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Abstract

Energy scarcity is a major problem for resource constrained Internet of Things (IoT) devices. Nowadays,
Energy Harvesting (EH) has emerged as a promising solution to prolong the network lifetime using radio
signals in wireless relay networks. In this article, we propose an optimization algorithm, based on meta-
heuristic, to enhance the energy efficiency of amplify and forward relay IoT networks. Energy constraint
relay exploits power-splitting based relay protocol to acquire energy from the source and transfer infor-
mation to destination. We derive an expression for energy efficiency of the system using the throughput
at destination and outage probability for performance evaluation. This investigation studies energy ef-
ficiency of the network against the various system parameters which are relay location, power-splitting
factor, power transmitted, data rate, energy conversion efficiency and noise power and it enables us to
find out which parameters need to be optimized. Further, an objective function is formulated to achieve
the optimal solution for power transmitted by the source and an adaptive particle swarm optimization
(OPA-APSO) algorithm is proposed to attain maximized energy efficiency. OPA-APSO differs from
most existing approaches as it provides the best amount of energy harvested while optimizing the en-
ergy efficiency. Finally, simulation results demonstrate that OPA-APSO improves energy efficiency and
throughput of the network significantly as compared to other existing techniques.
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1. Introduction

In the past few years, a new trend Internet of Things (IoT) has evolved in the wireless communication
area. IoT represents a 3A idea according to which any media can be connected anytime anywhere
(Srivastava, 2006). IoT has become very popular in the information industry due to its applications in
each and every aspect of life e.g. Figure 1.

To meet these numerous applications, billions of devices are required to be connected which are
battery powered with limited life-time. Recharging and supplanting batteries can improve the device
lifetime, but it can be costly and risky when devices are deployed in unfavorable conditions e.g., health,
military applications, etc. To address this limited power battery problem in IoT, Energy Harvesting
(EH) has become very popular in research areas and is a promising solution for power limited environ-
ments (Do et al., 2017; Yan and Liu, 2017; Rekha and Garg, 2018).

EH enabled relay based IoT networks is very captivating in studies, as in (Lv et al., 2018; Omoniwa
et al., 2018; Rauniyar et al., 2019; Ashraf et al., 2021). Transmitting simultaneous wireless information
and power transfer (SWIPT) is not a new concept. Dual use of RF signals was first highlighted by (Varsh-
ney, 2008). To take advantage of SWIPT, (Zhou et al., 2013) proposed two architectures, time-switch
and power-split, for the relay nodes.
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Fig. 1. IoT Scenario

(Chen et al., 2014) studied the impact of power-splitting factor in dual-hop cooperative relaying sys-
tem for the SWIPT scheme and evaluated the outage probability and ergodic capacity of the system. For
the same relaying system, (Shah et al., 2016) investigated the throughput of dual-hop cooperative relay-
ing system by introducing a SWIPT scheme and analytical results described that at higher transmission
rate (Shah et al., 2016) outperformed (Chen et al., 2014). Further, (Huang et al., 2018) studied another
network, in which both relay and direct branches can be used for transmission, but only a single branch
is active at a time. In this, authors evaluated the performance of switch and stay technique using outage
probability. In addition to this, (Yan et al., 2018) introduced a framework for RF energy harvesting in
relay based underlay cognitive networks. In this paper, prime focus was on energy harvesting using the
SWIPT approach.

Further, the impact of energy harvested by the relay on outage probability and throughput was in-
vestigated in (Do, 2015). Authors proposed a scheme for an energy harvesting cooperative network and
evaluated it using monte-carlo method. Later, authors introduced a dynamic allocation scheme exploiting
PSR protocol for AF relaying network in (Do, 2019) and the monte-carlo method was used for analysis.
Also, (Zou et al., 2019) introduced PS based EH enabled optimal relay selection approaches in IoT
network. (Nasir et al., 2013) analyzed dual-hop AF system relay system (using both TSR and PSR)
for optimal throughput using numerical analysis. Later, (Nasir et al., 2014) examined throughput and
ergodic capacity of EH enabled relay network by employing TSR and PSR protocols. Results showed
PSR outperforms TSR protocols at a wide range of SNR, small relay distance etc.

