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Abstract

In this work, we define ZG a topology on the vertex set of a graph G which preserves the connectivity
of the graph, called Z-graphic topology. We prove that two isomorphic graphs have homeomorphic and
symmetric Z-graphic topologies. We show that ZG is an Alexandroff topology and we give a necessary
and sufficient condition for a topology to be Z-graphic.
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1. Introduction

Graph theory is a field applied to many domains. When we discretize a problem by a graph, the proper-
ties of the graph help to study the given problem. Having a topology on the graph gives a richer structure
to the graph and this have applications in the economy domain, the traffick flow study (Agnarsson et al.,
2007; Kandel et al., 2007; Nogly et al., 1996) and many other domains. Also, a graph can be charac-
terized by some topological indices, see (Ali et al., 2016; Cruz et al., 2021; Gutman et al., 2021; Naji et
al., 2018) and references therein.

Since the publication of the paper ( Jafarian Amiri et al., 2013), other researchers defined some topolo-
gies on graphs, as example we can cite (Abdu et al., 2018; Hamza et al., 2013; Kilicman et al., 2018;
Sasikala et al., 2019; Shokry, 2015). In ( Jafarian Amiri et al., 2013), the authors defined the graphic
topology τG on a locally finite (i.e. any vertex has a finite order) undirected graph G = (V,E) with no
isolated vertices by the subbasis:

SG = {Ax | x ∈ V }, (1)

where
Ax = {z ∈ V | xz ∈ E}. (2)

One of the most interesting properties of (V, τG) was being an Alexandroff space, that is any intersec-
tion of open sets is an open set. This is equivalent to the topology has a unique minimal basis. The
Alexandroff spaces were introduced by P. Alexandroff in 1937 in (Alexandroff, 1937) under the name
Diskrete Räume spaces. We can find some results about these spaces and their importance and applica-
tions in ( Herman, 1990; Kronheimer, 1992; Li et al., 2019; McCord, 1966; Stong, 2015; Speer, 2007).

A topological space (V, T ) is called graphic space if there exists a graph G such that T = τG. In (
Jafarian Amiri et al., 2013), the authors posed two open problems: when an Alexandroff space can be
graphic? When the graphic topology can be connected?
In ( Zomam et al., 2021), a partial answer to the first question was given. In this paper, we define a
topology ZG on the vertex set of an underacted graph G = (V,E) such that ZG is smaller than τG, when
G is locally finite without isolated vertices, that is ZG ⊂ τG. Also, we solve the two open problems of (
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Jafarian Amiri et al., 2013) for the Z-graphic topology ZG.

The outlines of this paper are the following: Section 2 deals with some basic definitions and notations.
In section 3, we define ZG for an undirected graph G = (V,E) and we prove that it is a topology on V ,
smaller than τG when τG exists. We investigate the trace topology of ZG on subgraphs ofG. In section 4,
we prove the equivalence between the connectivity of the graph G and the Z-graphic topology ZG. And
we show that ZG is an Alexandroff topology. Finally, in section 5 we prove that being Z-graphic is a
topology property and two isomorphic graphs have homeomorphic and symmetric Z-graphic topologies.

2. Preliminaries

In this section, we give some general definitions and properties of a topological space. For more details,
we can refer to (Arenas, 1937; Dugundji, 1966; Li et al., 2019; Stong, 2015).
Recall that a topological space (X,T ) is a non empty set X with a set T of subsets of X (i.e T ⊂ P(V ))
satisfying:

(i) ∅ and X are in T .

(ii) If A and B are two subsets of X and A,B ∈ T , then A ∩B ∈ T .

(iii) For any family {Ai}i∈I ⊂ T , I a set, we have ∪i∈IAi ∈ T .

An element A of T will be called an open set of the space (X,T ).

Example 1 Let X = {a, b, c}, then

T = {∅, {a}, {b}, {a, c}, {a, b}, X}

is a topology for X .

In general, the intersection of open sets is not an open set in a topological space (X,T ).

Definition 2.1 (Alexandroff, 1937) A topological space is called an Alexandroff space if any intersection
of open sets is an open set. Also, we say that the topology T is an Alexandroff topology of X .

The space introduced in Example 1 is an Alexandroff space. In fact, any finite topological space is an
Alexandroff space. Later, we will give an example of a non Alexandroff space.

Definition 2.2 Let (X,T ) be a topological space and let B ⊂ T . B is called a basis of the topology T if
for all x ∈ X , for allOx an open set containing x, there exists an elementB ∈ B such that x ∈ B ⊂ Ox.
We say that the topology is generated by the basis B.

