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Abstract

In this paper, we characterize the classes (L,Lk) , (Lk,L) and (L∞,Lk) , 1 ≤ k < ∞, of all four dimen-
sional infinite matrices, where Lk and L∞ are the spaces of all absolutely k-summable and bounded dou-
ble sequences, respectively. Using them, we establish some relations between

∣∣N, pn, qn
∣∣ and

∣∣N, p′n, q
′
n

∣∣
k

summability methods which extend some results of Bosanquet (1950), Sarıgöl (1993), Sarıgöl & Bor
(1995), and Sunouchi (1949) to double summability methods, and give a relation between single and
double summability methods.

Keywords: Banach space, double matrix mapping, double summability, four dimensional matrix, in-
clusion theorem

1. Introduction

Let us consider an infinite single series Σxv of complex (or real) numbers with partial sums sn, and let
(σα

n) denote the n-th Cesàro means of order α with α > −1 of the sequence (sn) . The series Σxv is said
to be summable |C,α|k , k ≥ 1, in Flett’s notation (Flett, 1957), if

(
n1/k∗∆σα

n

)
∈ ℓk, where ℓk is the

space of the set of absolutely k-summable single sequences and 1/k∗+1/k = 1. Let (pn) be a sequence
of positive numbers satisfying

Pn =

n∑
v=0

pv → ∞ as n → ∞, P−1 = p−1 = 0. (1)

The sequence-to-sequence transformation un =
∑n

v=0 pvsv/Pn defines the sequence (un) of the weighted
mean or simply

(
N, pn

)
mean of the sequence (sn), generated by the sequence of coefficients (pn)

(Hardy, 1949). The series Σxv is said to be summable
∣∣N, pn

∣∣
k
, k ≥ 1, if

{(
p−1
n Pn

)1/k∗
∆un

}
∈ ℓk,

where ∆un = pn (PnPn−1)
−1∑n

v=1 Pv−1xv (Bor, 2016), which, for pn = 1, includes the method
|C, 1|k.

Throughout the paper, (pn) , (qn) , (p
′
n) and (q′n) will denote the sequences of positive numbers

satisfying equation 1 and

µmn(k) =


1

Pm−1

(
pm
Pm

)1/k
, n = 0,m ≥ 1

1
Qn−1

(
qn
Qn

)1/k
, m = 0, n ≥ 1

1
Pm−1Qn−1

(
pmqn
PmQn

)1/k
,m ≥ 1, n ≥ 1.

(2)

A summability method Y is stronger than another method X if each series summable by X implies
its summability by Y (not necessarily to the same sum). Hereof, there are many papers in the literature
done by various authors, e.g. (see, (Bor, 2016), (Bor & Thorpe, 1987), (Borwein & Cass, 1968), (Bosan-
quet, 1950), (Das et al., 1967), (Flett, 1957), (Hardy, 1949), (Güleç, 2019), (Mazhar, 1972), (Mishra
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et al., 2018), (Mohapatra, 1967), (Rhoades, 1998), (Rhoades, 1999), (Rhoades, 2003), (Sarıgöl, 1991),
(Sarıgöl, 1992), (Sarıgöl, 1993), (Sarıgöl & Bor, 1995), (Sarıgöl, 2021), (Sarıgöl & Mursaleen, 2021),
(Sunouchi, 1949), (Thorpe, 1972), (Zraiqat, 2019)). Among them, in the special case k = 1 the following
known result is due to Sunouchi (Sunouchi, 1949).

Theorem 1.1. In order that every
∣∣N, pn

∣∣ summable series should be
∣∣N, p′n

∣∣ summable, it is suffi-
cient that

p′nPn

P ′
npn

= O (1) . (3)

Reviewing this paper, Bosanquet observed that equation 3 is also necessary for the conclusion and
so completed Theorem 1.1 in necessary and sufficient form (see (Bosanquet, 1950)).

In (Sarıgöl, 1993), Theorem 1.1 has been extended to the case 1 ≤ k < ∞ as follows.

Theorem 1.2. Let 1 ≤ k < ∞. Then, in order that every
∣∣N, pn

∣∣ summable series should be
∣∣N, p′n

∣∣
k

summable, it is necessary and sufficient that

p′n
P ′
n

(
Pn

pn

)k

= O (1) .

