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Abstract

Cohen's kappa coefficient is a commonly used method for estimating interrater agreement for nominal and/or ordinal data;

thus agreement is adjusted for that expected by chance. The weighted kappa statistic is used as an agreement index for ordinal

data. The weights quantify the degree of discrepancy between the two categories. The choice of this particular set of weights

affects the value of kappa. The common scores are Cicchetti-Allison and Fleiss-Cohen weights. In this article, we discuss the

use of ridit type and exponential scores to compute kappa statistics in general.
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1. Introduction

Categorical variables, which have a measurement scale
consisting of a set of categories, are important in many fields
such as medical, social, and behavioral sciences. The tables
that represent these variables are called contingency tables.
The contingency tables in which the classificatory variables
are related are referred square contingency tables. When
working on these kinds of tables, analysis of agreement
between row and column classifications is of interest. For
nominal categories, kappa coefficient can be calculated or
marginal homogeneity can be tested. In analyzing an ordered
contingency table, we often study the association in such a
table. To test the independence between variables, Pearson's
Chi-squared test, the likelihood ratio test or the tests based
on a divergence measure may be used (Saberi&Ganjali,
2013). Beside association, rater agreement can be analyzed
between the ordinal variables of a square table. In the
literature, different statistical methods have been proposed
for analyzing rater agreement. Such as log-linear agreement
models, agreement plus association models etc. (Tanner
& Young, 1985; Agresti, 1988). In practice, because the
coefficients of agreement summarize the degree of agreement
between raters with a single number, researchers prefer using
coefficient of agreements. Different statistics have been
proposed in the literature, but the most popular statistic of
rater agreement is the kappa statistics (Warrens, 2013).

The Cohen's kappa coefficient was suggested for analysis
of agreement between the variables of square contingency
tables (Cohen, 1960). Let n; j denote the number of
objects and n shows the total number of observers. The
cell probabilities are P;j and P; indicates the ith row total
probability, P ; indicates the Jjth column total probability of
an RxR contingency table. Since the observed agreement P,

and the proportion agreement expected by chance P are.

R
(1)
Py = Z Dii
i=1

and

R
P = Z PiD.i )
i=1

then, the kappa coefficient K is,
Po = Pe

~1-P° 3)
Fleiss et al. (1969) suggested an approximate asymptotic
expression for variance of K, which is given as following

equation (Shoukri, 2004).
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For ordinal responses, instead of kappa, weighted kappa
coefficient was suggested by Cohen (1968). The coefficient
allows each (i, j) cell to be weighted according to the degree
of agreement between ith and jth categories (Shoukri, 2004).
Since the observed agreement and the proportion agreement
expected by chance are,



i=1j=1 (5)
and
R R
P, = Z Z WiiDi. D.j
i=1j=1 (6)

then, the weighted kappa coefficient k,y, is,
P 0 P, e

A

Kw

where Wj;j are the weight ranges 0 < w;; < 1. Let w;,
a weighted average of the weights in the ith row and W, ja

weighted average of the weights in the jth column.

R
w; = z Wi;p.j
=1
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Fleiss et al. (1969) suggested the approximate asymptotic
expression for variance of QW,

Var(k,,) =
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The weights indicate disagreement and are used to
calculate the weighted kappa. Under this situation, selection
of the appropriate weights is important. In this article, we
discuss different weight matrices. Linear, quadratic, and the
suggested weights are introduced in Section 2. The weights
for the generated two-way square tables are discussed in
Section 3, followed by Conclusion in Section 4.

2. Weights of weighted Kappa

In the presence of ordinal variables in square contingency
tables, weighted kappa coefficient should be considered.
Different values can be assigned for each cell of the table
as the weights. Thus, the levels of agreement can change
depending on the values of weights. Popular weights for
weighted kappa are the linear and the quadratic weights
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shown in Equations (10) and (11), respectively (Cicchetti &
Allison, 1971; Fleiss & Cohen, 1973).