Example 2 B = {(a, b),−∞ < a < b < +∞} is a basis for the usual topology T on R.

Now, if we consider the open sets (
− 1

n
,
1

n

)
, n > 0,

we have ⋂
n>0

(
− 1

n
,
1

n

)
= {0},

and so, (R, T ) is not an Alexandroff space.
A basis m is called minimal basis for a topology T if for all B a basis of T , we have m ⊂ B.

Example 3 For the topology given in the Example 1, m = {{a}, {b}, {a, c}} is a minimal basis.

Proposition 2.1 Let (X,T ) be an Alexandroff space. Then, T has a minimal basis.

Proof. Let x ∈ X . The intersection of all open sets containing x is an open set. We set Ux such open
set. Consider U = {Ux, x ∈ X}. We have U ⊂ T and, if x ∈ X and Ox an open set containing x, then
x ∈ Ux ⊂ Ox. Hence, U is a basis for T .
Now, let B be a basis for the topology T . Since Ux is an open set containing x, there exists B ∈ B such
that x ∈ B ⊂ Ux and so B = Ux. Hence, Ux ∈ B and so, U ⊂ B.
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3. Z-graphic topology and some properties

In the sequel, we suppose that all graphs are simple and undirected.
Let G = (V,E) be a graph. In this part, we define a subset ZG of the power set P(V ) of V and we prove
that ZG is a topology on the vertex set V . We call the topology ZG the Z-graphic topology of the graph
G. We compare the Z-graphic topology and the graphic topology on a graph G. Finally, we study the
Z-graphic topologies on subgraphs.

Definition 3.1 Let G = (V,E) be a graph and A ⊂ V . A ∈ ZG if and if for any vertex x ∈ A, if there
exists a path joining x to a vertex y in G then y ∈ A.

Notation. When two vertices x and y are adjacent, we write x ∼ y and when they are joined by a path
P , we denote x ∼P y. In particular, x ∼ y means x ∼x,y y (P = x, y).

Theorem 3.1 For any graph G = (V,E), ZG is a topology on the vertex set V .

Proof. (i) By definition, ∅ and V are in ZG.
(ii) Let A1 and A2 two elements in ZG. Suppose that x ∈ A1 ∩ A2 and let y ∈ V such that x joined by
a path P to y: x ∼P y.
We get x ∈ A1 and x ∼P y, so y ∈ A1 since A1 ∈ ZG.
In a similar way y ∈ A2 and then y ∈ A1 ∩A2. Therefore A1 ∩A2 ∈ ZG.
(iii) Let {Ai}i∈I a countable infinite family of elements in ZG. Let x ∈ ∪i∈IAi and suppose y ∈ V
such that x ∼P y.
Since x ∈ ∪i∈IAi, there exists i0 ∈ I such that x ∈ Ai0 . From the fact that Ai0 ∈ ZG, we get y ∈ Ai0 .
Therefore, y ∈ ∪i∈IAi and then the Theorem 3.1 follows.

Theorem 3.2 Let G = (V,E) be a graph. If G is locally finite without isolated vertices, then ZG ⊂ τG.

Proof. Let A ∈ ZG. Then, A = ∪x∈AAx, where Ax, given by Equation 2. Indeed, If x ∈ A and y ∈ Ax,
then x ∼x,y y. Since A ∈ ZG, the vertex y ∈ A. That is Ax ⊂ A and then ∪x∈AAx ⊂ A.
Conversely, Let y ∈ A. Since G is without isolated vertices, there exists x ∈ V such that x ∼ y. So,
y ∈ Ax. Also, we have: A ∈ ZG, y ∈ A and y ∼ x. Therefore, x ∈ A and y ∈ Ax. Hence y ∈ ∪x∈AAx

and then A ⊂ ∪x∈AAx.

Now, since A = ∪x∈AAx, by definition of τG we have A ∈ τG.

In the next example, we show that the two topologies ZG and τG are different.

Example 4

Fig. 1. Graph with ZG ̸= τG

In this example, ZG = {∅, {4, 5}, {1, 2, 3}, V } and τG is the discrete topology.
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Recall that a subgraph of a graph G = (V,E) is a graph H = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.
On the set V ′ we can define the Z-graphic topology ZH and we have also the topology induced by ZG,
denoted ZG,H .

