Four dimensional matrix mappings and applications

Mehmet Ali Sarıgöl* Dept. of Mathematics, Pamukkale University, Turkey *Corresponding author: msarigol@pau.edu.tr

Abstract

In this paper, we characterize the classes $(\mathcal{L}, \mathcal{L}_k)$, $(\mathcal{L}_k, \mathcal{L})$ and $(\mathcal{L}_{\infty}, \mathcal{L}_k)$, $1 \le k < \infty$, of all four dimensional infinite matrices, where \mathcal{L}_k and \mathcal{L}_{∞} are the spaces of all absolutely k-summable and bounded double sequences, respectively. Using them, we establish some relations between $|\overline{N}, p_n, q_n|$ and $|\overline{N}, p'_n, q'_n|_k$ summability methods which extend some results of Bosanquet (1950), Sarıgöl (1993), Sarıgöl & Bor (1995), and Sunouchi (1949) to double summability methods, and give a relation between single and double summability methods.

Keywords: Banach space, double matrix mapping, double summability, four dimensional matrix, inclusion theorem

1. Introduction

Let us consider an infinite single series Σx_v of complex (or real) numbers with partial sums s_n , and let (σ_n^{α}) denote the n-th Cesàro means of order α with $\alpha > -1$ of the sequence (s_n) . The series Σx_v is said to be summable $|C, \alpha|_k$, $k \ge 1$, in Flett's notation (Flett, 1957), if $(n^{1/k^*} \Delta \sigma_n^{\alpha}) \in \ell_k$, where ℓ_k is the space of the set of absolutely k-summable single sequences and $1/k^* + 1/k = 1$. Let (p_n) be a sequence of positive numbers satisfying

$$P_n = \sum_{v=0}^n p_v \to \infty \text{ as } n \to \infty, \ P_{-1} = p_{-1} = 0.$$
 (1)

The sequence-to-sequence transformation $u_n = \sum_{v=0}^n p_v s_v / P_n$ defines the sequence (u_n) of the weighted mean or simply (\overline{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (Hardy, 1949). The series Σx_v is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if $\{(p_n^{-1}P_n)^{1/k^*} \Delta u_n\} \in \ell_k$, where $\Delta u_n = p_n (P_n P_{n-1})^{-1} \sum_{v=1}^n P_{v-1} x_v$ (Bor, 2016), which, for $p_n = 1$, includes the method $|C, 1|_k$.

Throughout the paper, (p_n) , (q_n) , (p'_n) and (q'_n) will denote the sequences of positive numbers satisfying equation 1 and

$$\mu_{mn}(k) = \begin{cases} \frac{1}{P_{m-1}} \left(\frac{p_m}{P_m}\right)^{1/k}, & n = 0, m \ge 1\\ \frac{1}{Q_{n-1}} \left(\frac{q_n}{Q_n}\right)^{1/k}, & m = 0, n \ge 1\\ \frac{1}{P_{m-1}Q_{n-1}} \left(\frac{p_m q_n}{P_m Q_n}\right)^{1/k}, & m \ge 1, n \ge 1. \end{cases}$$
(2)

A summability method Y is stronger than another method X if each series summable by X implies its summability by Y (not necessarily to the same sum). Hereof, there are many papers in the literature done by various authors, e.g. (see, (Bor, 2016), (Bor & Thorpe, 1987), (Borwein & Cass, 1968), (Bosanquet, 1950), (Das *et al.*, 1967), (Flett, 1957), (Hardy, 1949), (Güleç, 2019), (Mazhar, 1972), (Mishra

et al., 2018), (Mohapatra, 1967), (Rhoades, 1998), (Rhoades, 1999), (Rhoades, 2003), (Sarigöl, 1991), (Sarıgöl, 1992), (Sarıgöl, 1993), (Sarıgöl & Bor, 1995), (Sarıgöl, 2021), (Sarıgöl & Mursaleen, 2021), (Sunouchi, 1949), (Thorpe, 1972), (Zraiqat, 2019)). Among them, in the special case k = 1 the following known result is due to Sunouchi (Sunouchi, 1949).

Theorem 1.1. In order that every $|\overline{N}, p_n|$ summable series should be $|\overline{N}, p'_n|$ summable, it is sufficient that

$$\frac{p_n' P_n}{P_n' p_n} = O\left(1\right). \tag{3}$$

Reviewing this paper, Bosanquet observed that equation 3 is also necessary for the conclusion and so completed Theorem 1.1 in necessary and sufficient form (see (Bosanguet, 1950)).

In (Sarigöl, 1993), Theorem 1.1 has been extended to the case $1 \le k < \infty$ as follows.

Theorem 1.2. Let $1 \le k < \infty$. Then, in order that every $|\overline{N}, p_n|$ summable series should be $|\overline{N}, p'_n|_{L^2}$ summable, it is necessary and sufficient that

$$\frac{p_n'}{P_n'} \left(\frac{P_n}{p_n}\right)^k = O\left(1\right)$$

Also, it has been showed in (Sarıgöl & Bor, 1995) that the converse of the implication is not true.

Theorem 1.3. Let $1 < k < \infty$. Then, for every sequences (p_n) and (p'_n) , there exists a series which

is summable $|\overline{N}, p_n|_k$ but is not summable by $|\overline{N}, p'_n|$. First, we recall related notations. Let $\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} x_{rs}$ be an infinite double series of real or complex numbers with partial sums s_{mn} , *i.e.*,

$$s_{mn} = \sum_{r=0}^{m} \sum_{s=0}^{n} x_{rs}.$$
(4)

For the sake of brevity, we denote the summations $\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}$ and $\sum_{r=0}^{m} \sum_{s=0}^{n}$ by $\sum_{r,s=0}^{\infty}$ and $\sum_{r,s=0}^{m,n}$, respectively. By T_{mn} , we denote the double Riesz mean transformation (\overline{N}, p_m, q_n) of the double sequence (s_{mn}) , *i.e.*,

$$T_{mn} = \frac{1}{P_m Q_n} \sum_{r,s=0}^{m,n} p_r q_s s_{rs}.$$
 (5)