Linear and quadratic weights of Cicchetti & Allison
(1971) and Fleiss & Cohen (1973) are given in the following
equations, respectively.

e Linear weights:

Wij=1_|i_j|/R_1 (10)

* Quadratic weights:

wi=1-(-/)*/(R-1>% (11)

It has been seen in the literature that the value of the
quadratically weighted kappa is higher than the value of the
linearly weighted kappa (Warrens, 2012). This result implies
that the level of the agreement depends on assigned weights.
This is one of the disadvantages of weighted kappa. Besides,
the weighted kappa coefficient with linear and quadratic
weights are used for continuous-ordinal scale data. However,
in practice, as many scales are measured as ordinal. We use
the information that comes from the frequency distribution
of the variables to overcome this problem and discuss the
ridit type and exponential score values to calculate weights.

2.1Ridit type scores for weights

Ridit type scores were suggested by Bross (1958). Cumulative
probabilities are used to calculate the ridit scores. Let X be
the row variable and Y be the column variable of a square
contingency table. The ith ridit score of X; TiX and the ith
ridit score of Y; r}-yare shown in Equation (12).

x  FS +Ff
TETT
Y Y
rY = .tk
J 2

12)

where F{' = Yj<iP. and F]-Y = Yk<jDr I8
the cumulative distribution function (cdf) of X and Y,
respectively. Iki et al. (2009) adapted ridit type scores for
square contingency tables. The score value is shown in
Equation (13).

X +rY
u. =7
ij = 2

The linear and quadratic weights of weighted kappa

(13)

coefficient can be calculated in terms of ridit type scores as
shown in Equations (14) and (15).
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e Linear weights:

[ =7
e m (14)
« Quadratic weights:
()’
R TAECERD 05

2 2Exponential scores for weights

Bagheban & Zayeri (2010) suggested the exponential scores
when the baseline characteristic of categories changing by a
geometric progression.

i=12,..,R,
j=12,..,C.

u; =i% for

v; =j° for (16)

a and b in Equation (16) are called the power parameters
(a,b > 0). In log-linear models, one can use the
exponential scores to obtain the model with the best goodness-
of-fit statistic (Bagheban & Zayeri, 2010). Different values
of power parameter are applied to the model and one of them
with the best goodness-of-fit statistic is selected. In weights
case, we proposed a method to directly calculate the power
parameters. The calculation of power parameters are shown
in Equation (17).

R_1 -R-1

[«

Li=1 _

(17a)

- qR-1

(17b)

where a@; = FX,/FY and Bi = F}YH/F}Y where
i,j =1,2,..., R. Then, the exponential score value of the

ith row and jth column of a square contingency table is,

ia b
we = -
Y 2 (18)

The linear and quadratic weights of weighted kappa
coefficient can be calculated in terms of exponential scores

are shown in Equations (19) and (20).

e Linear weights:

i —j°|
W:: = -
! uz(R—1) (19)
* Quadratic weights:
- b\ 2
wij =1- g 2 = 2
(uij) (R - 1) (20)

The interpretation of kappa statistic shown in Table 1 can
be made to the strength of agreement (Landis & Koch, 1977).

Table 1. Interpretation of kappa statistics

Kappa Statistics Strength of Agreement
0.00> Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost perfect

3. Numerical examples

In this section, 3x3, 4x4, and 5x5 square contingency tables
are generated randomly from multinomial distribution.

The levels of agreement between raters are taken as: slight
(0.0), moderate (0.5), and almost perfect (0.9). The number
of observers (n) is considered as 100 (Yang, 2007). In the
Appendix, we give the codes for calculation of weighted
kappa coefficient and its standard error for ridit linear and
ridit exponential weights. All analyses were performed in
MATLAB R2015a.

Example 1:

A generated 3x3 contingency table with slight (k = 0.0)
agreement is,

Rater 2
Rater 1 1 2 3 Totals
1 9 28 8 45
2 3 5 4 12
3 3 30 10 43
Totals 15 63 22 100

The calculated weights for Example (1) are given in the
following matrices. All tables which have the same number
of categories have the same linear and quadratic weight
matrices. Here, the linear weight and quadratic weight
matrices are symmetric, and the exponential weight matrices



are approximately symmetric. By contrast, the ridit weight
matrices are unstructured.

