
IX

Another motivation of the FitzGerald’s work is that the representation of T in I∗X is more influential than 
that of in IX (see, e.g., (FitzGerald, 2020)).

Left restriction semigroups are non-regular semigroups and are generalizations of inverse 
semigroups. They arise very naturally from partial transformation monoids in the same way that inverse 
semigroups arise from symmetric inverse monoids. Since the 1960s, left restriction semigroups 
occurred with various names and from diverse points of view in literature. For the first time in 1973, left 
restriction semigroups appeared in their own right in the paper (Trokhimenko, 1973). Also, they were 
studied in the setting of SL2 γ-semigroups in (Batbedat, 1981; Batbedat & Fountain, 1981). These 
semigroups were also studied as the idempotent connected Ehresmann semigroups in (Lawson, 1991). 
Later, left restriction semigroups arose in (Jackson & Stokes, 2001) as (left) twisted C-semigroups. In 
(Manes, 2006), they were studied as guarded semigroups, which appeared from the restriction 
categories in (Cockett & Lack, 2002). Recall that for any set X , the partial transformation monoid 
PT X becomes left restriction semigroup under the unary operation α 7→ Idom α. We also recall that left 
restriction semigroups are precisely the (2, 1)-subalgebras of some PT X . Left restriction semigroups 
were termed as weakly left E-ample semigroups—the (former) York terminology. For weakly left 
E-ample semigroups, see, e.g., (Hollings, 2007). The reader is referred to (Gould, 2010) for the history 
of (left) restriction semigroups and their basic properties.
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In this article, we give the notion of left restriction meet-semigroup, and establish some results 
regarding atomistic left restriction semigroups. Then we discuss decompositions of (non-zero) 
semigroups with zero by proving a decomposition theorem. We also show that every atomistic left 
restriction semigroup S can be decomposed as an orthogonal sum of atomistic left restriction 
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summands Ni, when S embeds in some PT X the partial transformation monoid on a set X , are 
investigated.
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1. Introduction
A semigroup T is an inverse semigroup, if for all v ∈ T , there is a unique element w in T such that vwv = 
v and wvw = w. Recently, in (FitzGerald, 2020), the author presented the theory of representations of 
inverse semigroups via homomorphisms into complete atomistic inverse meet-semigroups. The class
of inverse meet-semigroups contains IX the symmetric inverse monoid on X , ∗  (the dual of IX ) 
and partial automorphism monoids of structures, namely modules, vector spaces and graphs. Some 
remarkable theorems of decompositions of various representations were proved in (FitzGerald, 2020).
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We shall make use of LR-semigroup, ALR-semigroup, LR-meet-semigroup and
CALR-meet-semigroup as the abbreviations of left restriction semigroup, atomistic left restriction
semigroup, left restriction meet-semigroup and complete atomistic left restriction meet-semigroup
respectively unless stated otherwise.

The remaining article is adorned with four more sections. In Section 2, some helpful definitions,
related facts are provided. In Section 3, the notion of LR-meet-semigroup is given, and some results
associated with ALR-semigroups are proved. Note that LR-semigroups and LR-meet-semigroups
generalize inverse semigroups and inverse meet-semigroups respectively. In Section 4, we establish a
decomposition theorem for (non-zero) semigroups with zero, and then we prove that every
ALR-semigroup S can be decomposed as an orthogonal sum of ALR-semigroups Ni, where each
summand Ni is an irreducible ideal of S. In Section 5, we explore properties of the summands Ni,
when S is an LR-subsemigroup of some PT X .

2. Preliminaries

For rudimentary notions related to semigroup theory, and Green’s relations R, L, we suggest (Howie,
1995). First, we recall generalized Green’s relations.

In (Lawson, 1991), the author introduced the generalized Green’s relations, i.e., R̃F , L̃F on a
semigroup S, where F is a subset of E(S) the set of idempotents of S. For any v, w ∈ S, R̃F can be
defined as:

v R̃F w⇐⇒
[
( ∀ f ∈ F ) fv = v⇔fw = w

]
.

The relation L̃F is defined dually. The relation R̃F (L̃F ) is an equivalence relation. Green’s relation R
(L) is left (right) compatible. On the contrary, R̃F (L̃F ) needs not be left (right) compatible. Note that
R ⊆ R̃F (L ⊆ L̃F ).