The series $\sum_{r,s=0}^{\infty} x_{rs}$ is said to be summable $|\overline{N}, p_m, q_n|_k$, $k \ge 1$, if (see (Sarigöl, 2021))

$$\sum_{m,n=0}^{\infty} \left(\frac{P_m Q_n}{p_m q_n}\right)^{k-1} \left|\overline{\Delta} T_{mn}\right|^k < \infty \tag{6}$$

where $\overline{\Delta}T_{00} = s_{00} = x_{00}$, and, for $m, n \ge 1$,

$$\Delta T_{m0} = T_{m0} - T_{m-1,0}, \ \Delta T_{0n} = T_{0n} - T_{0,n-1}, \overline{\Delta} T_{mn} = T_{mn} - T_{m-1,n} - T_{m,n-1} + T_{m-1,n-1}.$$

We note that, in the special case $p_n = q_n = 1$, the summability $|\overline{N}, p_m, q_n|_k$ reduces to the absolute double Cesàro summability $|C, 1, 1|_k$, given by Rhoades (1998).

There is a close relationship between the method $|\overline{N}, p_m, q_n|_k$ and the space $\mathcal{L}_k, 1 \leq k < \infty$, defined by the set of all double sequences $x = (x_{rs})$ of complex numbers such that $\sum_{r,s=0}^{\infty} |x_{rs}|^k < \infty$, which reduces to \mathcal{L} for k = 1, studied by Zeltser (2001). Also, \mathcal{L}_k is the Banach space (Başar & Sever, 2009) according to its natural norm

$$||x||_{\mathcal{L}_k} = \left(\sum_{r,s=0}^{\infty} |x_{rs}|^k\right)^{1/k}, 1 \le k < \infty.$$

Further, the space \mathcal{L}_{∞} consists of all bounded double sequences and it is a Banach space with the norm $||x||_{\mathcal{L}_{\infty}} = \sup_{r,s} |x_{rs}|$.

Let $x = (x_{rs})$ be a double sequence of complex numbers. If for every $\varepsilon > 0$ there exists a natural integer $n_0(\varepsilon)$ and real number l such that $|x_{rs} - l| < \varepsilon$ for all $r, s \ge n_0(\varepsilon)$, then, the double sequence x is said to be convergent in the Pringsheim sense. Also, a double series $\sum_{r,s=0}^{\infty} x_{rs}$ is convergent if and only if the double sequence (s_{mn}) in equation 4 is convergent.

Let U and V be two double sequence spaces, and $A = (a_{mnrs})$ be a four dimensional infinite matrix of complex (or, real) numbers. Then, A defines a matrix transformation from U into V, written $A \in (U, V)$, if for every sequence $x = (x_{rs}) \in U$, the A-transform $A(x) = (A_{mn}(x))$ of x exists and belongs to V, where

$$A_{mn}(x) = \sum_{r,s=0}^{\infty} a_{mnrs} x_{rs}$$

provided the double series on right side converges for $m, n \ge 0$.

The transpose $A^t = (a_{rsmn})$ of the matrix $A = (a_{mnrs})$ is defined by

$$A_{rs}^t(x) = \sum_{m,n=0}^{\infty} a_{mnrs} x_{mn} \text{ for } m, n \ge 0.$$

The β -dual U^{β} of the space U is the set of all double sequences (b_{rs}) such that $\sum_{r,s=0}^{\infty} b_{rs} x_{rs}$ converges for all $x \in U$.

In this paper we characterize the classes $(\mathcal{L}, \mathcal{L}_k)$, $(\mathcal{L}_k, \mathcal{L})$ and $(\mathcal{L}_{\infty}, \mathcal{L}_k)$, $k \ge 1$, of all four dimensional infinite matrices, and extend Theorem 1.1, Theorem 1.2 and Theorem 1.3 to double summability methods, and also establish a relation between single and double summability methods.

2. Needed Lemmas

We require the following lemmas for the proofs of our theorems.

Lemma 2.1 (Zaanen 1953, p.134) A linear mapping T from a Banach space U into another Banach space V is continuous if and only if it is bounded, i.e., there exists a constant L such that $||T(x)||_V \leq L ||x||_U$ for all $x \in U$.

Lemma 2.2 (Sarigöl, 1991) Let k > 0. Then, there exists two strictly positive constans M_1 and M_2 , depending only on k, such that

$$\frac{M_1}{P_{r-1}^k} \le \sum_{m=r}^{\infty} \mu_{m0}^k \left(k\right) \le \frac{M_2}{P_{r-1}^k} \tag{7}$$

for all $r \ge 1$, where M_1 and M_2 are independent of (p_n) .

Lemma 2.3 (Sarıgöl, 2021) Let k > 0. Then, there exists two strictly positive constants N_1 and N_2 , depending only on k, such that

$$\frac{N_1}{P_{r-1}^k Q_{s-1}^k} \le \sum_{m,n=r,s}^{\infty} \mu_{mn}^k \left(k\right) \le \frac{N_2}{P_{r-1}^k Q_{s-1}^k} \tag{8}$$

for all $r, s \ge 1$, where N_1 and N_2 are independent of (p_n) and (q_n) .

3. Main Result

Our results are as follows.

Theorem 3.1 Let $k \ge 1$ and $A = (a_{mnrs})$ be a four dimensional infinite matrix of complex numbers. Then, in order that $A \in (\mathcal{L}, \mathcal{L}_k)$ it is necessary and sufficient that

$$\sum_{m,n=0}^{\infty} |a_{mnrs}|^k = O(1).$$
(9)

Proof. Assume equation 9 holds. Then, we should show that $A(x) = (A_{mn}(x)) \in \mathcal{L}_k$ for every $x = (x_{rs}) \in \mathcal{L}$. Now, using equation 9, it follows from Minkowski's inequality that

$$||A(x)||_{\mathcal{L}_{k}} = \left(\sum_{m,n=0}^{\infty} |A_{mn}(x)|^{k}\right)^{1/k} \leq \left(\sum_{m,n=0}^{\infty} \left(\sum_{r,s=0}^{\infty} |a_{mnrs}x_{rs}|\right)^{k}\right)^{1/k}$$
$$= \sum_{r,s=0}^{\infty} |x_{rs}| \left(\sum_{m,n=0}^{\infty} |a_{mnrs}|^{k}\right)^{1/k} = O(1) ||x||_{\mathcal{L}} < \infty.$$

which gives the desired conclusion.

