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Abstract

It is already proved that the growth rate of all the spherical Artin monoids is less than 4. In this paper, we find the Hilbert
series of the associated right-angled affine Artin monoid M (A},) and also we discuss the recurrence relations and the

growth of the monoid M (Aﬁ)
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1. Introduction

We start with basic notions of Coxeter groups. These
groups are classified into two categories: finite or
spherical type Coxeter groups and affine Coxeter groups.
In Igbal (2011), we gave a linear system for the reducible
and irreducible words of the braid monoid M B,,, which
leads to compute the Hilbert series M B,,. In Berceanu &
Igbal (2015), we proved that the growth rate of all the
spherical Artin monoids is less than 4. In this paper we
study one of the affine Artin group A’ and find the Hilbert
series (or spherical growth series) of the associated right-
angled affine Artin monoid M (A3). We also discuss
the recurrence relations and the growth of the monoid

M(A7).

Let S be a set. A Coxeter matrix over is a square matrix
M = (my;),s,t € S indexed by the elements of S such
that

1foralls €S

® Mg
o mg =myu €{2,34,:,o}forall s,t €
S,s #t.

A Coxeter graph of I is a labeled graph defined by the
following data:

e Sisasetof vertices of I

e Two vertices s,t € S,s #t are joined by
an edge if my; = 3. This edge is labeled by
myg if myg = 4.
(A Coxeter matrix M = (mg;),s,t € Sis
usually represented by its Coxeter graph

r=rm.)

Definition 1.1 Let M = (mg;),s,t € S be the
Coxeter matrix of the Coxeter graph I'. Then the
group defined by

W=(s€S:s?=1,(st)™t =1Vs,t €S,s # t)
is called the Coxeter group (of type I').

In a simple way we can write

W = (s € S:s? = 1, stst -+ (mg factors)
= tsts - (mg factors) Vs, t
€S, s #t)

We call I to be of spherical type if W is finite.

An Artin spherical monoid (or group) is given by a finite
union of connected Coxeter graphs from the well known
classical list of Coxeter diagrams (Bourbaki, 1968).

(Ap)nz1:

(Bu)uza : - - - =
T2 T3 ses T

(Dn)n>a

(Bn)nzs,s : L

Fy: —_—
Gy: e

(Hp)n=ga:

U_r(]r)]J

p25.p#6 °

Fig. 1. Coxeter graphs of finite type



By convention m;; is the label of the edge between Xx;
and Xj, U # J; if there is no label then m;; = 3; if there
is no edge between x; and X; then m;; = 2.

To a given diagram X, , we associate a monoid M (X,)
with the following presentation (generators correspond
to the vertices, and relations correspond to the labels

m; = = 3 of the graphs):
W = (x1,X9, ", Xn: X1 XpXq (ml-jfactors)
= XyX1Xp (mijfactors));

the corresponding group G (X,,) associated to X, is
defined by the same presentation. Next we will use X, for
G (X,,) for simplicity.

Definition 1.2 If W is a Coxeter group (with the Coxeter
matrix M = (mg;), s, t € S of the Coxeter graphI') then
the Artin group associated to W is defined by

= (s € S:stst -+ (mg factors)

= tsts -+ (mg factors))

If W is finite then A is called a spherical Artin group.

Definition 1.3 In the spherical type Coxeter graphs,
if all the labels mys = 3 are replaced by oo then the
associated groups (monoids) are called right-angled
Artin groups (monoids).

Definition 1.4 (Harpe, 2000) Let G be a finitely
generated group and S be a finite set of generators of G.
The word lenth L4 (g) of an element g € G is the smallest
s,eSUS”

. . . 1
integer N for which there exists S, ,..., such

that 8§ =8,+*S,.

Definition 1.5 (Harpe, 2000) Let G be afinitely generated
group and S be a finite set of generators of G. The growth
function of the pair (G ,S) associates to an integer k > O the
number a, of elements g € G such that [;(g) = k and the
corresponding spherical growth series (also known as the
generating function) or the Hilbert series is given by

H;(t) = zk_oakt".

The affine (or infinite) Coxeter groups form another
important series of Coxeter groups. These well-known
affine Coxeter groups are given as

A, .By.Co.Dy Eg E; Eg.Gy I
In Berceanu & Igbal (2015) we proved that the universal

upper bound for all the spherical Artin monoids is less
than 4.