Also, it has been showed in (Sarıgöl & Bor, 1995) that the converse of the implication is not true.
Theorem 1.3. Let 1 < k < ∞. Then, for every sequences (pn) and (p′n) , there exists a series which

is summable
∣∣N, pn

∣∣
k

but is not summable by
∣∣N, p′n

∣∣ .
First, we recall related notations. Let

∑∞
r=0

∑∞
s=0 xrs be an infinite double series of real or complex

numbers with partial sums smn, i.e.,

smn =
m∑
r=0

n∑
s=0

xrs. (4)

For the sake of brevity, we denote the summations
∑∞

r=0

∑∞
s=0 and

∑m
r=0

∑n
s=0 by

∑∞
r,s=0 and∑m,n

r,s=0, respectively. By Tmn, we denote the double Riesz mean transformation
(
N, pm, qn

)
of the

double sequence (smn) , i.e.,

Tmn =
1

PmQn

m,n∑
r,s=0

prqssrs. (5)

The series
∑∞

r,s=0 xrs is said to be summable
∣∣N, pm, qn

∣∣
k
, k ≥ 1, if (see (Sarıgöl, 2021))

∞∑
m,n=0

(
PmQn

pmqn

)k−1 ∣∣∆Tmn

∣∣k < ∞ (6)

where ∆T00 = s00 = x00, and, for m,n ≥ 1,

∆Tm0 = Tm0 − Tm−1,0, ∆T0n = T0n − T0,n−1,

∆Tmn = Tmn − Tm−1,n − Tm,n−1 + Tm−1,n−1.

We note that, in the special case pn = qn = 1, the summability
∣∣N, pm, qn

∣∣
k

reduces to the absolute
double Cesàro summability |C, 1, 1|k , given by Rhoades (1998).

There is a close relationship between the method
∣∣N, pm, qn

∣∣
k

and the space Lk, 1 ≤ k < ∞, defined
by the set of all double sequences x = (xrs) of complex numbers such that

∑∞
r,s=0 |xrs|

k < ∞, which
reduces to L for k = 1, studied by Zeltser (2001). Also, Lk is the Banach space (Başar & Sever, 2009)
according to its natural norm

∥x∥Lk
=

 ∞∑
r,s=0

|xrs|k
1/k

, 1 ≤ k < ∞.
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Further, the space L∞ consists of all bounded double sequences and it is a Banach space with the norm
∥x∥L∞

= supr,s |xrs| .
Let x = (xrs) be a double sequence of complex numbers. If for every ε > 0 there exists a natural

integer n0(ε) and real number l such that |xrs − l| < ε for all r, s ≥ n0(ε), then, the double sequence x
is said to be convergent in the Pringsheim sense. Also, a double series

∑∞
r,s=0 xrs is convergent if and

only if the double sequence (smn) in equation 4 is convergent.

Let U and V be two double sequence spaces, and A = (amnrs) be a four dimensional infinite
matrix of complex (or, real) numbers. Then, A defines a matrix transformation from U into V , written
A ∈ (U, V ) , if for every sequence x = (xrs) ∈ U , the A-transform A (x) = (Amn(x)) of x exists and
belongs to V, where

Amn(x) =

∞∑
r,s=0

amnrsxrs

provided the double series on right side converges for m,n ≥ 0.
The transpose At = (arsmn) of the matrix A = (amnrs) is defined by

At
rs(x) =

∞∑
m,n=0

amnrsxmn for m,n ≥ 0.

The β-dual Uβ of the space U is the set of all double sequences (brs) such that
∑∞

r,s=0 brsxrs
converges for all x ∈ U.

In this paper we characterize the classes (L,Lk) , (Lk,L) and (L∞,Lk) , k ≥ 1, of all four dimen-
sional infinite matrices, and extend Theorem 1.1, Theorem 1.2 and Theorem 1.3 to double summability
methods, and also establish a relation between single and double summability methods.

2. Needed Lemmas

We require the following lemmas for the proofs of our theorems.

