectively. In Table 3, observed orders obtained
using (38) are given.

Example 3. Consider the Lane-Emden equation in Parand
et al. (2010)
2 .
y' '+ —y +siny=0, forz>0
T
y(0)=1, ¢ (0)=0

with the asymptotic solution given in Wazwaz

1 1
~1—-— 2y — 4
6]€1.’B + 120/€1k2$

1 1
k /{32 _ k2 6
o (3024 175040 2)9“"

113 1
ko | — oo k? 4+ k2 | 2®
T 2( 32650201 362830 2) ’
1781, 1 .

by | K2k — ——— &
T (898128000 172399168000

y()

19
_ k4 10
23950080 1) o
where k1 = sin(l) and ko = cos(l).

Table 6 gives a comparison of some numerical results
of the presented method with an asymptotic solution given
in Wazwaz (2001) and the results of HFC given in Parand
et al. (2010). In Table 4, we give orders using

max |u(z;N)—u(z;2N)|
g( mai( [u(x;2N)—u(x;4N)] )

log(2)

order(N/2N) =

where u(z; N), u(z;2N), u(z;4N) are approximate
solutions of ¥() obtained by respectively. From Tables

2,3 and 4, it is concluded that observed orders are equal
to as proved in Corollary 6.
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6. Conclusion

In this paper, we have improved a linear residual method. The obtained results give us a piecewise approximate solution
of the Lane- Emden type equations. An advantage of this method is that we will have more accurate solutions for the
fixed degree of polynomials by solving the linear systems of equations. We have seen that the obtained numerical
results are compatible with the theoretical aspects. This method can be extended to some singularly perturbed boundary
value problems, the Emden-Fowler equations, strongly non-linear boundary value problems and the chaotic initial
value systems such as Lorenz systems, Genesio-Tesi systems, Rossler systems etc.

Table 3. Observed orders of Example2 with Table 4. Observed orders of Example3 with
n=3;4;5 and N=25;50;100;200. n=3;4;5 and N=25;50;100.
N|n=3 n=4 n=5 N|n=3 n=4 n=5
25/50 | 1.900  3.000 2.264 25/50 | 2345 2975 4423
50/100 | 2.093  3.033 3.903 50/100 | 2.163 2998 4.010

100/200 | 2.061 3.028 4.022

Table 5. Comparison of the errors of the present method with RKM and HFC errors.

RKM HFC Presented Method
X Exact (N = 50) . N =50
Values (in Wang et al. (2014)) (I Parand et al. (2010)) n=>5

0 0. 0 0 0.
0.01  -0.00019999 6.666E-13 2.931E-6 1.886E-13
0.1 -0.0199007 3.829E-8 3.939E-6 2.224E-7
05  -0.446287 1.026E-7 3.018E-6 4.755E-6

1 -1.38629 4361E-6 9.314E-7 2.632E-6

2 321888 4.175E-6 4.999E-7 5.099E-6

3 460517 1.860E-7 8.104E-7 2.257E-6

4 -5.66643 3.312E-6 7.692E-7 1.967E-7

Table 6. Comparison of the errors of the present method with asymptotic solution and HFC errors.

Error in

x Wazwaz (2001) Error in Parand et al. (2010) presented method

0 1. 0 0.

0.1 0.998598 7.207E-6 8.427E-9
0.2 0.994396 9.997E-6 8.446E-9
0.5 0.965178 1.038E-5 8.538E-9
1 0.863681 7.027E-6 2.267E-8
1.5 0.705042 1.049E-5 3.309E-6

2 0.506372 9.672E-5 9.156E-5
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