In this paper we discuss the growth of the associated
right-angled affine Artin monoid M (A;) and find the
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Hilbert series of the monoid. We also study some other
results relating the recurrence of polynomials for this
monoid.

2. The Hilbert series of right-angled affine Artin monoid
M(A7)

The first (in the above list) affine Coxeter group An is
given by the following Coxeter diagram:

Anzg 5
Iy Z2 Z3 T Tn—1

Fig. 2. The Coxeter graph of Affine type 4,

If all the labels in the above diagram are replaced by
oo then we have the associated right-angled Artin group
and we denote it by An. In this paper we consider the
associated right-angled Artin monoid M (A3). Thus
M (A ) has the following presentation:

M(A3)

‘xxj—x]xl, 3<]+2<l<n—1>

= (X1, X, X3, .,
<1 3 2<k<n-2

XnXk = XkXn,

Let X; X, = X;X; (I > m). Then the word x,,,X; is
said to be an irreducible word or canonical form of the
word X;X,,. If @ = f be any relation in M (A3}), then the
change yad — Y6 gives a rewriting system, called the
reduction.

If we apply a finite sequence of reductions on a word W
and get a word U and, if no further reduction is applicable
on U, then U is called the canonical form of w.

Let XX, = Xppxp ([ > m)and xppx, = XX, (M > 1)
be any two commutation relations in M (A ). Then the

word of the form X; Xy, Xy, is said to be an ambiguity (for
more details see Bergman, 1978).

In a presentation of a monoid we fix a total order of the
generators; in all our examples we choose the natural order
x1 < X, < -+ < Xxp. Such a presentation is complete, if
and only if, all the ambiguities are solvable (Bergman,
1978 and Cohn, 2003).

Remark 2.1 In M(A ) all the amblgumes are of type
XXX, k+4< j+2<i Let w=X,X,X;, then;
Ifi < n—1thenw has the canonical form X XX,

Ifi=nand k >1 then also has the canonical form
XXX,
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Ifi=n and k =1 then W has the canonical form

X, X, X, i.e., we have a relation X, X X, = X, X, X ;.

Let a(1l,k) denote a word in the generators
X1,X2,X3, ..., Xn. Then as a consequence of the above
remark we have the following

Lemma 2.2 The presentation

XiXj = XjX;, 3<j+2<i<n-1
2<k<n-2

3<k<n-2

Xq, o) Xp, |xnxk = XyXn,
Xpxra (1 k — 2)x, = xpxpxa(1,k — 2),

is a complete presentation of M (AZ).

Now we start to compute the Hilbert series

H{’ (@)= z ¢, t*of M(AZ), where
Cp =#
{canonical words of lengh k in M(A)}. Let
Cri =#
{canonlcal words starting with x; of lengh & in M(A )}

Then H{).(t) = X c,.,t" denote the Hilbert series of
’ k=1 7

M(A3) of the canonical words starting with X;.

Consider a system (Kelley & Peterson, 2001) of linear
recurrences

w (t+1) = a, (Ou,(t) + ...+ a,(Ou, () + f,(t)
wy(t+1) = all(t)ul(t) +.+a,(Ou, () + f,(1)

u,(t+1)= all(t)u &) +...+a,Ou, )+ f,@).

This system can be written as

u(t+1)=A@)u@)+ f(1),

where
(1) an:(t) . aln:([)
ul)y=| i |, AD=| N I
un (t) anl (t) ann (t)
(@)
fo= :
1. (0

The solution of the homogenous equation (which we
need in our work)

u(t+1) = A®)u(r)
is given by

u(t) =cAu' +---+c Au"

where A,,...,4, are the eigenvalues of A(?) and u'is
an elgenvector correspondlng to A. Hence the largest
eigenvalue is the growth rate of the sequence. Therefore,
in our case the characteristic equation is very important,
which gives us the eigenvalues. Eigenvalues have many
applications in different disciplines of science. Forexample
eigenvalues are used for diagonalization of matrices and
in the systems of differential equations. In engineering the
eigenvalues are used to determine the natural frequencies
of vibration in the structures. In physics we use it in
oscillations, dynamical systems, rotations and translations
of rigid bodies. They are also widely used in economics
(e.g., in control theory), statistics (in population growth
models), computer graphics, etc.

Corollary 2. 3 In the monoid M(A3) the following
relations are satisfied

a)cy=1¢,;=1¢ =§Ck;i (k=1).