Lemma 2.1 (Zaanen 1953, p.134) A linear mapping T from a Banach space U into another Banach
space V is continuous if and only if it is bounded, i.e., there exists a constant L such that ∥T (x)∥V ≤
L ∥x∥U for all x ∈ U .

Lemma 2.2 (Sarıgöl, 1991) Let k > 0. Then, there exists two strictly positive constans M1 and M2,
depending only on k, such that

M1

P k
r−1

≤
∞∑

m=r

µk
m0 (k) ≤

M2

P k
r−1

(7)

for all r ≥ 1, where M1 and M2 are independent of (pn) .

Lemma 2.3 (Sarıgöl, 2021) Let k > 0. Then, there exists two strictly positive constans N1 and N2,
depending only on k, such that

N1

P k
r−1Q

k
s−1

≤
∞∑

m,n=r,s

µk
mn (k) ≤

N2

P k
r−1Q

k
s−1

(8)

for all r, s ≥ 1, where N1 and N2 are independent of (pn) and (qn) .

3. Main Result

Our results are as follows.

Theorem 3.1 Let k ≥ 1 and A = (amnrs) be a four dimensional infinite matrix of complex numbers.
Then, in order that A ∈ (L,Lk) it is necessary and sufficient that

∞∑
m,n=0

|amnrs|k = O(1). (9)
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Proof. Assume equation 9 holds. Then, we should show that A (x)= (Amn(x)) ∈ Lk for every
x = (xrs) ∈ L. Now, using equation 9, it follows from Minkowski’s inequality that

∥A(x)∥Lk
=

 ∞∑
m,n=0

|Amn(x)|k
1/k

≤

 ∞∑
m,n=0

 ∞∑
r,s=0

|amnrsxrs|

k


1/k

=

∞∑
r,s=0

|xrs|

 ∞∑
m,n=0

|amnrs|k
1/k

= O(1) ∥x∥L < ∞.

which gives the desired conclusion.
Conversely, let A ∈ (L,Lk) . Then, for k ≥ 1, since Lk is a Banach space (see (Başar & Sever,

2009)), by Lemma 2.1, there exists a constant K such that ∥A(x)∥Lk
≤ K ∥x∥L , i.e., ∞∑

m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣
k


1/k

≤ K ∥x∥L (10)

for all x ∈ L. So, by applying the double sequence x ∈ L to equation 10, where xij = 1 for i = r, j = s,
zero otherwise, we obtain

∞∑
m,n=0

|amnrs|k ≤ K, for r, s ≥ 0, (11)

which gives equation 9.
This step concludes the proof.
Theorem 3.2 Let 1 < k < ∞ and A=(amnij) be an four dimensional infinite matrix of complex

numbers. Define Wk(A) and wk(A) by

Wk(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k

, (12)

wk(A) = sup
MXN

∞∑
r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k

(13)

where M and N are finite subsets of natural numbers. Then, the following statements are equivalent:

(i) Wk∗(A) < ∞ (ii) A ∈ (Lk,L)

(iii) At ∈ (L∞,Lk∗) (iv) wk∗(A) < ∞.

where k∗ is the conjugate of k, i.e., 1/k + 1/k∗ = 1.

Proof. To prove the Theorem, it is enough to show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) .
(i) ⇒ (ii) . Assume (i) holds. Then, for all x ∈ Lk, it follows from Hölder’s inequality that

∥A(x)∥L =

∞∑
m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣ ≤
∞∑

r,s=0

∞∑
m,n=0

|amnrsxrs|

≤


∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗


1/k∗

∥x∥Lk
(14)

≤ (Wk∗(A))1/k
∗
∥x∥Lk

< ∞,
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which gives (ii) .

(ii) ⇒ (iii) . Suppose A ∈ (Lk,L) . Then, since Lk is a Banach space, where k ≥ 1, by Lemma
2.1, there exists a constant L such that

∥A(x)∥L =
∞∑

m,n=0

∣∣∣∣∣∣
∞∑

r,s=0

amnrsxrs

∣∣∣∣∣∣ ≤ L ∥x∥Lk
(15)

for all x ∈ Lk. Also, it is observed by putting xrssgnamnrs instead of xrs that

∞∑
m,n=0

∞∑
r,s=0

|amnrsxrs| ≤ L ∥x∥Lk
. (16)

Now, let u ∈ L∞ be given. Then, by equation 15,∣∣∣∣∣∣
∞∑

m,n=0

∞∑
r,s=0

umnamnrsxrs

∣∣∣∣∣∣ ≤ ∥u∥L∞
∞∑

m,n=0

∞∑
r,s=0

|amnrsxrs| (17)

≤ L ∥u∥L∞ ∥x∥Lk
.