Conversely, let $A \in (\mathcal{L}, \mathcal{L}_k)$. Then, for $k \ge 1$, since \mathcal{L}_k is a Banach space (see (Başar & Sever, 2009)), by Lemma 2.1, there exists a constant K such that $||A(x)||_{\mathcal{L}_k} \le K ||x||_{\mathcal{L}}$, *i.e.*,

$$\left(\sum_{m,n=0}^{\infty} \left|\sum_{r,s=0}^{\infty} a_{mnrs} x_{rs}\right|^k\right)^{1/k} \le K \|x\|_{\mathcal{L}}$$
(10)

for all $x \in \mathcal{L}$. So, by applying the double sequence $x \in \mathcal{L}$ to equation 10, where $x_{ij} = 1$ for i = r, j = s, zero otherwise, we obtain

$$\sum_{m,n=0}^{\infty} |a_{mnrs}|^k \le K, \text{ for } r, s \ge 0,$$
(11)

which gives equation 9.

This step concludes the proof.

Theorem 3.2 Let $1 < k < \infty$ and $A = (a_{mnij})$ be an four dimensional infinite matrix of complex numbers. Define $W_k(A)$ and $w_k(A)$ by

$$W_k(A) = \sum_{r,s=0}^{\infty} \left(\sum_{m,n=0}^{\infty} |a_{mnrs}| \right)^k,$$
(12)

$$w_k(A) = \sup_{MXN} \sum_{r,s=0}^{\infty} \left| \sum_{(m,n)\in MXN} a_{mnrs} \right|^k$$
(13)

where M and N are finite subsets of natural numbers. Then, the following statements are equivalent:

(i)
$$W_{k^*}(A) < \infty$$
 (ii) $A \in (\mathcal{L}_k, \mathcal{L})$
(iii) $A^t \in (\mathcal{L}_\infty, \mathcal{L}_{k^*})$ (iv) $w_{k^*}(A) < \infty$.

where k^* is the conjugate of k, *i.e.*, $1/k + 1/k^* = 1$.

Proof. To prove the Theorem, it is enough to show that $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i)$. $(i) \Rightarrow (ii)$. Assume (i) holds. Then, for all $x \in \mathcal{L}_k$, it follows from Hölder's inequality that

$$||A(x)||_{\mathcal{L}} = \sum_{m,n=0}^{\infty} \left| \sum_{r,s=0}^{\infty} a_{mnrs} x_{rs} \right| \leq \sum_{r,s=0}^{\infty} \sum_{m,n=0}^{\infty} |a_{mnrs} x_{rs}|$$

$$\leq \left\{ \sum_{r,s=0}^{\infty} \left(\sum_{m,n=0}^{\infty} |a_{mnrs}| \right)^{k^*} \right\}^{1/k^*} ||x||_{\mathcal{L}_k}$$

$$\leq (W_{k^*}(A))^{1/k^*} ||x||_{\mathcal{L}_k} < \infty,$$
 (14)

which gives (ii).

 $(ii) \Rightarrow (iii)$. Suppose $A \in (\mathcal{L}_k, \mathcal{L})$. Then, since \mathcal{L}_k is a Banach space, where $k \ge 1$, by Lemma 2.1, there exists a constant L such that

$$\|A(x)\|_{\mathcal{L}} = \sum_{m,n=0}^{\infty} \left| \sum_{r,s=0}^{\infty} a_{mnrs} x_{rs} \right| \le L \|x\|_{\mathcal{L}_k}$$

$$(15)$$

for all $x \in \mathcal{L}_k$. Also, it is observed by putting $x_{rs} \operatorname{sgn} a_{mnrs}$ instead of x_{rs} that

$$\sum_{m,n=0}^{\infty} \sum_{r,s=0}^{\infty} |a_{mnrs} x_{rs}| \le L \, \|x\|_{\mathcal{L}_k} \,. \tag{16}$$

Now, let $u \in \mathcal{L}_{\infty}$ be given. Then, by equation 15,

$$\left| \sum_{m,n=0}^{\infty} \sum_{r,s=0}^{\infty} u_{mn} a_{mnrs} x_{rs} \right| \leq \|u\|_{\mathcal{L}\infty} \sum_{m,n=0}^{\infty} \sum_{r,s=0}^{\infty} |a_{mnrs} x_{rs}|$$

$$\leq L \|u\|_{\mathcal{L}\infty} \|x\|_{\mathcal{L}_k}.$$

$$(17)$$

In equation 17, taking $x_{rs} = 1$ for (r, s) = (i, j), and zero otherwise, it is easily seen that

$$\left|\sum_{m,n=0}^{\infty} a_{mnrs} u_{mn}\right| \leq \sum_{m,n=0}^{\infty} |a_{mnrs} u_{mn}| \leq L \|u\|_{\mathcal{L}_{\infty}},$$

which gives that $A^t(u)$ is defined for all $r, s \ge 0$, where the double sequence $A^t(u) = (A^t_{rs}(u))$ is given by

$$A_{rs}^{t}(u) = \sum_{m,n=0}^{\infty} a_{mnrs} u_{mn} : m, n \ge 0$$
(18)

Again, it follows by considering equation 17 that

$$\left|\sum_{r=0}^{\infty}\sum_{s=0}^{\infty}A_{rs}^{t}(u)x_{rs}\right| \leq L \left\|u\right\|_{\mathcal{L}\infty}\left\|x\right\|_{\mathcal{L}_{k}}$$
(19)

which implies that the series in the left side hand of equation 19 converges. Therefore, since the dual of space \mathcal{L}_k is the space \mathcal{L}_{k^*} (see (Başar & Sever, 2009)), we obtain $A^t(u) \in \mathcal{L}_{k^*}$, *i.e.*, $A^t \in (\mathcal{L}_{\infty}, \mathcal{L}_{k^*})$.