D) c,.; (k = 2) are given by the recurrence
=2 Crotiiv
inl

€y = 2y (J= 200,
i=j—

Ck;n = Ck—l;l + . Z lck—l;i .

The characteristic polynomial of this recurrence is
given by:

[(A-1 -1 - -1 -1 -1 -1
-1 A-1 « -1 -1 -1 -1
0o -1 -1 -1 -1 -1
Ld=de o @
0 0 0 -1 a-1 -1
-1 0 = 0 0 -1 a-1

The characteristic equation L, (4)=0 gives the
eigenvalues of the matrix of the above system.

Lemma 2. 4 The polynomials (L, (1)) .5 satisfy the
recurrence

L,(AH=1L (/1) —AL,,(A)=A" (n=5)(2)
withL () =2 =32 ,L,(A) =4 —4L + 21 as

the initial values.

Proof. By adding nth row in (n—1I)th row and
decomposing L , (4) as sum of two determinants, say U ,
and V, with the last rows given by [0,0,...,0,4] and

[-1,0,...,0,—1,—1], respectively we have V =0. Thus
L, (1) =AU, ,(A), where



A-1 -1 -1 -1 -1
-1 A-1 -1 -1 -1
0 -1 -1 -1 -1
U (=] . . .
0 0 -1 A-1 -1
-1 0 0O -1 A-2

The last determinant is of order 7 —1 and by splitting
it from the last row, we have

A-1 -1 -1 -1 -1
-1 A-1 -1 -1 -1
0 -1 -1 -1 -1
Ly=4 : . . . .
0 0 -1 A-1 -1
-1 o - 0 -1 A-1
A-1 -1 -1 -1 -1
-1 A-1 -1 -1 -1
0 -1 -1 -1 -1
Ll . . .
0 0 -1 A-1 -1
0 o - 0 0 -1

Hence expanding the last determinant by last row and
then adding its 2nd row in its last row we have

e
-1 A-1 =1 -« -1 -1 -1
0 -1 A-1 - -1 -1 -1
L,()=AL, (A)-4] : : : P :
A-1 -1
-2 -2

The order of the last determinant now is 7 —2 and
by splitting it into two determinants with last rows
as [-1,0,...,0,~1,A—1] and [0,A—-1-1,...~1]
respectively, we have
i-1 -1 -1 - -1 -1
-1 A=l =1 e -1 -]
0 -1 A1 = -1 -1
L=, (D=L )= & & i
0 0 0
0 A-1 -1 - -1 -]
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Let R, denote the kth row of the last determinant
(of order n—2). Then by elementary row operations
R —R,_,;(i=1,...,n—3) we have

L, () =AL, (D)= AL, (W) + A"

A-1 -4
-1 0]

Therefore, we have the result

L. (A=A, ,(A)-AL, ,(A)-1".

Lemma 2.5 The Hilbert series H,gl) (t) of M(AY)is
given by the following system of n equations.

W) HY () =1+ X HY, @),

i=1 ’
(2) Hz(vl;)l (1) = Hz(\;;)z(t),
A3) Hj(‘,;';)j(t) =t+tAZIH1(\;;),.(t) 2<j<n-1),

i=j-

4 Hyp () =t+1H g\ () +1 X H @)

i=n—1

Proof. (1) From Corollary 2.3 we have ¢, = ;ck;i
(k >1). Therefore i1

D "
Hy"(t) = Z ceth =1+ ZZ Criit”
i=1

k=1 k=1

(2) is clear from the recurrence €, =C;., .

(3) Again from Corollary 2.3, we have

Croj = ighck_l;i (j=2,...,n—1). Therefore

n k
Hy ()= ¢t

k=1

_ k
= cl;jt+2ck;jt
k>2

=1+ Z Zn: Croral"

k>2 i=j-1

=1+t 2 et

i=j-1 k2
n
=t+1 Y Hyl@).
i=j-1

Proof of (4) is similar to the above proof. The linear
system given in the Lemma 2.5 of n equations has
the determinant detW, =¢"L (). The characteristic

polynomials A, (1) of A7 given by
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A-1 =1 - -1 -1 -1 -l
-1 A-1 -« =1 -1 -1 -1

0 -1 - -1 -1 -1 -1

A (A)=det| S
0 121 -1 -1
0 0 - 0 -1 -1 -1
0 0 0 0 -1 i-l

satisfies the recurrence:

Lemma 2.6 (Berceanu & Igbal,2015) The polynomials
A,, A) satisfy

A A)=4A_(D)-AA ,(1) (n=2) 3)

with Aj(A) =land A, (L) =1-1.