[1.000
=10.500
10.000

0.500
1.000
0.500

0.000]
0.500
1.0001

1.000
w, =0.750
0.000

0.750
1.000
07.50

0.000]
0.750
1.0001

1.000
W,, = 0.674
0.509

0.603
0.919
0.883

0.428]
0.685
0.8721

[1.000
0.894
10.759

0.843
0.994
0.986

0.662]
0.901
0.9841

[0.500
wy, = (0.417
10.429

0.732
0.844
0.827

0.692]
0.803
0.786

10.750
0.660
10.673

0.928
0.976
0.970

0.905]
0.961
0.9541

Wy, =

For Example (1), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 2. The results in Table 2 show
that the weighted kappa with linear ridit weights has the
lowest standard error and absolute deviation.

Example 2:

A generated 3x3 contingency table with slight (k = 0.5)
agreement is,

Rater 2
Rater 1 1 2 3 Totals
1 21 12 4 37
2 2 20 7 29
3 5 2 27 34
Totals 28 34 38 100

The calculated weights for Example (2) are given in the

following matrices.

[1.000
We, = 0.679
10.517

0.617
0.929
0.878

0.435]
0.702
0.887

[1.000
0.897
10.767

0.853
0.995
0.985

0.681]
0911
0.9871

Weq =

[0.862
0.596
10.615

0.747
0.969
0.992

0.679]
0.957
0.9331

10.981
0.837
10.852

0.936
0.999
1.000

0.897]
0.998
0.9961
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For Example (2), the estimation values, standard errors, and
absolute deviation, which is the absolute value of the difference
between observed and calculated agreement are calculated and
given in Table 3. The results in Table 3 show that the weighted
kappa with quadratic exponential and quadratic ridit weights
have the lowest standard error and absolute deviation.

Example 3:
A generated 3x3 contingency table with slight (k = 0.9)
agreement is,

Rater 2
Rater 1 1 2 3 Totals
1 21 1 2 24
2 2 40 2 44
3 1 1 30 32
Totals 24 42 34 100

The calculated weights for Example (3) are given in the

following matrices.

[1.000
0.620
10.439

0.609
0.988
0.782

0.426]
0.752
0.980.

Wel =

[1.000
0.856
10.685

0.847
1.000
0.952

0.670]
0.938
1.000

[1.000
=(0.522
10.480

0.533
0.985
0.930

0.480]
0.944
1.000

[1.000
0.771
10.730

0.782
1.000
0.995

0.730]
0.997
1.000

Wy, =

For Example (3), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 4. The results in Table 4 show
that the weighted kappa coefficient with linear weights and
linear exponential weights have the lowest standard error,
but the absolute deviation of the weighted kappa coefficient
calculated by using the linear weights is lower.

Example 4:

A generated 4x4 contingency table with slight (k¢ = 0.0)
agreement is,

Rater 2
Rater 1 1 2 3 4  Totals
1 2 2 10 20 34
2 11 5 15 14 45
3 5 2 5 0 12
4 0O 0 2 7 9
Totals 18 9 32 41 100
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The calculated weights for Example (4) are given in the
following matrices. All 4x4 tables have the same linear and
quadratic weight matrices.

[1.000
0.667
0.333
10.000

0.667
1.000
0.667
0.333

0.333
0.667
1.000
0.667

0.000]
0.333
0.667
1.0001

w; =

1.000
0.889
77 10,556
0.000

0.889
1.000
0.889
0.556

0.556
0.889
1.000
0.889

0.000
0.556
0.889
1.000

[1.000
0.757
t 7 10.640
10.571

0.755
0.997
0.857
0.760

0.636
0.849
0.995
0.900

0.568]
0.752
0.889
0.994]

1.000
0.941
q 0.870
0.816

0.940
1.000
0.979
0.942

0.868
0.977
1.000
0.990

0.813
0.939
0.988
1.000

[0.795
0.581
t 7 10.653
10.949

0.923
0.673
0.762
0.917

0.938
0.789
0.891
0.785

0.757]
0.974
0.918
0.631

[0.958
0.824
a 0.880
0.997

0.994
0.893
0.943
0.993

0.996
0.955
0.988
0.954

0.941
0.999
0.993
0.964

For Example (4), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement
are calculated and given in Table 5. The results in Table
5 show that the weighted kappa with quadratic and linear
exponential weights have similar standard errors, but the
weighted kappa coefficient with linear exponential weights

has lower absolute deviation.

