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Abstract

Let Gw be a simple weighted graph with adjacency matrix A(Gw). The set of all eigenvalues of
A(Gw) is called the spectrum of weighted graph Gw denoted by σ(Gw). The reciprocal eigen-
value property (or property R) for a connected weighted nonsingular graph Gw is defined as, if
η ∈ σ(Gw) then 1

η
∈ σ(Gw). Further, if η and 1

η
have the same multiplicities for each η ∈ σ(Gw)

then this graph is said to have strong reciprocal eigenvalue property (or property SR). Simi-
larly, a connected weighted nonsingular graph Gw is said to have anti-reciprocal eigenvalue
property (or property −R) if η ∈ σ(Gw) then − 1

η
∈ σ(Gw). Furthermore, if η and − 1

η
have

the same multiplicities for each η ∈ σ(Gw) then strong anti-reciprocal eigenvalue property (or
property −SR) holds for the weighted graph Gw. In this article, classes of weighted noncorona
graphs satisfying property R and property −SR are studied.

Keywords: Adjacency matrix; anti-reciprocal eigenvalue property; corona graphs; strong anti-
reciprocal eigenvalue property; weighted graphs

1. Introduction

Spectral graph theory is the branch of mathematics that deals with the properties of graphs
in contact with the characteristic polynomial, eigenvectors and eigenvalues of matrices asso-
ciated with the graphs. Spectral graph theory emerged during 1950s and 1960s. Cvetković
summed up virtually all examination to date nearby (Cvetković, 1980). Later on, it was updated
by an overview of recent results in the Theory of Graph Spectra (Cvetković et al., 1988). In
2012, discrete geometric analysis was created and developed by Sunada, that dealt with spectral
graph theory in terms of discrete Laplacians associated with weighted graphs and discovered
applications in different fields, including shape investigation (Sunada, 2012). Nowadays, the
spectral graph theory has expanded to vertexvarying graphs often encountered in many real life
applications. Also, there are many simple properties of graphs that can be obtained from the
eigenvalues of the matrices e.g., the number of edges, the number of connected components
(using the adjacency matrix).
Let G be any simple connected graph comprised of the vertex set V (G) and the edge set E(G).
Two vertices are called adjacent if there is an edge between them and if one of the vertices of an
edge of a graph is a pendant vertex, the edge is said to be pendant. Let G be any graph of order
n then the adjacency matrix of the graph G is a matrix of order n× n defined as, A(G) = [nij],
where nij is the number of edges between the vertices i and j. A graph G is classified as, sin-
gular or nonsingular depending on whether its adjacency matrix is singular or nonsingular. The
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characteristic polynomial of a graph G can be written, as
f(G; t) = det(tI − A(G)) and its roots are called the eigenvalues of graph G and the set of all
eigenvalues of graph G is called the spectrum of G denoted as σ(G).
Let w be a positive weight function defined on edge set of simple connected graph G, which is
used to assign weights to the edges and W (G) is the collection of all positive weight functions
defined on the edge set of G. A graph G in which the positive weight function w is used to as-
sign weights to the edges of graph is known as weighted graph, denoted by Gw. We use V (Gw)
and E(Gw) to denote the vertex set and edge set of weighted graph Gw. Ordinary graphs can be
seen as a particular case of weighted graphs in which all the edges are assigned weight 1. An
edge between the vertices i and j is denoted by [i, j]. Let A(Gw) denotes the adjacency matrix
of weighted graph Gw, defined as

A(Gw) = [aij] =


w[i, j], if [i, j] ∈ E(Gw)

0, otherwise.

The investigation of a graph’s structure by associating different matrices to it is a long-standing
and fascinating field of study for researchers. The reader can get some initial concepts from
(Cvetković, 1980). It would be useful to take a small picture of a large graph that contains
information about the graph in a concise way. Studying the spectrum of various matrices, such
as the adjacency matrix, the Laplacian matrix, etc. that can be associated with the graph has
proven to be one of the most useful ways of doing so.
It is possible to obtain information about a graph by looking at these eigenvalues that might
otherwise be difficult to obtain. For instance, a connected graph G is bipartite if and only if −η
is an eigenvalue of G whenever η is an eigenvalue of G (Godsil & Royle, 2004). In addition η
and −η have the same multiplicites.