In equation 17, taking xrs = 1 for (r, s) = (i, j) , and zero otherwise, it is easily seen that∣∣∣∣∣∣
∞∑

m,n=0

amnrsumn

∣∣∣∣∣∣ ≤
∞∑

m,n=0

|amnrsumn| ≤ L ∥u∥L∞
,

which gives that At(u) is defined for all r, s ≥ 0, where the double sequence At(u) =
(
At

rs(u)
)

is given
by

At
rs(u) =

∞∑
m,n=0

amnrsumn : m,n ≥ 0 (18)

Again, it follows by considering equation 17 that∣∣∣∣∣
∞∑
r=0

∞∑
s=0

At
rs(u)xrs

∣∣∣∣∣ ≤ L ∥u∥L∞ ∥x∥Lk
(19)

which implies that the series in the left side hand of equation 19 converges. Therefore, since the dual of
space Lk is the space Lk∗(see (Başar & Sever, 2009)), we obtain At(u) ∈ Lk∗ , i.e., A

t ∈ (L∞,Lk∗) .

(iii) ⇒ (iv) . If At ∈ (L∞,Lk∗) , then, by Lemma 2.1, there exists a constant K such that∥∥At(x)
∥∥
Lk∗

≤ K ∥x∥L∞
for all x ∈ L∞, i.e.,

 ∞∑
r,s=0

∣∣∣∣∣∣
∞∑

m,n=0

amnrsxmn

∣∣∣∣∣∣
k∗


1/k∗

≤ K ∥x∥L∞
. (20)

Let M and N be any finite subsets of all nature numbers. Take a sequence x = (xmn) as xmn = 1 for
(r, s) ∈ MXN, and zero otherwise. Then, equation 20 is reduced to. ∞∑

r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k∗


1/k∗

≤ K

which proves wk∗(A) < ∞.
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(iii) ⇒ (iv) . Suppose (iii) is satisfied and amnrs are real numbers. Then, for every finite subsets
M and N of nature numbers,

∞∑
r,s=0

∣∣∣∣∣∣
∑

(m,n)∈MXN

amnrs

∣∣∣∣∣∣
k∗

≤ wk∗(A).

Let H+ = {(m,n) ∈ MXN : amnrs ≥ 0} and H− = {(m,n) ∈ MXN : amnrs < 0}. Then, by con-
sidering the inequality |a+ b|k

∗
≤ 2k

∗
(
|a|k

∗
+ |b|k

∗
)

, where a and b are complex numbers, we have

Wk∗(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗

=
∞∑

r,s=0


∞∑

(m,n)∈H+

amnrs +
∞∑

(m,n)∈H−

−amnrs


k∗

≤ 2k
∗

∞∑
r,s=0


 ∞∑

(m,n)∈H+

amnrs

k∗

+

 ∞∑
(m,n)∈H−

−amnrs

k∗


≤ 2k
∗+1wk(A).

If amnrs is complex number for m,n, r, s ≥ 0, it is easily seen that Wk∗(A) ≤ 22k
∗+3wk(A) < ∞,

which implies (iv) .
Thus the proof of the Theorem is completed.
Theorem 3.3 Let k ≥ 1. Then, in order that every

∣∣N, pm, qn
∣∣ summable double series should be

summable
∣∣N, p′m, q′n

∣∣
k
, it is necessary and sufficient that

(i)
p′m
P ′
m

(
Pm

pm

)k

= O(1) and (ii)
q′n
Q′

n

(
Qn

qn

)k

= O(1). (21)

Proof. Suppose that euation 21i and equation 21ii are satisfied. Let (Tmn) and (T ′
mn) be the double

sequences of
(
N, pn, qn

)
and

(
N, p′n, q

′
n

)
means of the series

∑∞
r,s=0 xrs , respectively, i.e.,

Tmn =
1

PmQn

m,n∑
r,s=0

prqs

r,s∑
v,µ=0

xvµ, (22)