Example 5:

A generated 4x4 contingency table with slight (k = 0.5)
agreement is,

Rater 2
Rater 1 1 2 3 4  Totals
1 10 5 2 1 18
2 5 16 2 5 28
3 4 2 17 7 30
4 2 4 2 16 24
Totals 21 27 23 29 100

The calculated weights for Example (5) are given in the

following matrices.

[1.000
0.757
t 0.640
10.571

0.755
0.997
0.857
0.760

0.636
0.849
0.995
0.900

0.568]
0.752
0.889
0.994]

[1.000
0.941
q 0.870
10.816

0.940
1.000
0.979
0.942

0.868
0.977
1.000
0.990

0.813]
0.939
0.988
1.000

[0.949
0.751
t 0.688
10.707

0.697
0.986
0.937
0.961

0.686
0.972
0.951
0.974

0.676]
0.959
0.964
0.987]

[0.997
0.938
a 0.903
10.914

0.908
1.000
0.996
0.998

0.902
0.999
0.998
0.999

0.895]
0.998
0.999
1.000

For Example (5), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 6. The results in Table 6 show
that the weighted kappa coefficients with linear and linear
exponential weights have similar standard errors, but the
absolute deviation of kappa with linear exponential weights
is lower.

Example 6:

A generated 4x4 contingency table with slight (k = 0.9)
agreement is,

Rater 2
Rater 1 1 2 3 4  Totals
1 15 2 1 0 18
2 2 23 1 1 27
3 2 4 23 1 30
4 o 1 2 22 25
Totals 19 30 27 24 100

The calculated weights for Example (6) are given in the

following matrices.

[1.000
0.754
o 10.636
10.567

0.761
0.992
0.844
0.747

0.645
0.864
0.987
0.882

0.577]
0.768
0.910
0.984]

[1.000
0.940
a 0.867
10.813

0.943
1.000
0.976
0.936

0.874
0.981
1.000
0.986

0.821]
0.946
0.992
1.000

[0.982
0.729
L 0.667
10.676

0.692
0.972
0.950
0.962

0.653
0.922
1.000
0.988

0.681]
0.958
0.963
0.975]

[0.997
0.938
a 0.903
10.914

0.908
1.000
0.996
0.998

0.902
0.999
0.998
0.999

0.895]
0.998
0.999
1.0001




The matrix of quadratic ridit weights converges to an
identity matrix. Thus, the weighted kappa coefficient with
quadratic ridit weights converges to unweighted kappa
statistic.

For Example (6), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 7. The results in Table 7 show
that the weighted kappa coefficient with quadratic weights
has lowest absolute deviation and standard error.

Example 7:

A generated 5x5 contingency table with slight (k = 0.0)
agreement is,

Rater 2

Rater 1 1 2 3 4 5 Totals

1 3 2 0 4 2 11

2 5 7 0 8 10 30

3 0 1 1 0 o0 2

4 35 2 10 6 26

5 6 10 1 10 4 31
Totals 17 25 4 32 22 100

The calculated weights for Example (7) are given in the
following matrices. All 5x5 tables have the same linear and
quadratic weight matrices.
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11.000
0.750
=10.500
0.250
10.000