Let v ∈ S and f ∈ F . Let v R̃F f . Then as f ∈ F ,

ff = f ⇒ fv = v. (1)

Moreover, for any v ∈ S, f ∈ F ,

v R̃F f ⇐⇒ fv = v and ∀ h ∈ F [hv = v ⇒ hf = f ]. (2)

Therefore, f is the minimum element of LIv(F ), where LIv(F ) is the set of all left identities of v
belonging to F .

Let F be a semilattice (a semigroup of idempotents in which every two elements commute) such that
f, g ∈ F . If v R̃F f and v R̃F g, then f R̃F g. Since gg = g, by Equation 1, we have gf = f . Since
g R̃F f and ff = f , by Equation 1, we have fg = g. Since gf = fg, we deduce f = g. Therefore, f
is unique in the R̃F -class of v if F is a semilattice. For R̃F , L̃F , see, e.g., (Zenab, 2018).

Second, our necessity is to remind the notion of LR-semigroup and related facts. For LR-semigroups,
their right sided and two-sided versions, we prescribe (Gould, 2010; Zenab, 2018).

Definition 2.1. (Zenab, 2018) An LR-semigroup is a unary semigroup (S, ·,†) such that the unary
operation † satisfies the following identities:

v†v = v, (3)

v†w† = w†v†, (4)

(v†w)† = v†w†, (5)

vw† = (vw)†v. (6)
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If we put ES = S† = {w† | w ∈ S}, then one can check that ES is a semilattice. For every w† ∈ ES ,
(w†)† = w†. Each element of ES is called a projection of S. The set ES is known as the semilattice of
projections of S. A partial order ≤ on S is defined by the rule that for all v, w ∈ S, v ≤ w if and only
if v =v†w. This relation is the natural partial order on S, and restricts to the usual partial order on ES .
Moreover,≤ is compatible with multiplication. If V is the class of all LR-semigroups, then V is a variety
of algebras of type (2, 1). An inverse semigroup Y is an LR-semigroup, if † is defined by y† = yy−1.

Now we define LR-semigroup with zero as follows.

Definition 2.2. An LR-semigroup with zero is a unary semigroup (S, ·,†), where (S, ·) is a semigroup with
zero 0S , † is a unary operation with 0†

S
= 0S , and † satisfies Equation 3−Equation 6.

In the above definition, for all w ∈ S such that w 6= 0S , w† 6= 0S . Also, for all w ∈ S, 0S ≤ w.
An alternative characterization for LR-semigroups is given by Lemma 2.3.

Lemma 2.3. (Zenab, 2018) Suppose that (S, ·,†) is a unary semigroup. Then S is an LR-semigroup with
semilattice of projections ES if and only if

(i) ES is a semilattice;

(ii) every R̃E
S

-class has an idempotent of ES ;

(iii) R̃E
S

is a left congruence;

(iv) the left ample condition holds, i.e., for all t ∈ S, e ∈ ES , te = (te)†t.

Note that, by Lemma 2.3, the LR-semigroup S with semilattice of projections ES is a weakly left
ES -ample semigroup, and vice versa. Also, in S, for any t ∈ S, the R̃E

S
-class of t contains a unique

idempotent of ES , which we denote by t†. Then by Equation 2, t†t = t. Remember that t† is the
minimum element of LIt(ES ) the set of all left identities of t in ES . It can be observed that in S,

s R̃E
S
t⇐⇒ s† = t†. (7)

Example 2.4. (Hollings, 2007) Suppose that T is a weakly left E-ample semigroup, namely
LR-semigroup T with semilattice of projections E, and suppose that J is a non-empty set. Denote by P
the J × J identity matrix and consider the Rees matrix semigroup M := M0(T ; J, J ;P ). Define a
multiplication onM by

(j, t, k)0 = 0(j, t, k) = 00 = 0

and

(j, t, k)(l, u,m) =

{
(j, tu,m) if k = l,

0 if k 6= l.

The set of idempotents ofM is E(M) = {(j, f, j) | f ∈ E(T )} ∪ {0}. In (Hollings, 2007), Example
2.7.3 shows thatM is a weakly left E-ample semigroup such that 0† = 0 and (j, t, k)† = (j, t†, j), where
E = {(j, f, j) ∈ E(M) | f ∈ E} ∪ {0}.