Also, there are research works in literature which aim to optimize their objective to improve the
performance of EH-enabled relaying networks. (Tang et al., 2018) proposed an optimization algorithm
to solve optimal power allocation problem for wireless acoustic relay sensor networks and analyzed the
throughput of the system. (Rauniyar et al., 2018) developed an algorithm to maximize sum-throughput
using the Golden section search method and evaluated it in a PS based IoT relay system.

In addition to this, (Gurjar et al., 2018), analyze the impact of SNR and target rate on throughput
and energy efficiency of EH enabled IoT communication system. It can be inferred from the results that
the energy efficiency depends on SNR value. Further, (Ji et al., 2018) focused on energy efficiency of
IoT network exploiting the PS relaying scheme. For this situation, the authors formulated an optimiza-
tion problem to focus on energy management and solved this using the Lagrangian multiplier method.
Also, (Lv et al., 2018) introduced the iterative optimization algorithm employing Lagrange multipliers
to maximize the energy efficiency of an IoT network.
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As mentioned above, the majority of the existing studies mainly deal with outage probability and
throughput of the system. The techniques in literature attain the optimal value of throughput/energy
efficiency using numerical analysis or analytical analysis without considering the amount of energy har-
vested by the relay.

1.1 Contributions

Here, we propose a meta-heuristic algorithm for energy efficiency optimization in EH-enabled IoT
networks to reduce time and mathematical formulation complexity. Algorithm optimizes the energy
efficiency as well as gives the best value of the amount of energy harvested by relay for that particular
value of energy efficiency. To the best of our knowledge, this is the first work to study energy efficiency
of a system against various parameters and to propose a meta-heuristic based optimization scheme. Main
contribution of this article is listed as below:

1. Considering the dual-hop AF relay network, we present the single expression for energy efficiency
of the network in delay-limited transmission mode. For achievable energy efficiency, first we
obtain the outage probability, and then we evaluate throughput at the destination.

2. To gain insights, we analyze the impact of various system parameters Power transmitted (Ps),
energy conversion efficiency (η), power-splitting factor (ρh), Transmission Rate (R), relay location
and noise variances on achievable energy efficiency.

3. Further, based on this analysis, we propose a meta-heuristic based OPA-APSO algorithm to op-
timize the energy efficiency of a system constrained to signal-to-noise ratio. In addition to opti-
mized energy efficiency, the proposed algorithm provides the best value of the amount of energy
harvested corresponding to the achieved energy efficiency.

4. Results demonstrate significant improvement in throughput and energy efficiency compared to
existing approaches. Further, statistical analysis has been carried out to evaluate the performance
of the proposed algorithm.

Nomenclature: Various types of symbols used throughout this article and their meanings are given in
Table 1.

1.2 Organization

Organization of remaining paper is as follows. Section 2, gives the description network model with
its assumptions and information processing and energy harvesting process in detail. This Section also
presents mathematical expressions for system’s throughput and energy efficiency. Following this, the
optimization problem is formulated in Section 3. To solve this formulated problem, Section 4 explains
OPA-APSO algorithm in detail. Section 5 demonstrates obtained results and a comparison with existing
approaches. Finally, we summarize the paper in Section 6.

Table 1. Nomenclature

Parameters Meaning Parameters Meaning
Ps Power transmitted by source nar additive white Gaussian noise (AWGN) at relay node
T Time Block ncr additive conversion noise at relay
η RF to power conversion efficiency nad additive white Gaussian noise at destination
si Transmitted signal ncd additive conversion noise at destination
ρh Power splitting factor P Power received by relay
dsr Distance between source and relay Eh Energy harvested by relay
drd Distance between relay and destination Pout Outage Probability
m Path loss exponent SNRd Signal-to-noise ratio at destination
R transmission Rate EE Energy Efficiency of system
h and g Channel gain between source and relay and between relay and destination γthr minimum value of SNR at destination node
Note: In the article symbol S represents the signal. Symbols r/s/d in subscript represent whether signal is at relay, source or destination.
Symbols rec/tra in superscript of S represent whether signal is transmitted or received.
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2. Network model and description

In this article, we consider a scenario as presented in Figure 2 for AF IoT relay network. This system
consists of 3 nodes, featuring a single antenna for each node. In this dual-hop communication system,
source (S) transmits wireless information to destination (D) via relay node. There is no direct com-
munication between S and D, and communication takes place through R only. Relay node is power
restrained. First, R acquires energy using a signal received from S and then uses the energy to amplify
and forward the data to D. Channel gain coefficients from S to R and R to D are denoted by h and g
respectively. For this system, quasi-static block fading channels are assumed which are independent and
remain fixed over one time block.