Theorem 3.3 Let G = (V,E) be a graph and H = (V ′, E′) be a subgraph of G. Then, ZH = ZG,H .

Proof. Let A ∈ ZG,H . Then there exist O ∈ ZG such that A = O ∩ V ′. Suppose that x ∈ A and y ∈ V ′

satisfying x ∼P y for some path P in H . We get x ∈ O, y ∈ G and x ∼P y with P in G. Hence, y ∈ O
and so y ∈ O ∩ V ′, that is, y ∈ A. So, A ∈ ZH .
Conversely, suppose that A ∈ ZH and A ̸= ∅. As in the proof of Theorem 3.2, we prove that A =
∪x∈A(Ax ∩ V ′). Therefore A = (∪x∈AAx) ∩ V ′. But ∪x∈AAx is not necessary in ZG as we will see in
the Example 2 below. Let us consider Cx the connected component of G containing x. Since A ∈ ZH ,
then A = ∪x∈A(Cx ∩ V ′). Or Cx is an open set of (V,ZG) and A = (∪x∈ACx) ∩ V ′, it follows that
A ∈ ZG,H .

Example 5 Consider the following graph G.

Fig. 2. Z-graphic topology and subgraph

Let H = (V ′, E′) with V ′ = {1, 2} and E′ = {(1, 2)}. For A = V ′ = {1, 2}, in the graph G, we have
∪x∈AAx = {1, 2, 3} and ZG = {∅, {1, 2, 3, 4, 5}}.

4. Z-graphic topology and connectedness

In this section, we will prove the equivalence between the connectivity of a graph G and the connectivity
of its Z-graphic topology. Recall that the empty set is called a trivial open set in a topological space V
and an open set is called proper if it is not equal to V .

Definition 4.1 Let V be a topological space. V is called connected if it cannot be written as the union
of two proper disjoint open sets. If T is the topology of V , we say that the topology T is connected.

Example 3. Consider V = {1, 2, 3}, τ1 = {∅, {1}, {1, 2}, {1, 3}, V }
and τ2 = {∅, {1}, {2, 3}, V }. It is clear that τ1 is connected but the topology τ2 is not connected.

Definition 4.2 Let G = (V,E) be a graph. G is called connected if any two vertices can be joined by a
path, that is, there exists a path in G from one to the other vertex.

When a graph is not connected, we can define its connected components.

Definition 4.3 (Agnarsson et al., 2007; Diestel, 2005) LetG = (V,E) be a graph. LetH1 = (V1, E1), H2 =
(V2, E2), · · · be connected subgraphs of G such that

(i) V = ∪iVi;

(ii) E = ∪iEi;

(iii) Vi ∩ Vj = ∅, for all i ̸= j;
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(iv) Ei ∩ Ej = ∅, for all i ̸= j.

Then, each subgraph Hj is called connected component of the graph G.

Remark 4.1 When a graph G is connected, it has one connected component and if it is finite, it has a
finite connected components.

We have the following results with an immediate proof for the first theorem, so we omit it.

Theorem 4.1 Let G = (V,E) be a graph. The following properties hold.

(1) The space (V,ZG) is compact if, and only if, G is a finite.

(2) The topology ZG is discrete if, and only if, G is null graph (i.e E = ∅).

Theorem 4.2 Let G = (V,E) be a graph. The graph G is connected if, and only if, ZG is a connected
topology on V .

Proof. Suppose that the graph G is connected, that is any two points are joined by a path. From the Def-
inition 3.1, the only open sets for (V,ZG) are the empty set and the set V itself. And so, the topological
space (V,ZG) is connected.
Conversely, we suppose that (V,ZG) is a connected topological space and we shall prove that the graph
G is connected.
We argue by contradiction. Suppose that the graph G is not connected and so it has more than one con-
nected components H1 = (V1, E1), H2 = (V2, E2), · · · ·
Denote W = ∪i≥2Vi. Since Hi is connected, then Vi is in ZG, for all i. Then, W is a proper open
set satisfying V = V1 ∪W and V1 ∩W = ∅. This makes contradiction with the fact that (V,ZG) is a
connected topological space. Our assumption is false, and so the graph G is connected.

Recall that a topological space is called Alexandroff space if any intersection of open sets is also open.
We end this section by proving that the topology ZG is an Alexandroff topology, for any graph G.

Theorem 4.3 Consider a graph G = (V,E). Then, ZG is an Alexandroff topology.