Definition 2.5. (FitzGerald, 2020; Petrich, 1984) Let W be a semigroup containing zero. Let {Wλ}λ∈I
be the class of subsemigroups such that W =

⋃
λ∈I

Wλ. If for all λ, µ ∈ I with λ 6= µ, Wλ ∩Wµ =

WλWµ = {0}, then W is an orthogonal sum of subsemigroups Wλ, denoted by W =
∑
λ∈I

Wλ.

In the above definition, each Wλ is said to be a summand in the orthogonal sum W .
Next we remind the following definitions, utmost useful, and taken from (Erné & Joshi, 2015; Howie,

1995).
Let (P,≤) be a partial ordered set (poset). Then P is called a meet-semilattice if for any m,n ∈ P ,

m ∧ n (meet of m and n) exists in P . Let P = P ∪ {0} be a poset, where 0 is the least element of P .
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If 0 6= w ∈ P , then w is called an atom if w is a minimal element of P \ {0}. The set P is an atomistic
poset if for all 0 6= w ∈ P , w is a join of a set of atoms (i.e., of the set of all atoms it dominates).

In the rest of the paper, every LR-semigroup S is an LR-semigroup with zero 0S unless explicitly
stated. Denote by ES the semilattice of projections of an LR-semigroup S. Moreover, r∧s (r∨s) means
the meet (join) of a set {r, s}, while

∧
A (

∨
A) means the meet (join) of a non-empty set A.

3. Left restriction meet-semigroups

We furnish the notion of LR-meet-semigroup, and prove some results associated with ALR-semigroups.
In the beginning, let us define the following.

Definition 3.1. An LR-meet-semigroup (M, ·,† ,∧) is an LR-semigroup (M, ·,†) such that M is a meet-
semilattice with respect to (w.r.t.) the natural partial order ≤ on (M, ·,†).

In the above definition, (M,∧) is a semilattice, and for any u1, u2 ∈M ,

u1 ≤ u2 ⇐⇒ u1 ∧ u2 = u1.

Hence, ≤ is also a natural ordering on (M,∧).

Definition 3.2. A complete left restriction meet-semigroup (M, ·,† ,∧) is an LR-semigroup (M, ·,†) such
that for any ∅ 6= B ⊆M ,

∧
B exists w.r.t. ≤ on (M, ·,†).

Definition 3.3. An LR-semigroup (M, ·,†) is an ALR-semigroup ifM is an atomistic poset w.r.t. its natural
partial order.

Definition 3.4. Let (M, ·,†) be an ALR-semigroup. If for any ∅ 6= B ⊆M ,
∧
B exists w.r.t. ≤ on (M, ·,†),

then M is called a CALR-meet-semigroup.

Proposition 3.5. Let M be an ALR-semigroup with zero 0M . Let Pt† = t†Mt†, where t† ∈ EM \ {0M }.
Then

(i) Pt† is an LR-subsemigroup of M with zero, and containing an identity t†;

(ii) every non-zero element of Pt† dominates an atom of Pt†;

(iii) for all non-zero x, y ∈ Pt† such that x � y, a non-zero element k exists in Pt† such that k ≤ x
and k ∧ y = 0P

t†
;

(iv) Pt† is an ALR-subsemigroup of M with zero, and containing an identity t†.

Proof. (i) It is simple to verify that Pt† is a subsemigroup of M with zero 0P
t†

= 0M . We put 0 =

0P
t†

= 0M . It can be seen that t† is an identity element of Pt† . Now we show that Pt† is closed under
†. If d ∈ Pt† is such that d 6= 0, then t†d = d. We can write (t†d)†=d†. Since M is an LR-semigroup,
by Equation 5, we deduce t†d† = d†. Then we have d† = t†t†d†. Since projections of M commute, we
deduce d† = t†d†t†. Therefore, d† ∈ Pt† . Also, 0† = 0. So Pt† is closed under †. Hence, Pt† is an
LR-subsemigroup of M with zero, and containing an identity t†.