0.750
1.000
0.750
0.500
0.250

0.500
0.750
1.000
0.750
0.500

0.250
0.500
0.750
1.000
0.750

0.0007
0.250
0.500
0.750
1.000

r1.000
0.938
0.750
0.438
L0.000

0.938
1.000
0.938
0.750
0.438

0.750
0.938
1.000
0.938
0.750

0.250
0.750
0.938
1.000
0.938

0.0007
0.438
0.750
0.938
1.000-

Wq =

r1.000
0.789
0.694
0.642
L0.611

r1.000
0.956
0.906
0.872
10.848

0.823
0.960
0.835
0.758
0.707

0.969
0.998
0.973
0.941
0.914

0.737
0.932
0.937
0.849
0.768

0.931
0.995
0.996
0.977
0.954

0.686
0.859
0.986
0.921
0.853

0.901
0.980
1.000
0.994
0.978

0.6527
0.806
0.927
0.980
0.909-

0.8797
0.962
0.995
1.000
0.992-

10.893
0.793
0.847
0.878
L0.730

0.708
0.994
0.932
0.900
0.924

0.775
0914
0.975
0.991
0.837

0.734
0.968
0.971
0.938
0.887

0.6697
0.932
0.872
0.841
0.986-

r0.989
0.957
0.977
0.985
L0.927

0.914
1.000
0.995
0.990
0.994

0.949
0.993
0.999
1.000
0.973

0.929
0.999
0.999
0.996
0.987

0.8917
0.995
0.984
0.975
1.000

For Example (7), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 8.

The results in Table 8 show that the weighted kappa
coefficient with linear exponential and linear ridit weights
give better results. The absolute deviation and standard
errors of these kappas' are similar.

Table 2.The results of weighted kappa for Example (1)

Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.0603 0.1299 0.0721 0.1188 0.0124 0.0289
St.Error 0.0621 0.0846 0.0529 0.0733 0.0118 0.0257
Abs.Deviation 0.0603 0.1299 0.0721 0.1188 0.0124 0.0289
Table 3.The results of weighted kappa for Example (2)
Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.5467 0.5712 0.3766 0.4879 0.2870 0.4692
St.Error 0.0717 0.0832 0.0616 0.0772 0.0546 0.0769
Abs.Deviation 0.0467 0.0712 0.1234 0.0121 0.2130 0.0308
Table 4.The results of weighted kappa for Example (3)
Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.8513 0.8399 0.8064 0.8353 0.8123 0.8328
St.Error 0.0500 0.0628 0.0491 0.0615 0.0588 0.0653
Abs.Deviation 0.0487 0.0601 0.0936 0.0647 0.0879 0.0672
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Table 5.The results of weighted kappa for Example (4)

Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation -0.0294  -0.0801 -0.0289  -0.0335 -0.2159  -0.3372
St.Error 0.0468 0.0594 0.0166 0.0198 0.0521 0.0730
Abs.Deviation 0.0294  0.0801 0.0289  0.0335 0.2159 0.3372
Table 6.The results of weighted kappa for Example (5)
Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.4849 0.5259 0.4546 0.4927 0.3091 0.4036
St.Error 0.0697 0.0841 0.0698 0.0835 0.0782 0.1059
Abs.Deviation 0.0151 0.0259 0.0454  0.0073 0.1909 0.0964
Table 7.The results of weighted kappa for Example (6)
Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.8121 0.8549 0.7489 0.8182 0.6590 0.7664
St.Error 0.0454 0.0426 0.0487 0.0525 0.0658 0.0788
Abs.Deviation 0.0879 0.0451 0.1511 0.0818 0.2410 0.1336
Table 8.The results of weighted kappa for Example (7)
Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation  -0.0333 -0.0665 -0.0069  -0.0106 0.0083 0.0300
St.Error 0.0756 0.1016 0.0538 0.0809 0.0537 0.0950
Abs.Deviation 0.0333 0.0665 0.0069 0.0106 0.0083 0.0300
Example 8: r0.905 0.944 0.957 0.862 0.929
. . . 0.803 0.994 0.849 0.766 0.824
A generated 5x5 contingency table with slight (k = 0.5) wy, =|0.941 0909 0993 0897 0.965
agreement is, 0.875 0.747 0.827 0919 0.853
L0.875 0.747 0.927 0.919 0.853
Rater 2 r0.991 0.997 0.998 0.981 0.9957
Rater 1 1 2 3 4 5 Totals 0.961 0.997 0977 0.945 0.969
1 27 9 1 0 7 44 Wy, = 0.997 0.992 1.000 0.989 0.999
2 P 14 3 1 ) 0.984 0.936 0.970 0.993 0.978
5 5 L0.984 0936 0.970 0.993 0.978
3 0O 1 6 6 0 13
2 (1) (1) g g 111 153 For Example (8), the estimation values, standard errors,
Totals 30 25 12 13 20 100 and absolute deviation, which is the absolute value of the