Lemma 2.7 The polynomials L (A1) and A (A1)
(n > 0) satisfy the recurrence

L, (D)=2A, (D)-AA, -2 (n23).4

We break the Determinant (2.1) as a sum of two
determinants U, (A) and V (A) with the last rows
[0....,0,0,4] and [-1,0,...,0,—1-1],
By expanding U,(A) with the last row we have
L, (A)=2A, (1) +V (A), where

respectively.

A-1 -1 11 -1
1 -1 1 -1 -1
0 -1 1 -1 -1
G I a-1 -1 -1
0 0 1 a-1 -1
10 0 -1 -1

Now subtracting (7 —1)th column from sth column
of V (A) and then expanding it by last column we have
V (A1) =AW, (A), where

a-1 -1 ST
T T
0 -1 ST
Wa@®=\ 5 A-1 -1 -1
0 0 1oa-1 -1
10 0o 0 -1

Further by decomposing W, ,(A) as a sum of two
determinants, say, AS, | (4) and AT, (A) with the last
rows [0,0,...,0,—1]and [—1,0,...,0,0], respectively, we
have AS, ,(1)=—-4A ,(1)..

Thus L, (A)=A4A, (D) —AA, (D) +AT, (L),
where
A-1 -1 - -1 -1 -1
-1 A-1 -+ -1 -1 -1
0 -1 -1 -1 -1
T, ()= : : :
0 0 -1 A-1 -1
-1 o - 0 0 0
=(=D""Y,, (D).

Let C, denote the kth column of (=1)""'Y, ,(A).

Then by elementary column operation
c ,—-C ,.C .—-C ,..,C,—C, wehave finally
L. (AD)=4A,  ,(D)—AA (A)—-2"".

Lemma 2.8 The Hilbert series H ,E}?n (t)is given by

1
tmfl Am_2 (7)
H (1) = . L 2<m<n-1
tnL n(f)
t
and
m—1 1 2
t A (-)+t
H,(\;;)m(t): 1t ,m=n.
"L ()
t

Proof. The system given in the Lemma 2.5 of n
equations in 1 variables Hz(v’;)z (#), 1<i<n can be
written in the form LY =B, where det L=t"L (),
Y =[H @) Hy, @), Hy )] and B=[t,1,...1]"

Using the Cramer’s rule we have Hj(\,'};)m(t)= D

, where D, is a determinant obtained by replacing m
th column of L by column of B. Here have two cases;
Case.2<m<n-1.

Let C, denote the kth column of D,. Adding
¢, n C,.,C C, and

m m+1°>~"m+2 22 n
a determinant of order m, say L . Now adding
(m—Dth column of L, in its mth column and

simplifying we get



finally D

simplifying we have L =t"A (D).

Case II: m =n.
We compute D, for even n. The computations for odd

n are also same. Adding (7 —1) th column in nth column

of D, and expanding from last column, we have

l—-¢t -t -+ —t -t -t -t
-t 1=t - -t —t -t -t
0 -t - -t -t -t -t
(ﬂ) _ _1 . . . . . .
Hun =75
0O 0 - -t -t 1-t —t
-t 0 - 0 0 0 -t
-t —t -t -t 11—t -t -t -t
-t 1-t -t —t -t 1-t -t —t
0 —t -t —t 0 —t -t —t
:zL:({) +r'L,r,(}) : :
0 0 1-t —¢ 0 0 1-t —t
0 0 0 1 1 0 0 0
-t —t -t -t -t —t -t~
-t 1-t -t -t 11—t -t -t —
o, 0 -t =t =t | -t -t  —f
T LG : G| : :
0 0 -t 1-t 0 0 1-t -1
-1 -1 -1 -1 -t -t -t -t
-1 1-1 -1 -1 11—t -t -t —t
o 0 -1 -1 -1 cap |t 1-t -t -t
D) L, (h :
0 0 -1 1-1 0 0 1-t —t

Let C, denote the kth column of the last determinant.