Definition 1.1 A connected weighted nonsingular graph Gw is said to satisfy the strong recip-
rocal eigenvalue property (or property SR) if 1

η
∈ σ(G) whenever η ∈ σ(G) and both have the

same multiplicities. Weighted Graph Gw has the reciprocal eigenvalue property (property R)
when the multiplicity constraint is removed.

Definition 1.2 A connected weighted nonsingular graph Gw is said to satisfy the strong anti-
reciprocal eigenvalue property (property −SR) if − 1

η
∈ σ(Gw) whenever η ∈ σ(Gw) and both

have the same multiplicities. Moreover, if the multiplicity constraint is removed the weighted
graph Gw is said to satisfy anti-reciprocal eigenvalue property (property −R).

Definition 1.3 A polynomial f(t) =
∑n

i=0 ait
i of degree n is called palindromic polynomial if

ai = an−i and anti-palindromic polynomial if ai = −an−i for i = 0, 1, . . . , n. Property SR is
satisfied by a polynomial f(t) if and only if it is palindromic or anti-palindromic.

(Frucht & Harary, 1970) defined the corona product of graphs which plays an important role in
constructing and characterizing graphs with reciprocal eigenvalue property.

Definition 1.4 Let L1 and L2 be two connected graphs of order n and m, respectively. The
corona product L1 ◦ L2 is a graph formed by one copy of graph L1 and n-copies of L2 and by
connecting each vertex of jth copy of L2 with the jth vertex of L1, for 1 ≤ j ≤ n.

We proceed with some previous results. In 1978, graphs with property SR were investigated
for nonsingular trees under the names symmetric property (Godsil & Mckay, 1978) and prop-
erty C (Cvetković et al., 1978). This property was renamed “property SR” by Barik et al. in
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2006, and they also introduced property R. They showed that for nonsingular trees, these two
properties are the same (Barik et al., 2006).
If specific limits on the weight function are implemented, these properties are similar for
weighted trees (Neumann & Pati, 2013), as well as a subclass of connected bipartite graphs
with unique perfect matching (Panda & Pati, 2015). In general, however, these properties are
not identical (Panda & Pati, 2016).
In 2012, J. D. Lagrange investigated property −SR first time for the zero-divisor graphs of
finite commutative rings with non-zero divisors (Lagrange, 2012).
Authors investigated (Bapat et al., 2016) that if G is a connected bipartite graph having a unique
perfect matching M , then weighted graph Gw satisfies property SR, for all w ∈ W (G) if and
only if G is corona.
(Hameed & Ahmad, 2020) analyzed noncorona graphs with zero diagonal entries of the inverse
of their adjacency matrix and a single perfect matching, and discovered that they do not meet
property −SR even for a single weight function w.
Property −SR for the class of connected simple weighted graphs having unique perfect match-
ing M , denoted by GM , was investigated by (Ahmad et al., 2020). They showed that the
weighted graph Gw satisfies property −SR for all w ∈ W (G) if and only if G is corona. They
also verified property −SR for some families of noncorona graphs (Ahmad et al., 2021) and
authors of (Barik et al., 2021) further generalized these families. They constructed the classes
of noncorona graphs by taking a connected corona graph M and by joining each vertex of finite
number of copies of corona cycles of different finite length to non-pendant vertices of M , in
such a way that no corona cycle is attached to more than one non-pendant vertex.
Until now, the properties R and −SR are not studied for weighted noncorona graphs. So, the
question arises ‘are there any weighted noncorona graphs with these eigenvalue properties?’
With the required properties, we constructed families of weighted noncorona graphs. In Sec-
tion 2, a family of weighted noncorona graphs satisfying property R and in Section 3 two family
of weighted noncorona graphs satisfying property −SR are constructed. Throughout the paper
simple and undirected graphs will be discussed and ei is the standard unit vector whose i-th
entry is equal to 1. Following Lemma gives necessary and sufficient condition for a polynomial
to satisfy property −SR.

Lemma 1.1 (Ahmad et al., 2020) A polynomial f(t) =
∑2n

i=0 ait
i satisfies property −SR if

and only if

a2n−i =


ai, if i and n have the same parity,

−ai, otherwise.
i = 0, 1, 2, . . . , 2n.