 $(iii) \Rightarrow (iv)$. If $A^t \in (\mathcal{L}_{\infty}, \mathcal{L}_{k^*})$, then, by Lemma 2.1, there exists a constant K such that $||A^t(x)||_{\mathcal{L}_{k^*}} \leq K ||x||_{\mathcal{L}_{\infty}}$ for all $x \in \mathcal{L}_{\infty}$, *i.e.*,

$$\left(\sum_{r,s=0}^{\infty} \left|\sum_{m,n=0}^{\infty} a_{mnrs} x_{mn}\right|^{k^*}\right)^{1/k^*} \le K \|x\|_{\mathcal{L}_{\infty}}.$$
(20)

Let M and N be any finite subsets of all nature numbers. Take a sequence $x = (x_{mn})$ as $x_{mn} = 1$ for $(r, s) \in MXN$, and zero otherwise. Then, equation 20 is reduced to.

$$\left(\sum_{r,s=0}^{\infty} \left|\sum_{(m,n)\in MXN} a_{mnrs}\right|^{k^*}\right)^{1/k^*} \le K$$

which proves $w_{k^*}(A) < \infty$.

1

 $(iii) \Rightarrow (iv)$. Suppose (iii) is satisfied and a_{mnrs} are real numbers. Then, for every finite subsets M and N of nature numbers,

$$\sum_{r,s=0}^{\infty} \left| \sum_{(m,n)\in MXN} a_{mnrs} \right|^{k^*} \le w_{k^*}(A).$$

Let $H^+ = \{(m, n) \in MXN : a_{mnrs} \ge 0\}$ and $H^- = \{(m, n) \in MXN : a_{mnrs} < 0\}$. Then, by considering the inequality $|a + b|^{k^*} \le 2^{k^*} (|a|^{k^*} + |b|^{k^*})$, where a and b are complex numbers, we have

$$W_{k^*}(A) = \sum_{r,s=0}^{\infty} \left(\sum_{m,n=0}^{\infty} |a_{mnrs}| \right)^{k^*} \\ = \sum_{r,s=0}^{\infty} \left\{ \sum_{(m,n)\in H^+}^{\infty} a_{mnrs} + \sum_{(m,n)\in H^-}^{\infty} -a_{mnrs} \right\}^{k^*} \\ \le 2^{k^*} \sum_{r,s=0}^{\infty} \left\{ \left(\sum_{(m,n)\in H^+}^{\infty} a_{mnrs} \right)^{k^*} + \left(\sum_{(m,n)\in H^-}^{\infty} -a_{mnrs} \right)^{k^*} \right\} \\ \le 2^{k^*+1} w_k(A).$$

If a_{mnrs} is complex number for $m, n, r, s \ge 0$, it is easily seen that $W_{k^*}(A) \le 2^{2k^*+3}w_k(A) < \infty$, which implies (iv).

Thus the proof of the Theorem is completed.

Theorem 3.3 Let $k \ge 1$. Then, in order that every $|\overline{N}, p_m, q_n|$ summable double series should be summable $|\overline{N}, p'_m, q'_n|_k$, it is necessary and sufficient that

(i)
$$\frac{p'_m}{P'_m} \left(\frac{P_m}{p_m}\right)^k = O(1)$$
 and (ii) $\frac{q'_n}{Q'_n} \left(\frac{Q_n}{q_n}\right)^k = O(1).$ (21)

Proof. Suppose that evation 21i and equation 21ii are satisfied. Let (T_{mn}) and (T'_{mn}) be the double sequences of (\overline{N}, p_n, q_n) and $(\overline{N}, p'_n, q'_n)$ means of the series $\sum_{r,s=0}^{\infty} x_{rs}$, respectively, i.e.,

$$T_{mn} = \frac{1}{P_m Q_n} \sum_{r,s=0}^{m,n} p_r q_s \sum_{v,\mu=0}^{r,s} x_{v\mu},$$
(22)

$$T'_{mn} = \frac{1}{P'_m Q'_n} \sum_{r,s=0}^{m,n} p'_r q'_s \sum_{v,\mu=0}^{r,s} x_{v\mu}.$$
(23)

Then, since $P_{-1} = Q_{-1} = 0$, it can be written that

$$T_{mn} = \frac{1}{P_m Q_n} \sum_{v,\mu=0}^{m,n} p_v q_\mu \sum_{r,s=0}^{v,\mu} x_{r,s}$$

= $\frac{1}{P_m Q_n} \sum_{r,s=0}^{m,n} x_{r,s} \sum_{v,\mu=r,s}^{m,n} p_v q_\mu$
= $\frac{1}{P_m Q_n} \sum_{r,s=0}^{m,n} x_{r,s} \left(P_m - P_{r-1}\right) \left(Q_n - Q_{s-1}\right)$
= $\sum_{r,s=0}^{m,n} x_{rs} \left(1 - \frac{P_{r-1}}{P_m}\right) \left(1 - \frac{Q_{s-1}}{Q_n}\right),$

which implies

$$y_{00} = \overline{\Delta}T_{00} = x_{00}$$

$$y_{m0} = \overline{\Delta}T_{m0} = \frac{p_m}{P_m P_{m-1}} \sum_{r=1}^m P_{r-1} x_{r0}$$

$$y_{0n} = \overline{\Delta}T_{0n} = \frac{q_n}{Q_n Q_{n-1}} \sum_{s=1}^n Q_{s-1} x_{0s}$$

$$y_{mn} = \overline{\Delta}T_{mn} = \frac{p_m q_n}{P_m P_{m-1} Q_n Q_{n-1}} \sum_{r=1,s}^{m,n} P_{r-1} Q_{s-1} x_{rs}.$$
(24)

Also, similarly, we get

$$\overline{\Delta}T'_{m,n} = \frac{p'_m q'_n}{P'_m P'_{m-1} Q'_n Q'_{n-1}} \sum_{r,s=1}^{m,n} P'_{r-1} Q'_{s-1} x_{rs}.$$
(25)