Proof. Suppose that H1 = (V1, E1), H2 = (V2, E2), · · · · are the connected components of the graph G.
From the Definition 3.1, we have A is an open set of (V,ZG) if and only if A = Vi, for some i or A = ∅.
So, any intersection of open sets is an open set by the characterisation of the connected components given
in the Definition 4.3.

5. Isomorphic graphs and Z-graphic topologies

Definition 5.1 Let (X1, T1) and (X2, T2) be two topological spaces. A function
ψ : X1 → X2 is called continuous if for all A ∈ T2, ψ−1(A) ∈ T1.
When the function ψ is bijective and, ψ and ψ−1 are continuous, we say that the spaces are homeomor-
phic and we write X1 ∼h X2.

Definition 5.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs. We say that G1 and G2 are
isomorphic and we denote G1

∼= G2 if there exists a bijective map ϕ : V1 → V2 such that the function
ϕ̃ : E1 −→ E2

(x, y) 7→ (ϕ(x), ϕ(y)) is also bijective.

Remark 5.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two isomorphic graphs and the isomorphism
is ϕ : V1 → V2. It follows that if P = x1x2 · · ·xn is a path joining x1 and xn in G1, then P ′ =
ϕ(x1)ϕ(x2) · · ·ϕ(xn) is a path joining ϕ(x1) and ϕ(xn) in G2.
Conversely, if Q is a path joining v1 and v2 in G2, then we have a path Q′ joining ϕ−1(v1) and ϕ−1(v2)
in G1.

Hanan Omer Zomam, Makkia Dammak
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Theorem 5.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two isomorphic graphs. Then the spaces
(V1,ZG1) and (V2,ZG2) are homeomorphic.

Proof. Let ϕ : V1 → V2 the bijective map inducing the isomorphism of the two graphs G1 and G2. We
are going to prove that ϕ and ϕ−1 are continuous.
First, let O ∈ ZG2 such that ϕ−1(O) ̸= ∅. Suppose that x ∈ ϕ−1(O) and y ∈ V1 such that x ∼P y, that
is x and y are joined by a path in G1. By the Remark 5.1, ϕ(x) and ϕ(y) are joined by a path in G2. So,
ϕ(y) ∈ O and hence y ∈ ϕ−1(O). Then, ϕ−1(O) ∈ ZG1 .
Conversely, let O ∈ ZG1 . If O = ∅, then ϕ(O) = ∅ ∈ ZG2 .
If O ̸= ∅, suppose that x ∈ ϕ(O) and x ∼Q y in G2 (Q is a path in G2). We have x = ϕ(x1) for some
x1 ∈ O and y = ϕ(y1) for some y1 ∈ G1. From the Remark 5.1, x1 and y1 are joined by a path in G1.
Since, O is an open set of V1, then y1 ∈ O and so y = ϕ(y1) ∈ ϕ(O). Therefore ϕ(O) ∈ ZG2 .

In general, the converse of the Theorem 5.1 is not true.
Consider C4 and K4, their Z-graphic topologies are homeomorphic but the two graphs are not isomor-
phic.
in the paper ( Hamza et al., 2013), the authors define a symmetry between two topologies. Next, we
prove that if two graphs are isomorphic, then their Z-graphic topologies are symmetric.

Definition 5.3 ( Hamza et al., 2013) Let (X1, T1) and (X2, T2) be two topological spaces. We say that
these two spaces are symmetric and we write X1 ∼s X2 (or T1 ∼s T2) if |T1| = |T2| and for all A ∈ T1
there exists an open set B ∈ T2 such that |A| = |B| and conversely for all B ∈ T2 there exists an open
set A ∈ T1 such that |A| = |B|.

Theorem 5.2 Let Gi = (Vi, Ei), i = 1, 2, be two graphs. If G1
∼= G2 then ZG1 ∼s ZG2 .

Proof. From the proof of the Theorem 4.1, we get a bijective function, still denoted ϕ, ϕ : ZG1 → ZG2 ,
defined by ϕ(O) = {ϕ(x); x ∈ O}. So, |ZG1 | = |ZG2 |. Since ϕ : V1 → V2 is bijective, for all
A ∈ ZG1 , the set B = ϕ(A) ∈ ZG2 and |A| = |B|.
Conversely, for all B ∈ ZG2 , the set A = ϕ−1(B) ∈ ZG1 and |A| = |B|. The Theorem 5.2 follows.

The converse of the Theorem 5.2 is false, since the Z-graphic topologies of C4 and K4 are symmetric
but the two graphs are not isomorphic.