Lemma 1.2 and Lemma 1.3 on determinant and inverse of a block matrix involving the Schur
complement are used in the proofs of our main results.

Lemma 1.2 (Bapat, 2010) If A is a block matrix i.e, A =

[
K L
M N

]
where K and N are

square matrices. Then

det(A) =


det(K)det(N −MK−1L), if K is invertible

det(N)det(K − LN−1M), if N is invertible.
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Lemma 1.3 (Bapat, 2010) If A is a block matrix and A =

[
K L
M N

]
where K and N are

square matrices and N is invertible. Then A is invertible if and only if the Schur complement of
N is invertible i.e, AN = K − LN−1M is invertible, and

A−1 =

[
A−1

N −A−1
N LN−1

−NMA−1
N N−1 +N−1MA−1

N LN−1

]
.

The Lemma 1.4 is used in the proof of Theorem 3.1.

Lemma 1.4 (Barik et al., 2021) Let G be a regular graph of order m and regularity r, and
G1 = G ◦K1. Then

1t(tI2m − A(G1))
−11 =

(2t− r + 2)m

t2 − rt− 1
.

2. Weighted noncorona graphs satisfying property R
In this Section, we construct a class of weighted noncorona graphs which satisfy property R
but not property SR. In (Panda, 2016) and (Panda & Pati, 2016), authors constructed a class
of unweighted noncorona graphs satisfying property R. Now the question arises that ‘is it
possible to assign weights to some edges so that this class still satisfies property R?’ To answer
this question, we assign weights to some particular edges of the family of unweighted graphs
constructed in (Panda, 2016) and (Panda & Pati, 2016). The new family of weighted noncorna
graphs with property R is as follows.
Consider one copy of P4, join every vertex of this copy to a new vertex a and name graph as Ǵ

Fig. 1. Graph Ǵ

as shown in Figure 1. Now take k (k ≥ 1) copies of P4 named as P 1
4 , P

2
4 , . . . , P

k
4 . With the help

of Ǵ and these k copies of P4 construct a family ℵ of weighted noncorona graphs in which each
weighted graph Hk

w is created by joining every non-pendant vertex in the k copies of P4 to the
vertex a and assigning weights wi > 0 to the joining edges of a and each P i

4 for i = 1, 2, . . . , k
respectively and then add a new vertex b at a. The edges in all k copies of P4 and Ǵ are assigned
weight 1. A weighted noncorona graph H2

w belonging to this family is shown in Figure 2.
The following result proves that weighted noncorona graph Hk

w ∈ ℵ satisfies property R but
not SR.

Theorem 2.1 The weighted noncorna graph Hk
w ∈ ℵ satisfies property R but not SR.

Proof:
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Fig. 2. Weighted noncorona graph H2
w

The adjacency matrix A(Hk
w) of the graph Hk

w can be written, as

A(Hk
w) =


A(Ǵ) e1 w1K5,4 · · · wkK5,4

et1 0 0t · · · 0t

w1K
t
5,4 0 A(P 1

4 ) · · · O
...

...
... . . . ...

wkK
t
5,4 0 O · · · A(P k

4 )

 ,

where

K5,4 =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Suppose that

B =

 tI4 − A(P 1
4 ) · · · O

... . . . ...
O · · · tI4 − A(P k

4 )

 .

Then the characteristic polynomial of Hk
w can be written, as

f(Hk
w; t) = det(tI − A(Hk

w))

= det


tI5 − A(Ǵ) −e1 −w1K5,4 · · · −wkK5,4

−et1 t 0t · · · 0t

−w1K
t
5,4 0 tI4 − A(P 1

4 ) · · · O
...

...
... . . . ...

−wkK
t
5,4 0 O · · · tI4 − A(P k

4 )

 ,

using Lemma 1.2

= det(B)det
([

tI5 − A(Ǵ) −e1
−et1 t

]
−

[
−w1K5,4 · · · −wkK5,4

0t · · · 0t

]

B−1

 −w1K
t
5,4 0

...
...

−wkK
t
5,4 0


 ,
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where

B−1 =

 (tI4 − A(P 1
4 ))

−1 · · · O
... . . . ...
O · · · (tI4 − A(P k

4 ))
−1

 ,

and

(tI4 − A(P4))
−1 =

1

t4 − 3t2 + 1


(t2 − 1)t t2 t2 − 1 t

t2 (t2 − 1)t t t2 − 1
t2 − 1 t t(t2 − 2) 1

t t2 − 1 1 t(t2 − 2)

 .