The double series $\sum_{r,s=0}^{\infty} x_{r,s}$ is summable $|\overline{N}, p_m, q_n|$ iff $y = (y_{mn}) \in \mathcal{L}$, and also we obtain by solving equation 25 for x_{rs} that, for $m, n \ge 1$,

$$x_{00} = y_{00}$$

$$x_{m0} = \frac{P_m}{p_m} y_{m0} - \frac{P_{m-2}}{p_{m-1}} y_{m-1,0}$$

$$x_{0n} = \frac{Q_n}{q_n} y_{0n} - \frac{Q_{n-2}}{q_{n-1}} y_{0,n-1}$$

$$x_{mn} = \frac{P_m Q_n}{p_m q_n} y_{mn} - \frac{P_{m-2} Q_n}{p_{m-1} q_n} y_{m-1,n} - \frac{Q_{n-2} P_m}{q_{n-1} p_m} y_{m,n-1} + \frac{P_{m-2} Q_{n-2}}{p_{m-1} q_{n-1}} y_{m-1,n-1}$$
(26)

Let

$$y'_{mn} = \left(\frac{P'_m Q'_n}{p'_m q'_n}\right)^{1-1/k} \overline{\Delta} T'_{mn} = \mu'_{mn}(k) \sum_{r,s=1}^{m,n} P'_{r-1} Q'_{s-1} x_{rs}$$
(27)

where $\overline{\Delta}T'_{mn}$ is defined by equation 25, and $\mu'_{mn}(k)$ is obtained from $\mu_{mn}(k)$ interchanging p_m and p_m by p'_m and q'_n , respectively. Then, by equation 27, the double series $\sum_{r,s=0}^{\infty} x_{rs}$ is summable $|\overline{N}, p'_n, p'_n|_k$ iff $y' = (y'_{mn}) \in \mathcal{L}_k$. Further, it follows from equation 26 and equation 27 that, for $m, n \geq 1$,

$$y'_{m0} = \mu'_{m0}(k) \sum_{r=1}^{m-1} \frac{p_r P'_r - p'_r P_r}{p_r} y_{r0} + \frac{\mu'_{m0}(k) P'_{m-1} P_m}{p_m} y_{m0},$$

$$y'_{0n} = \mu'_{0n}(k) \sum_{s=1}^{n-1} \frac{q_s Q'_s - q'_s Q_s}{q_s} y_{0s} + \frac{\mu'_{0n}(k) Q'_{n-1} Q_n}{q_n} y_{0n},$$

$$\begin{split} y'_{mn} &= \mu'_{mn}(k) \sum_{r,s=1}^{m,n} P'_{r-1}Q'_{s-1} \left(\frac{P_rQ_s}{p_rq_s} y_{rs} - \frac{P_{r-2}Q_s}{p_{r-1}q_s} y_{r-1,s} \right. \\ &\quad \left. - \frac{P_rQ_{s-2}}{p_rq_{s-1}} y_{r,s-1} + \frac{P_{r-2}Q_{s-2}}{p_{r-1}q_{s-1}} y_{r-1,s-1} \right) \\ &= \mu'_{mn}(k) \left\{ \sum_{r,s=1}^{m,n} P'_{r-1}Q'_{s-1} \frac{P_rQ_s}{p_rq_s} y_{rs} - \sum_{r,s=1}^{m-1,n} P'_rQ'_{s-1} \frac{P_{r-1}Q_s}{p_rq_s} y_{rs} \right. \\ &\quad \left. - \sum_{r,s=1}^{m,n-1} P'_{r-1}Q'_s \frac{P_rQ_{s-1}}{p_rq_s} y_{rs} + \sum_{r,s=1}^{m-1,n-1} P'_rQ'_s \frac{P_{r-1}Q_{s-1}}{p_rq_s} y_{rs} \right\} \\ &= \mu'_{mn}(k) \left\{ \frac{P'_{m-1}P_mQ'_{n-1}Q_n}{p_mq_n} y_{mn} + \frac{P'_{m-1}P_m}{p_m} \sum_{s=1}^{n-1} \frac{q_sQ'_{s-1} - q'_sQ_{s-1}}{q_s} y_{ms} \right. \\ &\quad \left. + \frac{Q'_{n-1}Q_n}{q_n} \sum_{r=1}^{m-1} \frac{p_rP'_{r-1} - p'_rP_{r-1}}{p_r} y_{rn} + \right. \\ &\quad \left. \sum_{r,s=1}^{m-1,n-1} \frac{(q_sQ'_{s-1} - q'_sQ_{s-1})(p_rP'_{r-1} - p'_rP_{r-1})}{q_sp_r} \right\} y_{rs}. \end{split}$$

Therefore we can state

$$y'_{mn} = \sum_{r,s=0}^{m,n} a_{mnrs} y_{rs} = A_{mn}(y),$$

that is, $y' = (y'_{mn})$ is the A-transform sequence of the sequence $y = (y_{rs})$, where the matrix $A = (a_{mnrs})$ is defined by

$$a_{mnrs} = \begin{cases} \frac{\mu'_{0n}(k)Q'_{n-1}Q_n}{q_n}, & s = n, \ m = r = 0\\ \frac{\mu'_{0n}(k)(q_sQ'_s - q'_sQ_s)}{q_s}, \ 1 \le s < n, \ m = r = 0\\ \frac{\mu'_{m0}(k)P'_{m-1}P_m}{p_m}, & r = m, \ n = s = 0\\ \frac{\mu'_{m0}(k)(p_rP'_r - p'_rP_r)}{p_r}, \ 1 \le r < m, \ n = s = 0\\ \frac{\mu'_{mn}(k)P'_{m-1}P_m(q_sQ'_{s-1} - q'_sQ_{s-1})}{p_m}, & 1 \le s < n\\ \frac{\mu'_{mn}(k)Q'_{n-1}Q_n(p_rP'_{r-1} - p'_rP_{r-1})}{q_np_r}, & 1 \le r < m\\ \frac{\mu'_{mn}(k)(q_sQ'_{s-1} - q'_sQ_{s-1})(p_rP'_{r-1} - p'_rP_{r-1})}{q_np_r}, & 1 \le s < n, 1 \le r < m\\ \frac{\mu'_{mn}(k)P'_{m-1}P_mQ'_{n-1}Q_n}{p_mq_n}, & r = m, \ s = n\\ 0, \text{ otherwise} \end{cases}$$