(ii) Let x ∈ Pt† be such that x 6= 0. Since x ∈ M and M is atomistic, there exists an atom a of M
such that a ≤ x. Since ≤ is compatible with multiplication, we obtain t†at† ≤ t†xt†. Since x ∈ Pt† , we
have t†at† ≤ x. Now we prove that t†at† is an atom of Pt† . As a ≤ x, we have t†at† = t†a†xt†. Then
t†at† = a†t†xt† = a†x = a. Since a > 0, t†at† > 0. Suppose that for all r ∈ Pt† , 0 ≤ r < t†at†. Since
a = t†at†, we have 0 ≤ r < a. Since a is an atom of M and r ∈ M , we obtain r = 0. Consequently,
t†at† is an atom of Pt† . Thus, every non-zero element of Pt† dominates an atom of Pt† .

(iii) For any non-zero v ∈ M , let Mv = {m | m is an atom of M,m ≤ v}. Let x, y ∈ Pt† be such
that x, y 6= 0 and x � y. Since x, y ∈ M , there exists an atom (a non-zero element) c ∈ M such that
c ∈ Mx and c /∈ My. Therefore, we have c ≤ x and c ∧ y = 0. Since c ≤ x, by compatibility, we
have t†ct† ≤ t†xt†. As x ∈ Pt† , we obtain t†ct† ≤ x. Now we prove that t†ct† 6= 0. Suppose that
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t†ct† = 0. As c ≤ x, we obtain t†c†xt† = 0. Then we have c†t†xt† = 0. Then c†x = 0. Therefore,
c = 0—a contradiction. Hence, t†ct† 6= 0. Next we prove that t†ct† ∧ y = 0. Certainly, one lower
bound of {t†ct†, y} is 0. If ` is any lower bound of {t†ct†, y}, then ` ≤ t†ct† and ` ≤ y. By Equation
5, (t†ct†)†c = t†(ct†)†c. By Equation 6, we have (t†ct†)†c = t†c(t†)†. Then (t†ct†)†c = t†ct†. So
t†ct† ≤ c. Since ` ≤ t†ct†, we have ` ≤ c. Since ` is the lower bound of {c, y} and c∧y = 0, we deduce
` = 0. Thus, t†ct† ∧ y = 0. Hence, for all non-zero x, y ∈ Pt† such that x � y, a non-zero element k
exists in Pt† such that k ≤ x and k ∧ y = 0.

(iv) By (i), Pt† is an LR-subsemigroup of M with zero, and containing an identity t†. Now we prove
that Pt† is atomistic. For this purpose, we show that every non-zero element of Pt† is a join of a set of
atoms of Pt† . For any non-zero x ∈ Pt† , let Px = {p | p is an atom of Pt† , p ≤ x}. We require to show
that for any non-zero x ∈ Pt† , x ≤ y, where y ∈ Pt† such that y is any upper bound of Px. On the
contrary, suppose that x � y. By (iii), there exists a non-zero c ∈ Pt† such that c ≤ x and c ∧ y = 0.
By (ii), there exists an atom p of Pt† such that p ≤ c. Then we have p ≤ x. Therefore, p ∈ Px. Since
c ∧ y = 0, we deduce p ∧ y = 0. Since p ∈ Px and y is any upper bound of Px, we deduce p ≤ y.
Since p ∧ y = 0, we have p � y—a contradiction. Hence, x ≤ y. Therefore, x =

∨
Px. Therefore, Pt†

is atomistic. Thus, Pt† is an ALR-subsemigroup of M with zero, and containing an identity t†.

Proposition 3.6. Let M be a CALR-meet-semigroup with zero 0M . Let Pt† = t†Mt†, where t† ∈ EM \
{0M }. Then Pt† is a CALR-meet-subsemigroup of M with zero, and containing an identity t†.

Proof. By Proposition 3.5 (iv), Pt† is an ALR-subsemigroup of M with zero 0P
t†

= 0M and an identity

t†. We put 0 = 0P
t†

= 0M . Let ∅ 6= B ⊆ Pt† . If 0 ∈ B, then
∧
B = 0. Suppose that 0 /∈ B.