Definition 5.4 Let (V, T ) be a topological space. (V, T ) is said Z-graphic space if there exists a graph
G = (V,E) such that T = ZG. We say also, T is a Z-graphic topology.

Being Z-graphic is a topological property, that is, invariant under homeomorphisms.

Theorem 5.3 Let (V, T ) and (V ′, T ′) be homeomorphic spaces. Suppose that (V, T ) is a Z-graphic,
then (V ′, T ′) is also a Z-graphic space.

Proof. Suppose that ψ : V ′ → V is a homeomorphism and G = (V,E) is a graph such that T = ZG.
Consider

E′ = {(x′, y′) ∈ V ′ × V ′ | (ψ(x′), ψ(y′)) ∈ E}. (3)

We claim that T ′ = ZG′ , where G′ = (V ′, E′). Indeed, let A ∈ ZG′ . First, we want to prove
that ψ(A) ∈ ZG. Let x ∈ ψ(A) and y ∈ V such that x ∼P y for some path P in G. We set
P = x1, x2, · · · , xn with x1 = x and xn = y. So, since ψ is bijective, we have xi = ψ(x′i) for
i = 1, · · · , n and also x′1 ∈ A.
Therefore, from the Equation 3, we have a path P ′ = x′1, x

′
2, · · · , x′n inG′ joining x′1 and x′n. But x′1 ∈ A

and A ∈ ZG′ . From the definition of the Z-graphic topology, we get x′n ∈ A and so y = xn = ψ(x′n) is
in ψ(A).
Then, ψ(A) ∈ ZG. That is, ψ(A) ∈ T . Hence A = ψ−1

(
ψ(A)

)
∈ T ′.

Z-graphic topology on undirected graph

6



Conversely, let A ∈ T ′. In order to prove that A ∈ ZG′ , let x′ ∈ A and y′ ∈ V ′ such that x′ ∼P ′ y′ for
some path P ′ in G′. Denote P ′ = x′1, x

′
2, · · · , x′n, where x′1 = x′ and x′n = y′.

P = ψ(x′1), ψ(x
′
2), · · · , ψ(x′n) is a path in G joining ψ(x′) and ψ(y′).

Now, since A ∈ T ′ and ψ is a homeomorphism, ψ(A) ∈ T . Hence, ψ(A) ∈ ZG and so ψ(y′) ∈ ψ(A).
Since, ψ is bijective, y′ ∈ A. Therefore, A ∈ ZG′ . So the Theorem 5.3 follows.

Now, we give a necessary and sufficient conditions for a topological space to be Z-graphic (The cor-
responding problem 1 in ( Jafarian Amiri et al., 2013)).

Theorem 5.4 Consider an Alexandroff topological space (X, T ) and denote S(z) the smallest open set
containing z, for z ∈ X . (X, T ) is Z-graphic if, and only if, for all z1, z2 ∈ X , S(z1) = S(z2) or
S(z1) ∩ S(z2) = ∅.

Proof. First, suppose that (X, T ) is a Z-graphic space. Let G = (X,E) be a graph such that T = ZG.
In this case S(z) is the vertex set of the connected component of G containing x. So, for all z1, z2 ∈ X ,
S(z1) = S(z2) or S(z1) ∩ S(z2) = ∅, from the Definition 4.3.
Next, suppose (X, T ) is a topological space such that S(z1) = S(z2) or S(z1) ∩ S(z2) = ∅, for all
z1, z2 ∈ X . Denote

E = {(x, y) ∈ X ×X | S(x) = S(y)}. (4)

Consider the graph G = (X, E), we are going to prove that T = ZG. let A ∈ T . Suppose that x ∈ A 
and y ∈ X such that x ∼P y, where P is a path in G. Since x ∈ A and A an open set, we have 
S(x) ⊂ A. Since x ∼P y and from the definition of the edge set (4), we get S (x) =  S (y) and hence 
y ∈ S(y) ⊂ A. Therefore A ∈ ZG.

Conclusion
Let G = (V, E) an undirected graph. The graphic topology τG is a topology defined on V .  When the 
graph G is connected, the topological space (V, τG) is not necessarily connected. In this paper, we in-
troduce the Z-graphic topology ZG on V which satisfies G = (V, E) is a connected graph if and only if 
(V, ZG) is a connected topological space.
Also, we have proved that two isomorphic graphs have homeomorphic and symmetric Z-graphic topolo-
gies. As future work, we can think about graphic topology and Z-graphic topology for directed graphs.
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