This gives that $|\overline{N}, p_m, q_n| \Rightarrow |\overline{N}, p'_m, q'_n|_k$ iff $(y'_{mn}) \in \mathcal{L}_k$ for every $(y_{mn}) \in \mathcal{L}, i.e., \mathcal{A} \in (\mathcal{L}, \mathcal{L}_k)$. Now, by Theorem 3.1, we should show that equation 21i and equation 21ii are equivalent to the equation 9. To do this, let us write

$$\sum_{m,n=r,s}^{\infty} |a_{mnrs}|^k = \sum_{m=r}^{\infty} \left(|a_{msrs}|^k + \sum_{n=s+1}^{\infty} |a_{mnrs}|^k \right)$$

= $|a_{rsrs}|^k + \sum_{m=r+1}^{\infty} |a_{msrs}|^k + \sum_{n=s+1}^{\infty} |a_{rnrs}|^k + \sum_{m,n=r+1,s+1}^{\infty} |a_{mnrs}|^k$
= $L_1 + L_2 + L_3 + L_4$, say.

Then, equation 9 holds iff $L_1 = O(1)$, $L_2 = O(1)$, $L_3 = O(1)$ and $L_4 = O(1)$. Now, it is written that

$$L_1' = |a_{0s0s}| = \left(\frac{q_s'}{Q_s'}\right)^{1/k} \frac{Q_s}{q_s}$$
$$L_1'' = |a_{r0r0}| = \left(\frac{p_r'}{P_r'}\right)^{1/k} \frac{P_r}{p_r}$$
$$L_1''' = |a_{rsrs}| = \left(\frac{p_r'q_s'}{P_r'Q_s'}\right)^{1/k} \frac{P_rQ_s}{p_rq_s}$$

Hence, if $L'_1 = O(1)$ and $L''_1 = O(1)$, then, since $p_r \le P_r$ and $q_s \le Q_s$ for all r, s, then, $p'_r P_r / P'_r p_r = O(1)$ and $q'_s Q_s / Q'_s q_s = O(1)$, and so we have $L''_1 = O(1)$. This shows that $L_1 = O(1)$ if and only if $L'_1 = O(1)$ and $L''_1 = O(1)$, or, equivalently, equation 21i and equation 21ii hold. Also, using equation 21i and equation 21ii, it follows from Lemma 2.2 and Lemma 2.3 that

$$L_{2} = \sum_{m=r+1}^{\infty} |a_{msrs}|^{k} \leq \sum_{m=r+1}^{\infty} \left(|a_{m0r0}|^{k} + |a_{msrs}|^{k} \right)$$
$$= \left\{ \left| \left(P_{r}' - p_{r}' \frac{P_{r}}{p_{r}} \right) \right|^{k} + \left| \left(\frac{q_{s}'}{Q_{s}'} \right)^{1/k} \frac{Q_{s}}{q_{s}} \left(P_{r-1}' - \frac{p_{r}' P_{r-1}}{p_{r}} \right) \right|^{k} \right\} \frac{1}{P_{r}'^{k}}$$
$$= \left| \left(1 - \frac{p_{r}' P_{r}}{P_{r}' p_{r}} \right) \right|^{k} + \frac{q_{s}'}{Q_{s}'} \left(\frac{Q_{s}}{q_{s}} \right)^{k} \left| \left(1 - \frac{p_{r}' P_{r}}{P_{r}' p_{r}} \right) \right|^{k} = O(1),$$

$$L_{3} = \sum_{n=s+1}^{\infty} |a_{rnrs}|^{k} \leq \sum_{n=s+1}^{\infty} \left(|a_{0n0s}|^{k} + |a_{rnrs}|^{k} \right)$$
$$= \left\{ \left| Q_{s}' - q_{s}' \frac{Q_{s}}{q_{s}} \right|^{k} + \left| \left(\frac{p_{r}'}{P_{r}'} \right)^{1/k} \frac{P_{r}}{p_{r}} \left(Q_{s-1}' - \frac{q_{s}'Q_{s-1}}{q_{s}} \right) \right|^{k} \right\} \frac{1}{Q_{s}'^{k}}$$
$$= \left| 1 - \frac{q_{s}'Q_{s}}{Q_{s}'q_{s}} \right|^{k} + \frac{p_{r}'}{P_{r}'} \left(\frac{P_{r}}{p_{r}} \right)^{k} \left| \left(1 - \frac{q_{s}'Q_{s}}{Q_{s}'q_{s}} \right) \right|^{k} = O(1),$$

$$L_{4} = \sum_{m,n=r+1,s+1}^{\infty} |a_{mnrs}|^{k}$$

$$= \sum_{m,n=r+1,s+1}^{\infty} \left| \mu'_{mn}(k) \left(Q'_{s-1} - \frac{q'_{s}Q_{s-1}}{q_{s}} \right) \left(P'_{r-1} - \frac{p'_{r}P_{r-1}}{p_{r}} \right) \right|^{k}$$

$$= \left| \left(Q'_{s-1} - \frac{q'_{s}Q_{s-1}}{q_{s}} \right) \left(P'_{r-1} - \frac{p'_{r}P_{r-1}}{p_{r}} \right) \right|^{k} \sum_{m,n=r+1,s+1}^{\infty} \mu'_{mn}(k)$$

$$= \left| \left(Q'_{s-1} - \frac{q'_{s}Q_{s-1}}{q_{s}} \right) \left(P'_{r-1} - \frac{p'_{r}P_{r-1}}{p_{r}} \right) \right|^{k} \frac{1}{P'_{r}kQ'_{s}^{k}}$$

$$= O(1) \left(\frac{q'_{s}Q_{s}}{Q'_{s}q_{s}} \frac{p'_{r}P_{r}}{P'_{r}p_{r}} \right)^{k} = O(1).$$

This completes the proof.