T ′
mn =

1

P ′
mQ′

n

m,n∑
r,s=0

p′rq
′
s

r,s∑
v,µ=0

xvµ. (23)

Then, since P−1 = Q−1 = 0, it can be written that

Tmn =
1

PmQn

m,n∑
v,µ=0

pvqµ

v,µ∑
r,s=0

xr,s

=
1

PmQn

m,n∑
r,s=0

xr,s

m,n∑
v,µ=r,s

pvqµ

=
1

PmQn

m,n∑
r,s=0

xr,s (Pm − Pr−1) (Qn −Qs−1)

=

m,n∑
r,s=0

xrs

(
1− Pr−1

Pm

)(
1− Qs−1

Qn

)
,

Four dimensional matrix mappings and applications

6



which implies

y00 = ∆T00 = x00

ym0 = ∆Tm0 =
pm

PmPm−1

m∑
r=1

Pr−1xr0

y0n = ∆T0n =
qn

QnQn−1

n∑
s=1

Qs−1x0s (24)

ymn = ∆Tmn =
pmqn

PmPm−1QnQn−1

m,n∑
r=1,s

Pr−1Qs−1xrs.

Also, similarly, we get

∆T ′
m,n =

p′mq′n
P ′
mP ′

m−1Q
′
nQ

′
n−1

m,n∑
r,s=1

P ′
r−1Q

′
s−1xrs. (25)

The double series
∑∞

r,s=0 xr,s is summable
∣∣N, pm, qn

∣∣ iff y = (ymn) ∈ L, and also we obtain by
solving equation 25 for xrs that, for m,n ≥ 1,

x00 = y00

xm0 =
Pm

pm
ym0 −

Pm−2

pm−1
ym−1,0

x0n =
Qn

qn
y0n − Qn−2

qn−1
y0,n−1 (26)

xmn =
PmQn

pmqn
ymn − Pm−2Qn

pm−1qn
ym−1,n −

Qn−2Pm

qn−1pm
ym,n−1 +

Pm−2Qn−2

pm−1qn−1
ym−1,n−1

Let

y′mn =

(
P ′
mQ′

n

p′mq′n

)1−1/k

∆T ′
mn = µ′

mn(k)

m,n∑
r,s=1

P ′
r−1Q

′
s−1xrs (27)

where ∆T ′
mn is defined by equation 25, and µ′

mn(k) is obtained from µmn(k) interchanging pm and
pm by p′m and q′n, respectively . Then, by equation 27, the double series

∑∞
r,s=0 xrs is summable∣∣N, p′n, p

′
n

∣∣
k

iff y′ = (y′mn) ∈ Lk. Further, it follows from equation 26 and equation 27 that, for
m,n ≥ 1,

y′m0 = µ′
m0(k)

m−1∑
r=1

prP
′
r − p′rPr

pr
yr0 +

µ′
m0(k)P

′
m−1Pm

pm
ym0,

y′0n = µ′
0n(k)

n−1∑
s=1

qsQ
′
s − q′sQs

qs
y0s +

µ′
0n(k)Q

′
n−1Qn

qn
y0n,
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y′mn = µ′
mn(k)

m,n∑
r,s=1

P ′
r−1Q

′
s−1

(
PrQs

prqs
yrs −

Pr−2Qs

pr−1qs
yr−1,s

−PrQs−2

prqs−1
yr,s−1 +

Pr−2Qs−2

pr−1qs−1
yr−1,s−1

)

= µ′
mn(k)


m,n∑
r,s=1

P ′
r−1Q

′
s−1

PrQs

prqs
yrs −

m−1,n∑
r,s=1

P ′
rQ

′
s−1

Pr−1Qs

prqs
yrs

−
m,n−1∑
r,s=1

P ′
r−1Q

′
s

PrQs−1

prqs
yrs +

m−1,n−1∑
r,s=1

P ′
rQ

′
s

Pr−1Qs−1

prqs
yrs


= µ′

mn(k)

{
P ′
m−1PmQ′

n−1Qn

pmqn
ymn +

P ′
m−1Pm

pm

n−1∑
s=1

qsQ
′
s−1 − q′sQs−1

qs
yms

+
Q′

n−1Qn

qn

m−1∑
r=1

prP
′
r−1 − p′rPr−1

pr
yrn +

m−1,n−1∑
r,s=1

(
qsQ

′
s−1 − q′sQs−1

) (
prP

′
r−1 − p′rPr−1

)
qspr

 yrs.