Fig. 2. System Model

2.1 Energy harvesting and information processing in PSR based IoT network

Figure 3 depicts the transmission block diagram according to PSR(Nasir et al., 2014) for wireless
information and energy transmission. In this protocol, the total time block (T) is partitioned into two
slots. During the first slot, T/2, communication takes place by transferring data from source to relay. In
the second slot, the relay node communicates with the destination. Relay harvests the energy along with
information processing in the first time slot. Relay harvests the energy by using a fraction (ρh) of power
received (P ), i.e (ρhP ), and the rest of received power, i.e ((1− ρh)P ), is for data processing.

Fig. 3. PSR protocol illustration

Relay scavenges the energy first in the energy harvesting phase which is consumed in the transmis-
sion phase. Energy harvested by relay depends on both power received by relay and time duration of
harvesting phase. Relay scavenges the energy for T/2 time period. So, harvested energy by relay (Eh)
is

Eh =
ηρhPs|h|2

dmsr
T/2, (1)

where, η is between 0 and 1 and its value depends on the circuitry (Shaikh and Zeadally, 2016).
Signal received by relay is not the same as transmitted by source. Hence, after adding the noise signal
nar by the receiver at relay, signal received at relay Srecr is

Srecr =

√
Ps(1− ρh)hsi√

dmsr
+ (1− ρh)nar , (2)

where si is signal transmitted with unit power, h∼ CN(0,1) is channel gain between source and relay.
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Relay processes Srecr by converting it from RF to baseband. During the conversion, additive noise
ncr is added to the signal due to conversion. So, Ŝrecr , signal obtained after the down conversion at relay
node, is given as

Ŝrecr =

√
Ps(1− ρh)hsi√

dmsr
+ (1− ρh)nar + ncr, (3)

Before retransmitting the received signal, it is amplified at the relay node. Hence, relay transmits
information Strar which is as follows

Strar =

√
PrŜrecr√

(1−ρh)Ps|h|2
dmsr

+ (1− ρh)(σar )2 + (σcr)
2
, (4)

where, Pr is transmitted power to destination by the relay. Pr can also be calculated as

Pr =
Eh
T/2

=
ηPs|h|2ρh

dmsr
, (5)

T/2 is the total duration during which communication takes place between relay and destination. De-
nominator in eq.(4) represents the power constraint factor at the relay node. By replacing the variance of
nar and ncr with nr ,

√
(1− ρh)nar +ncr, combined variance σ2r , (1− ρh)(σar )2+(σcr)

2, eq.(4) can be
expressed as

Strar =

√
PrŜrecr√

(1−ρh)Ps|h|2
dmsr

+ (σr)2
. (6)

Destination node receives signal Srecd which can be given as

Srecd =
gStrar√
dmrd

+ nad + ncd, (7)

Using eq.(3),(5) and (6), signal received at destination in eq.(7) can be simplified as

Srecd =

√
ηρh(1− ρh)Psgh2si√

dmrdd
m
sr

√
(1− ρh)Ps|h|2 + dmsr(σr)

2︸ ︷︷ ︸
Signal Part

+

√
ηρhPsghnr√

dmrd
√
(1− ρh)Ps|h|2 + dmsr(σr)

2
+ nd︸ ︷︷ ︸

Noise Part

, (8)

where nd , nad + ncd is combined AWGNs at destination. Srecd in eq.(8) consists of two parts, i.e.,

signal part and noise part. Hence, the signal-to-noise ratio (SNRd), i.e. E{Signal Part2}
E{Noise Part2} at node D can be

expressed as eq.(9).