Theorem 1.2 and Theorem 3.3 lead to the following result which gives a important relation between single and double absolute Riesz summability methods.

Corollary 3.4 Let $k \ge 1$. Then, in order that every $|\overline{N}, p_m, q_n|$ summable double series should be summable $|\overline{N}, p'_m, q'_n|_k$ it is necessary and sufficient that every $|\overline{N}, p_m|$ and $|\overline{N}, q_n|$ summable simple series are summable $|\overline{N}, p'_m|_k$ and $|\overline{N}, q'_n|_k$, respectively.

For k = 1, Theorem 3.3 also extends the result of Bosanquet (1950) and Sunouchi (1949) to double summability as follows.

Corollary 3.5 In order that every $|\overline{N}, p_m, q_n|$ summable double series should be summable $|\overline{N}, p'_m, q'_n|_k$ it is necessary and sufficient that

(i)
$$\frac{p'_m P_m}{P'_m p_m} = O(1)$$
 and (ii) $\frac{q'_n Q_n}{Q'_n q_n} = O(1).$

For $p_n = q_n = 1$, $|\overline{N}, p_n, p_n|_k$ reduces to $|C, 1, 1|_k$ and hence one can obtain some new results as:

Corollary 3.6 Let $k \ge 1$. Then, in order that every $|\overline{N}, p_m, q_n|$ summable double series should be summable $|C, 1, 1|_k$ it is necessary and sufficient that

(i)
$$\frac{1}{m} \left(\frac{P_m}{p_m}\right)^k = O(1)$$
 and (ii) $\frac{1}{n} \left(\frac{Q_n}{q_n}\right)^k = O(1).$

Corollary 3.7 Let $k \ge 1$. Then, in order that every |C, 1, 1| summable double series should be summable $|\overline{N}, p_m, q_n|_k$ it is necessary and sufficient that

(i)
$$m^k \frac{p_m}{P_m} = O(1)$$
 and (ii) $n^k \frac{q_n}{Q_n} = O(1)$

However the following result shows that converse implication of Theorem 3.3 is not true.

Theorem 3.8 Let k > 1. Then, for every sequences (p_m) , (q_n) , (p'_m) and (q'_n) , there exists a series which is summable $|\overline{N}, p_m, q_n|_k$ but not summable $|\overline{N}, p'_m, q'_n|$.

Proof. Let us consider (T_{mn}) and (T'_{mn}) defined by equation 22 and equation 23. Write

$$Y_{mn} = \mu_{mn}(k)\overline{\Delta}T_{mn} \text{ for } m, n \ge 0$$
(28)

where $\overline{\Delta}T = (\overline{\Delta}T_{mn})$ is defined by equation 24. Then the double series $\sum_{r,s=0}^{\infty} x_{r,s}$ is summable $|\overline{N}, p_m, q_n|_k$ and $|\overline{N}, p'_m, q'_n|$ if and only if $Y = (Y_{mn}) \in \mathcal{L}_k$ and $\overline{\Delta}T' = (\overline{\Delta}T'_{m,n}) \in \mathcal{L}$, respectively, where $\overline{\Delta}T'_{m,n}$ is given by equation 25. Further, by equation 2 and equation 28, for $m, n \ge 1$,

$$\overline{\Delta}T'_{m,0} = \mu'_{m0}(1)\sum_{r=1}^{m-1} \frac{\left(P'_{r-1}P_r - P'_r P_{r-1}\right)Y_{r0}}{p_r \mu_{r0}(k)} + \frac{P'_{m-1}P_m \mu'_{m0}(1)Y_{m0}}{p_m \mu_{m0}(k)}$$
$$\overline{\Delta}T'_{0,n} = \mu'_{0n}(1)\sum_{s=1}^{n-1} \frac{\left(Q'_{s-1}Q_s - Q'_s Q_{s-1}\right)Y_{0s}}{q_s \mu_{0s}(k)} + \frac{Q'_{n-1}Q_n \mu'_{0n}(1)Y_{0n}}{q_n \mu_{0n}(k)}$$

and

$$\overline{\Delta}T'_{m,n} = \mu'_{mn}(1) \left\{ \frac{P'_{m-1}P_mQ'_{n-1}Q_n}{p_mq_n\mu_{mn}(k)} Y_{mn} + \frac{P'_{m-1}P_m}{p_m} \sum_{s=1}^{n-1} \frac{\left(Q'_{s-1}Q_s - Q'_sQ_{s-1}\right)Y_{ms}}{q_s\mu_{ms}(k)} + \frac{Q'_{n-1}Q_n}{q_n} \sum_{r=1}^{m-1} \frac{\left(P'_{r-1}P_r - P'_rP_{r-1}\right)Y_{rn}}{p_r\mu_{rn}(k)} + \sum_{r,s=1}^{m-1,n-1} \frac{\left\{P'_rP_{r-1}\left(Q'_sQ_{s-1} - Q'_{s-1}Q_s\right) - P'_{r-1}P_r\left(Q'_sQ_{s-1} - Q'_{s-1}Q_s\right)\right\}Y_{rs}}{p_rq_s\mu_{rs}(k)} \right\}$$