The calculated weights for Example (8) are given in the
following matrices.

r1.000
0.901
0.846
0.809
10.782

0.847
0.942
0.999
0.957
0.925

0.768
0.854
0.909
0.950
0.982

0.720
0.796
0.847
0.886
0.917

0.6877
0.755
0.803
0.839
0.869-

r1.000
0.990
0.976
0.964
L0.952

0.976
0.997
1.000
0.998
0.994

0.946
0.979
0.992
0.998
1.000

0.921
0.958
0.977
0.987
0.993

0.9027
0.940
0.961
0.974
0.983-

difference between observed and calculated agreement are
calculated and given in Table 9. The results in Table 9 show
that the weighted kappa with quadratic exponential weights
has lowest absolute deviation.



Example 9:

A generated 5x5 contingency table with slight (k= 0.9)
agreement is,

Rater 2
Rater 1 2 3 4 Totals
1 2 0 0 11
2

1 5

7 2

1 17 2 0 1 21
3 0o 1 13 0 0 14
4 3 1 26
5 2 2 22 28
Totals 13 22 18 21 26 100

The calculated weights for Example (9) are given in the
following matrices.

11.000 0.805 0.713 0.661 0.629
0.794 0987 0.894 0.816 0.761
we, =[0.700 0.963 0.980 0.935 0.871
0.648 0.784 0.891 0.974 0.959
0.616 0.730 0.826 0.905 0.970
1000 0962 0.918 0885 0.862
0.958 1.000 0.989 0.966 0.943
we, =[0.910 0.981 1.000 0.996 0.983
0.876 0.953 0.988 0.999 0.998
0852 0927 0970 0991 0.999.
[0.958 0.739 0.716 0.720 0.6901
0.789 0.978 0.944 0.951 0.905
w,, =[0.771 1.000 0967 0973 0.927
0.745 0.967 1.000 0.994 0.960
0694 0.893 0.926 0.919 0.965/
0.998 0932 0919 0922 0904
0955 0.999 0.997 0.998 0.991
wy, =[0.947 1.000 0999 0.999 0.995
0935 0.999 1.000 1.000 0.998
0906 0989 0994 0993 0.999.

For Example (9), the estimation values, standard errors,
and absolute deviation, which is the absolute value of the
difference between observed and calculated agreement are
calculated and given in Table 10. The results in Table 10
show that the weighted kappa with linear weights has lowest
absolute deviation. The deviations of Example (9) are higher
than the deviations of Example (7) and (8).
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4. Conclusions

The agreement between objects rated independently by
two raters (or twice by the same rater) is investigated with
the agreement coefficients. There are different agreement
coefficients for different scale types. For ordinal categories,
weighted kappa coefficient (Cohen, 1968) is the most used
agreement coefficient. The weighted kappa coefficient
is a generalization of the simple kappa coefficient that
uses weights to measure the relative difference between
the row and column -categories. Popular weights for
weighted kappa are the linear and the quadratic weights
and standard statistical packages mostly use these weights.
The quadratically and linearly weighted kappas are used for
continuous-ordinal scale data. However, in practice, many
scales are dichotomous ordinal. In this case, we suggested
using of the ridit type and exponential scores to compute the
kappa statistic.

According to the two lowest absolute deviations (italic)
and the lowest standard errors (bold) of Examples (1)-(9),
the best method to calculate the weights are summarized in
Table 11.

Results confirm that, if there is a slight agreement
between raters, ridit weights for 3x3 and linear exponential
weights for 4x4 and 5x5 tables give better results. For the
3x3 and 5x5 tables the weighted kappa, which is calculated
from the quadratic weights is tend to give a higher agreement
than the observed agreement. When there is a moderate
agreement, using the quadratic exponential weights for all
the table dimensions have lower absolute deviation. Linear
ridit weights for 3x3 and 5x5 tables, and Cicchetti & Allison
(1971)'s linear weights for 4x4 table have lower standard
errors. Differently from the slight and moderate agreement,
in case of almost perfect agreement, the weighted kappa
coefficients with classical linear and quadratic weights have
lower absolute deviation and tend to give a higher agreement.
Linear exponential weights for 3x3 and 5x5 tables, and Fleiss
& Cohen (1973)'s quadratic weights for 4x4 table have lower
standard errors.The results also show that ridit type scores
are insufficient for R = 4 .