Since Pt† ⊆ M and M is a CALR-meet-semigroup with zero, it follows that
∧
B exists in M . Let

g =
∧
B, where g ∈ M . Then for all b ∈ B, g ≤ b. Since ≤ is compatible with multiplication, we

obtain t†gt† ≤ t†bt†. Since b ∈ Pt† , we have t†gt† ≤ b. Accordingly, t†gt† is a lower bound of B,
belonging to Pt† . Let ` be any lower bound of B such that ` ∈ Pt† . Since ` ∈ M and g is a meet of B
in M , we deduce ` ≤ g. By compatibility, we have t†`t† ≤ t†gt†. Since ` ∈ Pt† , we have ` ≤ t†gt†.
Consequently, t†gt† =

∧
B. Hence, Pt† is a CALR-meet-subsemigroup of M with zero, and containing

an identity t†.

From now on, for ease of notation, for any semigroup A with zero, we will drop the subscript from
zero element 0A and write simply 0.

4. Decompositions of semigroups with zero

In this section, we prove a theorem of decomposition for (non-zero) semigroups with zero.
Let us define the following.

Definition 4.1. Let S be a semigroup with zero. Let N be a non-zero ideal of S. Then N is called
reducible if there exist non-zero ideals N1, N2 of S such that N = N1 ∪N2 and N1 ∩N2 = {0}, in this

case, we denote it by N = N1

0∐
N2; otherwise N is called irreducible.

Lemma 4.2. Let S be a semigroup with zero. Let {Ni}i∈I be a family of irreducible ideals of S. Suppose
that

⋂
i∈I

Ni 6= {0}. Then
⋃
i∈I

Ni is an irreducible ideal of S.

Proof. Clearly,
⋃
i∈I

Ni is an ideal of S. On the contrary, suppose that
⋃
i∈I

Ni = C
0∐
D such that C

and D are non-zero ideals of S. By Definition 4.1, we have
⋃
i∈I

Ni = C ∪ D and C ∩ D = {0}.

Take N0 ∈ {Ni | i ∈ I}. This implies that N0 = N0 ∩
[ ⋃
i∈I

Ni

]
. Since

⋃
i∈I

Ni = C ∪ D, we have

N0 = N0 ∩ (C ∪ D). Then we have N0 = (N0 ∩ C) ∪ (N0 ∩ D). Since N0 is irreducible, it follows
that either N0 ∩ C = {0} or N0 ∩D = {0}. Assume that N0 ∩D = {0}. Then N0 = N0 ∩ C. Then
N0 ⊆ C. Now assume that there exist i, j such that i 6= j with Ni ⊆ C and Nj ⊆ D. Then we have
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{0} 6=
⋂
i∈I

Ni ⊆ Ni ∩Nj ⊆ C ∩D = {0}—a contradiction. Then either
⋃
i∈I

Ni ⊆ C or
⋃
i∈I

Ni ⊆ D. So

either
⋃
i∈I

Ni = C or
⋃
i∈I

Ni = D. If
⋃
i∈I

Ni = C, then D = 0, which is a contradiction, or if
⋃
i∈I

Ni = D,

then C = 0—a contradiction. Thus,
⋃
i∈I

Ni is an irreducible ideal of S.

Theorem 4.3. Let S be a semigroup with zero. Then S has a unique decomposition S =
∑
i∈I

Ni, where

each Ni is an irreducible ideal of S.

Proof. We divide our proof into the following steps.
Step (1). We know that for all 0 6= x ∈ S, 〈x〉 := {x}∪xS∪Sx∪SxS is the ideal of S generated by

x. First, we need to show that 〈x〉 is irreducible. On the contrary, suppose that 〈x〉 = A
0∐
B, where A

and B are non-zero ideals of S. Then x ∈ A∪B and either x ∈ A or x ∈ B. Without loss of generality,
assume that x ∈ A. As A is an ideal of S, it follows that {x}, xS, Sx, SxS ⊆ A. Therefore, 〈x〉 ⊆ A.
Since A ∩B = {0}, we obtain B = {0}—a contradiction. Hence, 〈x〉 is irreducible.

Step (2). For all 0 6= x ∈ S, define

Ωx = {V | x ∈ V and V is an irreducible ideal of S}.