Therefore it can be written that

$$\overline{\Delta}T'_{m,n} = \sum_{r,s=0}^{m,n} a_{mnrs}Y_{rs}, = A_{mn}(Y)$$

where the matrix $A = (a_{mnrs})$ is given by

$$a_{mnrs} = \begin{cases} \frac{\mu'_{m0}(1)P'_{m-1}P_m}{p_m\mu_{m0}(k)}, & r = m, \ n = s = 0\\ \frac{\mu'_{m0}(1)(P'_{r-1}P_r - P'_r P_{r-1})}{p_r\mu_{r0}(k)}, & 1 \le r < m, \ n = s = 0\\ \frac{\mu'_{0n}(1)Q'_{n-1}Q_n}{q_n\mu_{0n}(k)}, & s = n, \ m = r = 0\\ \frac{\mu'_{0n}(1)(Q'_{s-1}Q_s - Q'_sQ_{s-1})}{q_{s}\mu_{0s}(k)}, & 1 \le s < n, \ m = r = 0\\ \frac{\mu'_{mn}(1)P'_{m-1}P_m(Q'_{s-1}Q_s - Q'_sQ_{s-1})}{p_mq_s\mu_{ms}(k)}, & 1 \le s < n, \ m \ge 1\\ \frac{\mu'_{mn}(1)Q'_{n-1}Q_n(P'_{r-1}P_r - P'_r P_{r-1})Y_{rn}}{q_np_r\mu_{rn}(k)}, & 1 \le r < m, \ n \ge 1\\ \frac{\mu'_{mn}(1)\{P'_rP_{r-1}(Q'_sQ_{s-1} - Q'_{s-1}Q_s) - P'_{r-1}P_r(Q'_sQ_{s-1} - Q'_{s-1}Q_s)\}}{p_rq_s\mu_{ms}(k)}, & 1 \le s < n, \ 1 \le r < m\\ \frac{\mu'_{mn}(1)P'_{m-1}P_mQ'_{n-1}Q_n}{q_np_r\mu_{mn}(k)}, & s = n, \ r = m, \\ 0, & \text{otherwise} \end{cases}$$

This gives that $|\overline{N}, p_m, q_n|_k \Rightarrow |\overline{N}, p'_m, q'_n|$ if and only if $A \in (\mathcal{L}_k, \mathcal{L})$. But, it follows from the definition of the matrix that

$$W_{k^*}(A) = \sum_{r,s=0}^{\infty} \left(\sum_{m,n=0}^{\infty} |a_{mnrs}| \right)^{k^*} \ge \sum_{r=0}^{\infty} |a_{r0r0}|^{k^*}$$
$$= \sum_{r=0}^{\infty} \left| \left(\frac{p'_r P_r}{P'_r p_r} \right) \left(\frac{P_r}{p_r} \right)^{1/k} P_{r-1} \right|^{k^*} \ge \sum_{r=0}^{\infty} P_{r-1}^{k^*} = \infty.$$

Therefore, the proof is completed by Theorem 3.2.

References

Başar, F. & Sever, Y. (2009). The space \mathcal{L}_q of double sequences, Mathematical Journal of Okayama University, 51: 149–157.

Bor, H. (2016). Some equivalence theorems on absolute summability methods, Acta Mathematica Hungarica, 149 (1): 208–214.

Bor, H. & Thorpe, B. (1987). On some absolute summability methods, Analysis, 7: 145-152.

Borwein, D. & Cass, F.T. (1968). On strong Nörlund summability, Mathematische Zeitschrift, 103: 94-111.

Bosanquet, L.S. (1950). Mathematical Reviews, 11: 654.

Das, G. Srivastava, V.P. & **Mohapatra, R.N. (1967).** On absolute summability factors of infinite series, Journal of the Indian Mathematical Society, 31: 189-200

Flett, T.M. (1957). On an extension of absolute summability and theorems of Littlewood and Paley, Proceedings of the London Mathematical Society, 7: 113-141.

Hardy, G.H. (1949). Divergent Series, Clarendon Press, Oxford.

Güleç, G.C.H. (2019). Summability factor relations between absolute weighted and Cesàro means, Mathematical Methods in the Applied Sciences, 42: 5398-5402.

Mazhar, S.M. (1972). On the absolute Nörlund summability factors of infinite series, Proceedings of the American Mathematical Society, 32: 232-236.

Mishra, L.N. Das, P.K., Samanta, P., Misra, M. and Misra, U.K. (2018). On Indexed Absolute Matrix Summability of an Infinite Series, Applications and Applied Mathematics, 13: 274-285.

Mohapatra R. N.(1967). A note on summability factors, Journal of the Indian Mathematical Society, 31: 213-224.

Rhoades, B.R. (1998). Absolute comparison theorems for double weighted mean and double Cesàro means, Mathematica Slovaca 48: 285-291.

Rhoades, B.R. (1999). Inclusion theorems for absolute matrix summability methods, Journal of Mathematical Analysis and Application, 238: 82-90.

Rhoades, B.R. (2003). On absolute normal double matrix summability methods, Glasnik Matematicki, 38 (58): 57-73.

Sarigöl, M.A. (1991). Necessary and sufficient condition for the equivalence of the summability methods $|\overline{N}, p_n|_k$ and $|C, 1|_k$, Indian Journal of Pure and Applied Mathematics, 22: 483-489.

Sarıgöl, M.A.(1992). On absolute weighted mean summability methods, Proceedings of the American Mathematical Society, 115: 157-160.

Sarıgöl, M.A.(1993). A note summability, Studia Scientiarum Mathematicarum Hungarica, 28: 395-401.

Sarıgöl, M.A. & Bor, H. (1995). Characterization of absolute summability factors, Journal of Mathematical Analysis and Application, 195: 537-545.

Sarıgöl, M.A. (2021). On absolute weighted mean summability methods, Quaestiones Mathematicae, 44: 755-764.

Sarıgöl, M.A. & **Mursaleen, M. (2021).** Almost absolute weighted summability with index *k* and matrix transformations, Journal of Inequalities and Applications, 2021:108.

Sunouchi, G. (1949). Notes on Fourier analysis, XVIII, Absolute summability of series with constant terms, Tohoku Mathematical Journal, (2)1: 57–65.

Thorpe, B. (1972). An Inclusion theorem and consistency of real regular Nörlund methods of summability, Journal of the London Mathematical Society, 2-5, , 519–525.

Zaanen, A.C. (1953). Linear Analysis, Amsterdam.

Zeltser, M. (2001). Investigation of double sequence spaces by soft and hard analytical methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu.

Zraiqat, A. (2019). Inclusion and equivalence relations between absolute Nörlund and absolute weighted mean summability methods, Boletim da Sociedade Paranaense de Matemática, 37: 103–117.

18/12/2021
11/03/2022
15/03/2022
10.48129/kjs.17649