Note that these results are based upon the several
numerical examples. The assignment of weights for a
weighted kappa is a subjective issue.
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Table 11. The summary of weights in terms of dimension of table and level of agreement with regard to the absolute deviations

Ridit and exponential type scores for estimating the kappa statistic

Table 9.The results of weighted kappa for Example (8)

Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.5695 0.5806 0.4256 0.5248 0.1353 0.2741
St.Error 0.0684 0.0917 0.0528 0.0729 0.0355 0.0651
Abs.Deviation 0.0695 0.0806 0.0744 0.0248 0.3647 0.2258

Table 10. The results of weighted kappa for Example (9)

Classical Exponential Ridit
Results Linear Quadratic Linear Quadratic Linear Quadratic
Estimation 0.7040 0.6654 0.5889 0.6319 0.4374 0.5251
St.Error 0.0640 0.0897 0.0597 0.0862 0.0726 0.1160
Abs.Deviation 0.1960 0.2346 0.3111 0.2681 0.4626 0.3749

(italic) and standard errors (bold)

Ridit; . Exponential;,

Classicy . Exponential,,

K 3x3 4 x4 5x5

0.0 Ridit; Ridit, Exponential;; Classic; Exponential;; Ridit;
Ridit; ;Ridit Exponential; ; Exponential, | Ridit,; Exponential,

0.5 | Exponentialy, Ridity Exponentialy, Classicy, Exponentialy, Classicy,

Ridit; ; Exponential;,

0.9 Classic;; Classicg Classicy; Classicy, Classic;; Classicg

Exponential; ; Classicy, Classicq; Classicy, Exponential; ; Classicy,

L:Linear, Q:Quadratic

Appendix

f=[9 28 8;3 5 4;3 S0 10]; %frequencies matrix
R=3; i r of ategories

n=sum( f {: ample =size

F_y=sum{f,1)/n;
F_x=sum{f.2)/n';

—f/n;

Calculation f weighted P it} idit T 1 ridi quadrati ight
rox{1)=n«F x(1)/2;

r_y(L)l=n«F_y (1172;

for i=2:R

rex(i)=ns(Fx(i—14Fx (i)} /2;

r_y(i)=n+(F_y(i—-14+F_x(i1))}/2;

end

Pro_l=0; Pre_|=0;Pro_q=0; Pre_gq=0

for i=1:R

for j=1:R

wr_l{i,j)=1—abs{r_x(i)—r_¥(3)) rox(i)Hr-y{3)})f2«(R—-1)

Pro_l=Pro_l4+wr_1(i 1);

Pre_l=Pre_l+wr_1{i 3

wr-gq{i,jl=1—-(r-x J{r—x(i)4r_y (i)} /2= (R-1))"2;

Pro_g=Pro_g+wr_q
Pre_q=Pre_qiwr.ali,j)*Fox(ide Fy(j):
end

os{1 ,R);wr_l2=zeros({l1 ,R);wrgl=zeros (1 ,R);wrg2=zeros(1 ,R);

wro er_ 11 (1)+wr_1{1,j)=F_y(j)

wr_12 wr-l2(j)+wr_1(i,j)=«F

W ql{1)+wr_g({i1,j)+F

wr_q req2{j)+wr_g(i,j)«Fx(1);

end

end

0 =(Pro.l1-Pre_1)/(1—Pre_l) ;%W hted kapp fic t it idit zight
K =(Pro_q—Pre_q)f(1—Pre_q);%Weighted kapg Fic t it idit zight
A Mr_q=0;

f i=1:R

for j=1:R

Mrol=Mr_l4p(i,j)=[wrl(1,53)—(wrdl{i)4wrl2({j))«(1-Kw_rl)]"2;
Mrg=Mr_qtpl(i,j)e[wr_g{i,jl—(wrql{1)}4wrq2{j))s({1—-Kw_rqg)]"2;

end

end
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