Thus,

f(Hk
w; t) = (

∏k
i=1 f(P4; t)) det

([
tI5 − A(Ǵ) −e1

−et1 t

]
−
[

2t
t2−t−1

∑k
i=1 w

2
iK5,5 0

0t 0

])
= (t4 − 3t2 + 1)k det

([
tI5 − A(Ǵ)− 2t

t2−t−1

∑k
i=1 w

2
iK5,5 −e1

−et1 t

])
= (t2 − t− 1)k(t2 + t− 1)k(t4 − t3 − 2(

∑k
i=1 w

2
i + 3)t2 − t+ 1)(t2 + t− 1).

Here notice that, {1.618033,−0.618033} are the roots of polynomial (t2−t−1) then {0.618033 =
1

1.618033
,−1.618033 = 1

−0.618033
} are the roots of polynomial (t2 + t − 1) and the polynomial

(t4− t3−2(
∑k

i=1 w
2
i +3)t2− t+1) is palindromic as a result this polynomial satisfies property

SR. However, because f(Hk
w; t) has an additional factor (t2 + t − 1), we can see that every

eigenvalue of Hk
w has its reciprocal as an eigenvalue of Hk

w but multiplicities are different so
weighted noncorna graph Hk

w satisfies property R but not SR.
Following example is an illustration of the weighted noncorna graph belonging to the family ℵ,
it can be seen from Table 1 that weighted noncorona graph H2

w satisfies property R but not SR.

Example 2.1 The weighted noncorna graph H2
w, is shown in Figure 2. The eigenvalues of H2

w,
their reciprocals and their multiplicities are given in the following Table:

Table 1. Eigenvalues of H2
w, their reciprocals and their multiplicities

Sr. No. η Multiplicity of η 1
η

Multiplicity of 1
η

1 -2.61803 1 -0.38196 1
2 -1.61803 3 -0.61803 2
3 -0.61803 2 -1.61803 3
4 -0.38196 1 -2.61803 1
5 0.26794 1 3.73205 1
6 0.61803 3 1.61803 2
7 1.61803 2 0.61803 3
8 3.73205 1 0.26794 1

3. Weighted noncorona graphs satisfying property −SR
In this Section, some classes of weighted noncorona graphs are constructed which satisfy prop-
erty −SR. Consider a connected weighted graph Gw, w > 0 of order n and G1

w = Gw ◦K1 be
its weighted corona graph in which pendant edges are assigned weight 1. Let F p = Cp ◦K1 be
corona cycle where Cp is a cycle of order p, p ≥ 3. Now, with the help of weighted graph G1

w

and corona cycles with edges assigned weight 1, we construct families of weighted noncorona

On weighted noncorona graphs with properties R and −SR

6



graphs as follows:
Take a copy weighted graph of G1

w and k corona cycles F p1
1 , F p2

2 , . . . , F pk
k (where pi’s not nec-

essarily same, for i = 1, 2, . . . , k) with edges assigned weight 1. Consider any number of
non-pendant vertices v1, v2, . . . , vl, (1 ≤ l ≤ n) of weighted graph G1

w. Join each vj, (j ≤ l) to
all the vertices of each corona cycle F pi

i , i = 1, 2, . . . , k. Assign weight wi to the edges joining
a cycle F pi

i , (i = 1, 2, . . . , k) to all the vertices v1, v2, . . . , vl and name this weighted graph as
S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

as shown in Figure 3. We denote the family containing all weighted noncorona

graphs S(p1,p2,...,pk;l)
(w1,w2,...,wk)

by G. Now, instead of assigning weight wi to the edges joining a cycle F pi
i ,

(i = 1, 2, . . . , k) to all the vertices v1, v2, . . . , vl, if we assign weight wj to the edges joining
the vertex vj to each corona cycle for j = 1, 2, . . . , l we obtain a new weighted graph named
as, S(p1,p2,...,pk;l)

(w1;w2;...;wl)
as shown in Figure 5. We denote the family containing all weighted noncorona

graphs S(p1,p2,...,pk;l)
(w1;w2;...;wl)

by H.