By the proof of Step (1), 〈x〉 ∈ Ωx. Therefore, Ωx 6= ∅. Let Tx =
⋃

V ∈Ωx

V . Since
⋂

V ∈Ωx

V 6= {0}, by

Lemma 4.2, Tx is an irreducible ideal of S.
Step (3). Now we show that for all x, y ∈ S, either Tx ∩ Ty = {0} or Tx = Ty. If Tx ∩ Ty = {0},

then we are done. If Tx ∩ Ty 6= {0}, then by Lemma 4.2, Tx ∪ Ty is an irreducible ideal of S. Since
x ∈ Tx∪Ty, it follows that Tx∪Ty ∈ Ωx. Since Tx =

⋃
V ∈Ωx

V , we have Tx∪Ty ⊆ Tx. As Tx ⊆ Tx∪Ty,

we obtain Tx = Tx ∪ Ty. Similarly, Ty = Tx ∪ Ty. Hence Tx = Ty.
Step (4). By the proof of Step (3), there exists an index set I such that S =

⋃
i∈I

Txi and for any

i, j ∈ I with i 6= j, Txi ∩ Txj = {0}. In particular, for i 6= j, we have TxiTxj ⊆ Txi ∩ Txj = {0}. Thus,

S =
∑
i∈I

Txi .

Step (5). Suppose that S has another decomposition S =
∑
j∈J

Mj . For all i ∈ I , Txi = Txi ∩ S =

Txi ∩
[ ⋃
j∈J

Mj

]
=

⋃
j∈J

(Txi ∩Mj). Since Txi is irreducible, it follows that there exists exactly one k ∈ J

such that
Txi ∩Mk 6= {0}. (8)

Then we have Txi = Txi ∩Mk. Then Txi ⊆ Mk. Now Mk = Mk ∩ S =
⋃
i∈I

(Mk ∩ Txi). Since Mk

is irreducible, it follows that there exists exactly one l ∈ I such that Mk ∩ Txl 6= {0}. By Equation 8,
we deduce l = i. Thus, Mk = Mk ∩ Txi . Then we have Mk ⊆ Txi . Hence Txi = Mk. The proof is
completed.

Now we explore some properties of the orthogonal sum S =
∑
i∈I

Ni as in the above theorem when S

is an LR-semigroup.

Proposition 4.4. Suppose that S is an LR-semigroup with zero, where S =
∑
i∈I

Ni, the orthogonal sum

as in Theorem 4.3. Then the following hold:

(i) every Ni is an LR-subsemigroup of S;

(ii) for all i ∈ I , 0 6= x ∈ Ni and 0 6= y ∈ S, if y ≤ x, then y ∈ Ni;

(iii) for all i ∈ I and 0 6= c ∈ Ni, c is an atom of Ni if and only if c is an atom of S;
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(iv) for all i ∈ I and 0 6= x ∈ Ni, define Ax = {c | c is an atom of S, c ≤ x} and Bx = {c |
c is an atom of Ni, c ≤ x}. Then Ax = Bx.

Proof. (i) It is clear that every Ni is a subsemigroup of S. Now we prove that every Ni is an LR-
subsemigroup of S. We need to prove that for any i ∈ I , and for any 0 6= x ∈ Ni, x† ∈ Ni. On
the contrary, suppose that for i 6= k, x† ∈ Nk. Since NkNi = {0}, we deduce x = x†x = 0—a
contradiction. Therefore, x† ∈ Ni. Also, 0† = 0. Hence, every Ni is an LR-subsemigroup of S.

(ii) On the contrary, assume that for i 6= k, y ∈ Nk. As y ≤ x, we have y = y†x. By (i), y† ∈ Nk.
Since NkNi = {0}, we deduce y = y†x = 0—a contradiction. Hence, y ∈ Ni.

(iii) Let c be any non-zero element of Ni. Suppose that c is an atom of S. Then it is clear that c is an
atom of Ni. Conversely, suppose that c is an atom of Ni. For every non-zero s ∈ S such that 0 < s ≤ c,
by (ii), s ∈ Ni. As c is an atom of Ni, it follows that s = c. Thus, c is an atom of S.

(iv) Let a ∈ Ax. Then a is an atom of S with a ≤ x. Since x ∈ Ni, by (ii), it follows that a ∈ Ni.
So a is also an atom of Ni. Therefore, a ∈ Bx. So Ax ⊆ Bx. If b ∈ Bx, then b is an atom of Ni with
b ≤ x. By (iii), b is also an atom of S. Therefore, b ∈ Ax. So Ax = Bx.