Therefore we can state

y′mn =

m,n∑
r,s=0

amnrsyrs = Amn(y),

that is, y′ = (y′mn) is the A−transform sequence of the sequence y = (yrs) , where the matrix A =
(amnrs) is defined by

amnrs =



µ′
0n(k)Q

′
n−1Qn

qn
, s = n, m = r = 0

µ′
0n(k)(qsQ

′
s−q′sQs)

qs
, 1 ≤ s < n, m = r = 0

µ′
m0(k)P

′
m−1Pm

pm
, r = m, n = s = 0

µ′
m0(k)(prP

′
r−p′rPr)

pr
, 1 ≤ r < m, n = s = 0

µ′
mn(k)P

′
m−1Pm(qsQ′

s−1−q′sQs−1)
pm

, 1 ≤ s < n
µ′
mn(k)Q

′
n−1Qn(prP ′

r−1−p′rPr−1)
qnpr

, 1 ≤ r < m
µ′
mn(k)(qsQ′

s−1−q′sQs−1)(prP ′
r−1−p′rPr−1)

qspr
, 1 ≤ s < n, 1 ≤ r < m

µ′
mn(k)P

′
m−1PmQ′

n−1Qn

pmqn
, r = m, s = n

0, otherwise

This gives that
∣∣N, pm, qn

∣∣ ⇒ ∣∣N, p′m, q′n
∣∣
k

iff (y′mn) ∈ Lk for every (ymn) ∈ L, i.e.,A ∈ (L,Lk) .
Now, by Theorem 3.1, we should show that equation 21i and equation 21ii are equivalent to the equation
9. To do this, let us write

∞∑
m,n=r,s

|amnrs|k =

∞∑
m=r

(
|amsrs|k +

∞∑
n=s+1

|amnrs|k
)

= |arsrs|k +
∞∑

m=r+1

|amsrs|k +
∞∑

n=s+1

|arnrs|k +
∞∑

m,n=r+1,s+1

|amnrs|k

= L1 + L2 + L3 + L4, say.
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Then, equation 9 holds iff L1 = O(1), L2 = O(1), L3 = O(1) and L4 = O(1). Now, it is written that

L′
1 = |a0s0s| =

(
q′s
Q′

s

)1/k Qs

qs

L′′
1 = |ar0r0| =

(
p′r
P ′
r

)1/k Pr

pr

L′′′
1 = |arsrs| =

(
p′rq

′
s

P ′
rQ

′
s

)1/k PrQs

prqs
.

Hence, if L′
1 = O(1) and L′′

1 = O(1), then, since pr ≤ Pr and qs ≤ Qs for all r, s, then, p′rPr/P
′
rpr =

O(1) and q′sQs/Q
′
sqs = O(1), and so we have L′′′

1 = O(1). This shows that L1 = O(1) if and only if
L′
1 = O(1) and L′′

1 = O(1), or, equivalently, equation 21i and equation 21ii hold. Also, using equation
21i and equation 21ii, it follows from Lemma 2.2 and Lemma 2.3 that

L2 =
∞∑

m=r+1

|amsrs|k ≤
∞∑

m=r+1

(
|am0r0|k + |amsrs|k

)

=


∣∣∣∣(P ′

r − p′r
Pr

pr

)∣∣∣∣k +
∣∣∣∣∣
(

q′s
Q′

s

)1/k Qs

qs

(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣∣
k
 1

P ′k
r

=

∣∣∣∣(1− p′rPr

P ′
rpr

)∣∣∣∣k + q′s
Q′

s

(
Qs

qs

)k ∣∣∣∣(1− p′rPr

P ′
rpr

)∣∣∣∣k = O(1),

L3 =

∞∑
n=s+1

|arnrs|k ≤
∞∑

n=s+1

(
|a0n0s|k + |arnrs|k

)