Then by elementary column operations

¢ ,-C ,C —C, ,,..,C,—C wehave

-t 0 0 0

1-r -1 0 0

. tnflA - % _1 n—lt —t 1 0 0

Hy, (=AW G
t"L,(}) "L, (1) :

0 0 1 -1
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The determinant involved in the last expression equals
(=1)""'¢. Therefore we have finally

AL (D) +1
'Ly
Theorem 2.9 The Hilbert series of the monoid M (A:)
is given by

H ()=

H,) (1) =

AWON

From Lemma 2.8 and Lemma 2.5 and using the
Relations (3) and (4) we have

Hy (0 =14 Hy (1)

i=1

(e Ora e ()
- ,»Ll(l)(z”’"lAH (%)H’L]AHG)+12A1(;)+~~-

n\t

HH-IA“C))

S (mmz(j))

(e O-n0)

n\t

Example 2.10 Using the above result we see that

M(AS) is the free monoid in three variables and its

Hilbert series is given by H,S) (t) =15 (Similarly
%) — 1
HM (t) T

Now we will separate the zero roots of L , from the
others (| x |is the floor function).

Proposition 2.11 The polynomial L, (A) has the
following form:

L,(A)= ﬂw L), (5

n+1
where L is a polynomial of degree LTJ The
sequence (L), ., is defined by

(@) Ly=A-3,L, =1 —41+2;
(0) Ly =(A-2)L,— L, ,—(A+DA" .

Proof.(a) We prove these relations by induction. Suppose

(5) is true upto n = 2 p (for any nonnegative integer P).
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Then we have L,, ;= /1’]72142]773 Ly, = /1”71[,21”72 . 3.Growth of M(A3)

L 2pt = yla szq and L 2p = AP sz , respectively. The characteristic equation L (1) =0 of the recurrence
of M(AZ) contains the zero roots and the equation
Hence from Equation (2); we have L, (A) =0 contains only the nonzero roots. The growth
rate is the maximal real root of L (A1) =0. We observe
Ly, = AL, p2 - AL, S - that the growth rate for M (/I‘,’;) increases (and looks
_ (AL _ /1p—3) unbounded) as 7 approaches co. We compute few initial
22~ Loy growth rates (using any software like Maple 7, Derive 6
= A" le o etc.) for M (A ). Let 7, denote the growth rate of M (A ),
This gives then we have the following few initial values of 7;:
3 r,=3,r,=341,r,=3.7,r,=4,
L‘Zp—l = ﬂLZp—2 _L2p73 _ﬂ’p N (6) ’ * : °
and r,=424 .1, =447 ,1r,=4.69,r,,=491,
L2P — /u_zp 1 _//ll—zp_z _12p—3 " =511 s 1o =5.32 R =5.53 sy :573,
=L, ~L,, — 27 rs=592,1,=6.11,1,,=63,1,,=649,
:/1”L2p 0, =6.68,r,=686.
gives us The growth of M (A ) is shown in the following
3 raph.
LZp :L2p7] _L2p72_ﬂ“p N grap

Tk

Replacing p by p+1 in (6) we have 7

l‘2p+1 = //Ll‘Zp _l’Zp—l _ﬂ’piz' £

Therefore (5) follows as 5
2p-3 :
L2p+1=//l’(L2p_L2p—l_/1 )
3
= (AL, —L,, =2 =2L,,,,.

3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 k
(b) For n = 2 p we have . .
Fig. 3. The graph of the growth rate of for initial vales

-2
K2p+2 = L2p+1 _sz - .
5 5 We compute the higher values r,,=6.86, |,
=l ~ Ly =4 =Ly =4 =13.2 =16, 1,5 =18.6 =212 (usi
) oo =13.20, 1y, =16, 100 =18.65, 1,0 =212 (using
= (4 —I)sz _L2p—l -2 Mathematica). For the higher values of r, we have the
g k
=(A-DK,, —(L,, +L,, , + AP3) =217 following graph.
=(A- 2)L2p 2,, ,—RA+DA. - . -
20
Similarly for n =2 p +1 we have "
2 14
L2p+l = Z'LZp 2p —1 _ﬂ“p 13
-3 -2 3
:ﬂ“(Lz -1 2[1—2_&? )_Lz—_ip ;
= (/1 1)L2 2p 2 2/1]) 2 24 8 1216 20 40 60 80 100 120
— (A-DL _— ( L2 2]) . o 3) 22 Fig. 4. The graph of the growth rate of M (A3) for higher values

=(A-2)L,, ,—L,, ;—QA+DA". 3 Conjecture: The growth rate of M (A3) is unbounded.
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