Fig. 3. Weighted graph U , weighted corona graph U1
w and S

(4,5;2)
(3.5,6.5).

Observation 3.1 For a weighted corona graph G1
w of order 2n, the sum of first n × n entries

of cofactor matrix of tI − A(G1
w) can be written, as

n∑
i=1

n∑
j=1

(−1)i+jCij = ctkg(t),

where c is any constant and g(t) is a polynomial of degree 2n − 2k, 1 ≤ k ≤ n, satisfying
property −SR. Then note that f(t) + c tkg(t) also satisfies property −SR, where f(t) is the
characteristic polynomial of the weighted corona graph G1

w of weighted graph Gw and g(t) is
the polynomial obtained from the sum of first n×n entries of the cofactor matrix of tI−A(G1

w).

We can see this observation with the help of Example 3.1.

Fig. 4. Weighted graph Zw and its weighted corona graph Z1
w
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Example 3.1 Consider a connected weighted graph Zw of order n = 4 and its corona graph
as shown in the Figure 4. Then characteristic polynomial of Z1

w = Zw ◦K1 can be determined,
as
f(Z1

w; t) = det(tI − A(Z1
w)) = t8 − 34t6 − 48t5 + 82t4 + 48t3 − 34t2 + 1.

We can see that it is a polynomial of order 2n = 8 which satisfies property −SR as Z1
w is

weighted corona graph. Now the sum of first 4× 4 entries of cofactor matrix of tI−A(Z1
w) can

be written, as
tg(t) = 4t7 + 20t6 − 10t5 − 88t4 + 10t3 + 20t2 − 4t

= 2t(2t6 + 10t5 − 5t4 − 44t3 + 5t2 + 10t− 2),

which satisfies property −SR by Lemma 1.1.
Now

f(t) + tg(t) = t8 + 4t7 − 14t6 − 58t5 − 6t4 + 58t3 − 14t2 − 4t+ 1,

which also satisfies property −SR by Lemma 1.1.

By Laplace expansion, we can easily obtain the following result.

Lemma 3.1 Let A be any 2n× 2n matrix, then

det(A+

[
Jn On

On On

]
) = det(A) +

n∑
i=1

n∑
j=1

(−1)(i+j)det(A[i, j]),

where Jn is the matrix of ones, On is the matrix of zeros and A[i, j] is the sub-matrix of matrix
A obtained by deleting ith row and jth column.

The following result proves that weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

satisfies property −SR.

Theorem 3.1 The weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

∈ G for 1 ≤ l ≤ n satisfies prop-
erty −SR.

Proof:
The adjacency matrix A(S

(p1,p2,...,pk;l)
(w1,w2,...,wk)

) of the weighted noncorona graph S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

can be
written, as

A(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

) =


A(Gw) In w1Nn,2p1 · · · wkNn,2pk

In O O · · · O
w1N

t
n,2p1

O A(F p1
1 ) · · · O

...
...

... . . . ...
wkN

t
n,2pk

O O · · · A(F pk
k )

 ,

where Nn,2pk =

[
Jl,2pk

On−l,2pk

]
for 1 ≤ l ≤ n is a block matrix in which Jl,2pk is the matrix with

all entries 1 of order l × 2pk and On−l,2pk is the Null matrix of order (n − l) × 2pk. Let us
suppose that

D =

 tI2p1 − A(F p1
1 ) · · · O

... . . . ...
O · · · tI2pk − A(F pk

k )

 .
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Then the characteristic polynomial of S(p1,p2,...,pk;l)
(w1,w2,...,wk)

can be written, as

f(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) = det(tI − A(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

))

= det


tIn − A(Gw) −In −w1Nn,2p1 · · · −wkNn,2pk

−In O O · · · O
−w1N

t
n,2p1

O tI2p1 − A(F p1
1 ) · · · O

...
...

... . . . ...
−wkN

t
n,2pk

O O · · · tI2pk − A(F pk
k )

 ,

using Lemma 1.2

= det(D)det

([
tIn − A(Gw) −In

−In tIn

]
−
[
−w1Nn,2p1 · · · −wkNn,2pk

O · · · O

]

D−1

 −w1N
t
n,2p1

O
...