=


∣∣∣∣Q′

s − q′s
Qs

qs

∣∣∣∣k +
∣∣∣∣∣
(
p′r
P ′
r

)1/k Pr

pr

(
Q′

s−1 −
q′sQs−1

qs

)∣∣∣∣∣
k
 1

Q′k
s

=

∣∣∣∣1− q′sQs

Q′
sqs

∣∣∣∣k + p′r
P ′
r

(
Pr

pr

)k ∣∣∣∣(1− q′sQs

Q′
sqs

)∣∣∣∣k = O(1),

L4 =
∞∑

m,n=r+1,s+1

|amnrs|k

=

∞∑
m,n=r+1,s+1

∣∣∣∣µ′
mn(k)

(
Q′

s−1 −
q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k
=

∣∣∣∣(Q′
s−1 −

q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k ∞∑
m,n=r+1,s+1

µ′k
mn(k)

=

∣∣∣∣(Q′
s−1 −

q′sQs−1

qs

)(
P ′
r−1 −

p′rPr−1

pr

)∣∣∣∣k 1

P ′k
r Q′k

s

= O(1)

(
q′sQs

Q′
sqs

p′rPr

P ′
rpr

)k

= O(1).

This completes the proof.
Theorem 1.2 and Theorem 3.3 lead to the following result which gives a important relation between

single and double absolute Riesz summability methods.
Corollary 3.4 Let k ≥ 1. Then, in order that every

∣∣N, pm, qn
∣∣ summable double series should be

summable
∣∣N, p′m, q′n

∣∣
k

it is necessary and sufficient that every
∣∣N, pm

∣∣ and
∣∣N, qn

∣∣ summable simple
series are summable

∣∣N, p′m
∣∣
k

and
∣∣N, q′n

∣∣
k
, respectively.

Mehmet Ali Sarıg¨ol

9



For k = 1, Theorem 3.3 also extends the result of Bosanquet (1950) and Sunouchi (1949) to double
summability as follows.

Corollary 3.5 In order that every
∣∣N, pm, qn

∣∣ summable double series should be summable
∣∣N, p′m, q′n

∣∣
k

it is necessary and sufficient that

(i)
p′mPm

P ′
mpm

= O(1) and (ii)
q′nQn

Q′
nqn

= O(1).

For pn = qn = 1,
∣∣N, pn, pn

∣∣
k

reduces to |C, 1, 1|k and hence one can obtain some new results as:

Corollary 3.6 Let k ≥ 1.Then, in order that every
∣∣N, pm, qn

∣∣ summable double series should be
summable |C, 1, 1|k it is necessary and sufficient that

(i)
1

m

(
Pm

pm

)k

= O(1) and (ii)
1

n

(
Qn

qn

)k

= O(1).

Corollary 3.7 Let k ≥ 1.Then, in order that every |C, 1, 1| summable double series should be
summable

∣∣N, pm, qn
∣∣
k

it is necessary and sufficient that

(i) mk pm
Pm

= O(1) and (ii) nk qn
Qn

= O(1).

However the following result shows that converse implication of Theorem 3.3 is not true.

Theorem 3.8 Let k > 1. Then, for every sequences (pm) , (qn) , (p
′
m) and (q′n) , there exists a series

which is summable
∣∣N, pm, qn

∣∣
k

but not summable
∣∣N, p′m, q′n

∣∣ .
Proof. Let us consider (Tmn) and (T ′

mn) defined by equation 22 and equation 23. Write

Ymn = µmn(k)∆Tmn for m,n ≥ 0 (28)

where ∆T =
(
∆Tmn

)
is defined by equation 24. Then the double series

∑∞
r,s=0 xr,s is summable∣∣N, pm, qn

∣∣
k

and
∣∣N, p′m, q′n

∣∣ if and only if Y = (Ymn) ∈ Lk and ∆T ′ =
(
∆T ′

m,n

)
∈ L, respectively,

where ∆T ′
m,n is given by equation 25 . Further, by equation 2 and equation 28, for m,n ≥ 1,