As a corollary of Theorem 4.3 and Proposition 4.4, we obtain the following theorem.

Theorem 4.5. Let S be a semigroup with zero. Let S =
∑
i∈I

Ni be as in Theorem 4.3. Then

(a) S is an LR-semigroup if and only if every Ni (i ∈ I) is an LR-semigroup;

(b) S is an ALR-semigroup if and only if every Ni (i ∈ I) is an ALR-semigroup.
In particular, every ALR-semigroup S is an orthogonal sum of ALR-subsemigroups such that each
summand is an irreducible ideal of S.

Proof. (a) If S is an LR-semigroup, then by Proposition 4.4 (i), each Ni is an LR-semigroup.
Conversely, if each Ni is an LR-semigroup, then we need to show that Equation 3−Equation 6 hold in
S. If all the letters involved lie in the same Ni for some i ∈ I , then Equation 3−Equation 6 hold. On
the other hand, in Equation 4−Equation 6, if v and w lie in Ni and Nj (i 6= j) respectively, then all the
involved products are zero. Therefore, S is an LR-semigroup.
(b) Let S be an ALR-semigroup. By (a), each Ni is an LR-semigroup. Now we show that Ni is atomistic.
For all i ∈ I and 0 6= x ∈ Ni, define Ax = {c | c is an atom of S, c ≤ x} and
Bx = {c | c is an atom of Ni, c ≤ x}. By Proposition 4.4 (iv), Ax = Bx. Since S is atomistic, it
follows that x =

∨
Ax =

∨
Bx. Hence, each Ni is an ALR-semigroup. Conversely, suppose that each

Ni is an ALR-semigroup. Then by (a), S is an LR-semigroup. For every 0 6= x ∈ S, we have x ∈ Ni for
some i ∈ I . Let Ax, Bx be as above. Then we have x =

∨
Bx =

∨
Ax. Hence, S is atomistic. The

proof is completed.

5. Properties of the Ni when S embeds in some PT X
It is known that any LR-semigroup S embeds in some PT X , which is an ALR-semigroup, and that in any
such embedding, for σ ∈ S, σ† is the identity map on the domain d(σ) of σ.

Therefore it is of interest to examine the properties of theNi when S =
∑
i∈I

Ni is an LR-subsemigroup

of PT X . Without loss of generality, we need consider only the case where the zero of S is the zero of
PT X , namely the empty partial mapping ∅. This is because of the Proposition 5.2.

Lemma 5.1. If S is an LR-subsemigroup of PT X with zero element ζ, and suppose that α ∈ S, and if
(x, y) ∈ α and x ∈ d(ζ), then x = y.

Proof. Since ζ = ζ† is the identity map on its domain, it follows that (x, y) ∈ ζ ◦ α = ζ whence
x = y.
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Proposition 5.2. If S is an LR-subsemigroup of PT X with zero element ζ, then the map

α 7→ α \ ζ

is an injective morphism of S into PT Y such that ζ 7→ ∅, where Y = X \ d(ζ).

Proof. Since ζ ≤ α, i.e., ζ ⊆ α, the map is injective, and clearly ζ 7→ ∅. Then (α\ζ)◦(β\ζ) = α◦β\ζ,
as can be shown in the usual manner, together with the aid of the Lemma 5.1.

If we put Di =
⋃
{d(α) : α ∈ Ni}, Ri =

⋃
{r(α) : α ∈ Ni} and Xi = Di ∪ Ri, then we see that

Ni is an LR-subsemigroup of PT Xi ; and Ni is irreducible since Theorem 4.3 still applies. For i 6= j, the 
sets Xi and Xj need not be disjoint, but must be distinct.

Next, if Ri ∩ Dj 6= ∅, then there are α ∈ Ni, β ∈ Nj such that αβ 6= ∅, thus, i = j. The converse is 
true since non-trivial Ni always contains a non-zero α† and d(α†) = r(α†) whence Ri ∩ Di 6= ∅.

In fact, if r(α) = d(β), then α and β are in the same component, Ni say. So if we say that α,β are Φ-
related if r(α) = d(β), and let Ψ be the smallest equivalence relation containing Φ, then Ψ must partition 
S into its irreducible components Ni.
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