...
−wkN

t
n,2pk

O




= (
∏k

i=1 f(F
pi
i ; t)) det

([
tIn − A(Gw) −In

−In tIn

]
−
[ ∑k

i=1 w
2
i 1tD−11Nn O
O O

])
.

Now, from Lemma 1.4,

1tD−11 =
2t

t2 − 2t− 1

k∑
i=1

pi,

Thus,

= (
∏k

i=1 f(F
pi
i ; t)) det

([
tIn − A(Gw) −In

−In tIn

]
−
[

2t
t2−2t−1

∑k
i=i piw

2
i Nn O

O O

])
= (

∏k
i=1 f(F

pi
i ; t)) det((tI2n − A(G1

w)) +

[
aNn O
O O

]
), where a = − 2t

t2−2t−1

∑k
i=1 piw

2
i .

Now by using Lemma 3.1

= (
∏k

i=1 f(F
pi
i ; t))[ det(tI2n − A(G1

w)) + a
∑l

i=1

∑l
j=1(−1)i+j det((tI2n − A(G1

w)[i, j])],

and by Observation 3.1

f(S
(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) =

∏k
i=1 f(F

pi
i ; t)

t2 − 2t− 1
(f(t) + ctkg(t)),

where f(t) = (t2 − 2t − 1)f(Gw ◦ K1; t) satisfies property −SR and by Observation 3.1,
f(t) + ctkg(t) satisfies property −SR also for i = 1, 2, . . . k, f(F

pi
i ;t)

(t2−2t−1)
satisfies property −SR.

Thus, f(S(p1,p2,...,pk;l)
(w1,w2,...,wk)

; t) satisfies property −SR.

Following example is an illustration of the weighted noncorona graph S
(4,5;2)
(3.5,6.5) for p1 = 4, p2 =

5, w1 = 3.5, w2 = 6.5 and l = 2 , it can be seen from Table 2 that weighted noncorona graph
S
(4,5;2)
(3.5,6.5) satisfies property −SR.

Example 3.2 Let Mw be any connected weighted graph of order 4 and M1
w = Mw ◦ K1 be

its weighted corona graph in which pendant edge has weight 1 as shown in Figure 3. Now,
construct the weighted noncorona graph S

(4,5;2)
(3.5,6.5) by using M1

w and the corona cycles F 4
1 and
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Fig. 5. Weighted noncorona graph S
(4,5;3)
(0.5;1.5;2.5) in which red edges are assigned weight 0.5,

yellow edges are assigned weight 1.5 and purple edges are assigned weight 2.5.

F 5
2 , as shown in Figure 3. The weights assigned to the joining edges of corona cycles F 4

1 , F 5
2

to 2 selected vertices of Mw are 3.5 and 6.5 represented by green and blue edges respectively.
The eigenvalues of S(4,5;2)

(3.5,6.5) and with their multiplicities are mentioned in the following table.

Table 2. Eigenvalues of S(4,5;2)
(3.5,6.5), their reciprocals and their multiplicities

Sr. No. η multiplicity of η − 1
η

multiplicity of − 1
η

1 -42.194 1 0.0237 1
2 -7.2208 1 0.13849 1
3 -2.4142 1 0.41421 1
4 -2.0953 2 0.47726 2
5 -1 2 1 2
6 -0.99623 1 1.0038 1
7 -0.73764 2 1.3557 2
8 -0.41421 1 2.4142 1
9 -0.2936 1 3.4060 1

10 -0.020767 1 48.154 1
11 0.0237 1 -42.194 1
12 0.13849 1 -7.2208 1
13 0.41421 1 -2.4142 1
14 0.47726 2 -2.0953 2
15 1 2 -1 2
16 1.0038 1 -0.99623 1
17 1.3557 2 -0.73764 2
18 2.4142 1 -0.41421 1
19 3.4060 1 -0.2936 1
20 48.154 1 -0.020767 1

The following theorem can be proved with the same strategy as in Theorem 3.1.

Theorem 3.2 Weighted noncorona graph S
(p1,p2,...,pk;l)
(w1;w2;...;wl)

satisfies property −SR.
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4. Conclusion

In this article, we constructed three classes of weighted noncorona graphs namely ℵ, G and H
which satisfy property R or −SR. The family of weighted noncorona ℵ satisfies property R
but not SR. The other two families G and H satisfy property −SR .
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