∆T ′
m,0 = µ′

m0(1)

m−1∑
r=1

(
P ′
r−1Pr − P ′

rPr−1

)
Yr0

prµr0(k)
+

P ′
m−1Pmµ′

m0(1)Ym0

pmµm0(k)

∆T ′
0,n = µ′

0n(1)
n−1∑
s=1

(
Q′

s−1Qs −Q′
sQs−1

)
Y0s

qsµ0s(k)
+

Q′
n−1Qnµ

′
0n(1)Y0n

qnµ0n(k)

and

∆T ′
m,n = µ′

mn(1)

{
P ′
m−1PmQ′

n−1Qn

pmqnµmn (k)
Ymn +

P ′
m−1Pm

pm

n−1∑
s=1

(
Q′

s−1Qs −Q′
sQs−1

)
Yms

qsµms(k)

+
Q′

n−1Qn

qn

m−1∑
r=1

(
P ′
r−1Pr − P ′

rPr−1

)
Yrn

prµrn(k)

+

m−1,n−1∑
r,s=1

{
P ′
rPr−1

(
Q′

sQs−1 −Q′
s−1Qs

)
− P ′

r−1Pr

(
Q′

sQs−1 −Q′
s−1Qs

)}
Yrs

prqsµrs (k)


Therefore it can be written that

∆T ′
m,n =

m,n∑
r,s=0

amnrsYrs,= Amn(Y )
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where the matrix A = (amnrs) is given by

amnrs =



µ′
m0(1)P

′
m−1Pm

pmµm0(k)
, r = m, n = s = 0

µ′
m0(1)(P ′

r−1Pr−P ′
rPr−1)

prµr0(k)
, 1 ≤ r < m, n = s = 0

µ′
0n(1)Q

′
n−1Qn

qnµ0n(k)
, s = n, m = r = 0

µ′
0n(1)(Q′

s−1Qs−Q′
sQs−1)

qsµ0s(k)
, 1 ≤ s < n,m = r = 0

µ′
mn(1)P

′
m−1Pm(Q′

s−1Qs−Q′
sQs−1)

pmqsµms(k)
, 1 ≤ s < n,m ≥ 1

µ′
mn(1)Q

′
n−1Qn(P ′

r−1Pr−P ′
rPr−1)Yrn

qnprµrn(k)
, 1 ≤ r < m, n ≥ 1

µ′
mn(1){P ′

rPr−1(Q′
sQs−1−Q′

s−1Qs)−P ′
r−1Pr(Q′

sQs−1−Q′
s−1Qs)}

prqsµrs(k)
, 1 ≤ s < n, 1 ≤ r < m

µ′
mn(1)P

′
m−1PmQ′

n−1Qn

pmqnµmn(k)
, s = n, r = m,

0, otherwise

This gives that
∣∣N, pm, qn

∣∣
k
⇒
∣∣N, p′m, q′n

∣∣ if and only if A ∈ (Lk,L) . But, it follows from the definition
of the matrix that

Wk∗(A) =
∞∑

r,s=0

 ∞∑
m,n=0

|amnrs|

k∗

≥
∞∑
r=0

|ar0r0|k
∗

=

∞∑
r=0

∣∣∣∣∣
(
p′rPr

P ′
rpr

)(
Pr

pr

)1/k

Pr−1

∣∣∣∣∣
k∗

≥
∞∑
r=0

P k∗
r−1 = ∞.

Therefore, the proof is completed by Theorem 3.2.
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Mathematical Methods in the Applied Sciences, 42: 5398-5402.

Mazhar, S.M. (1972). On the absolute Nörlund summability factors of infinite series, Proceedings of the
American Mathematical Society, 32: 232-236.

Mishra, L.N. Das, P.K., Samanta, P., Misra, M. and Misra, U.K. (2018). On Indexed Absolute Matrix
Summability of an Infinite Series, Applications and Applied Mathematics, 13: 274-285.

Mehmet Ali Sarıg¨ol

11



Mohapatra R. N.(1967). A note on summability factors, Journal of the Indian Mathematical Society,
31: 213-224.

Rhoades, B.R. (1998). Absolute comparison theorems for double weighted mean and double Cesàro
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