SNRd =
ηρh(1− ρh)P 2

s g
2h4

ηρhPsg2h2dmsr(σr)
2 + Ps|h|2dmsrdmrd(1− ρh)(σd)2 + (dmsr)

2dmrd(σr)
2(σd)2

(9)

Throughput: This article considers delay limited transmission mode where throughput of the system
is analyzed by calculating outage probability (Pout) for a particular data rate (R bits/sec/Hz) and R ,
log2(1+γthr), where γthr is threshold SNR, i.e γthr = 2R−1, for which destination can correctly detect
the data. The Pout can be determined as

Pout = Pr(SNRd < γthr) (10)

The outage probability of destination for the protocol is given by the following proposition(Nasir
et al., 2013).
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Proposition 1: For PSR protocol, outage probability at destination D can be determined as

Pout = 1− 1

Mh

∫ ∞
k= z

y

e
−
(

k
Mh

+ wk+x

(yk2−zk)Mg

)
dk (11)

Pout ≈ 1− e−
z

yMh βK1(β) (12)

For convenience, we have defined

w = Psd
m
srd

m
rdσ

2
d(1− ρh)γthr,

x = d2msr d
m
rdσ

2
rσ

2
dγthr,

y = ηρh(1− ρh)P 2
s ,

z = ηρhPsd
m
srσ

2
rγthr,

β =

√
4w

yMhMg
,

here, Mh and Mg represent means for the exponential random variables |h|2 and |g|2 respectively.
AndK1(.) denotes first order modified Bessel function of the second kind(Gradshteyn and Ryzhik, 2014).
Detailed derivation of this proposition is given in (Nasir et al., 2013)1. Here, effective communication
time is T/2, hence throughput at destination is give as:

THR =
(1− Pout)RT

2T
=
R(1− Pout)

2
(13)

Energy Efficiency: Energy efficiency of a system is characterized as a ratio of spectrum efficiency
of a system over the whole power consumption of an IoT network. Here, total power expenditure is
represented as aPs + b as in (Ji et al., 2018). a > 1 and b > 0 are factors considering power conversion
efficiency and the hardware circuits in the power consumption model. Thus, using eq.(13), we present
energy efficiency at node D here, which can be determined as given below

EE =
THR

aPs + b
=
R(1− Pout)

2(aPs + b)
(14)

3. Problem formulation

To enhance the energy efficiency of the system, this section deals with the first step of optimization i.e.
optimization problem formulation to attain the optimal value of Ps. Here, we formulate our objective
function to maximize the energy efficiency of the system subjected to constraint to minimum SNR at
destination as follows:

Max
Ps

EE (Ps) ,

s.t. SNRd ≥ γthr
(15)

Here, EE (Ps) represents energy efficiency as a function of power transmitted by source. Further,
formulated objective function can be given as by inserting eq.(14) into eq.(15):

Max
Ps

(1−Pout)R
2(aPs+b)

s.t. ηρh(1−ρh)P 2
s g

2h4

ηρhPsg2h2dmsr(σr)
2+Ps|h|2dmsrdmrd(1−ρh)(σd)2+(dmsr)

2dmrd(σr)
2(σd)2

≥ γthr
(16)

The optimization problem represented by eq.(16) is a non-linear constraint problem. Also, complex
computational terms involved in computing outage probability need to be solved iteratively with low
implementation and time complexity. Therefore, we proposed an OPA-APSO algorithm to attain the
optimal solution.

1Detailed proof is provided in (Nasir et al., 2013) and omitted here due to the space limitation.
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4. Proposed algorithm

This section introduces a novel optimization algorithm OPA-APSO to maximize the energy efficiency
of a system. OPA-APSO optimizes system parameters to maximize the achievable energy efficiency.
Further, the proposed algorithm has an extra characteristic that it keeps track of the amount of energy
harvested while maximizing the energy efficiency. OPA-APSO uses a meta-heuristic approach to give the
finest energy efficiency for the considered IoT network. To solve the intractable optimization problem,
meta-heuristics techniques are very impressive in the research area (Mortazavi and Ahmadi, 2019; Rao
et al., 2020; Gupta et al., 2021; Devi and Prabakaran, 2021). There is no doubt that this field will
continue to develop in the near future in the studies (Dokeroglu et al., 2019). Also, opposite to exact
methods which require high computational time to find the optimal solution, meta-heuristic techniques
attain near optimal solution rather quickly (Hussain et al., 2019).

(Poli et al., 2007) introduced a meta heuristic approach inspired by the social behaviour of birds and
fishes known as “Particle Swarm Optimization (PSO)”. Many optimization problems have been solved
successfully using PSO. PSO has the ability to explore the global space and exploit local space. PSO is
very robust and also converges to optima very fast. Also, PSO has been used in a large and various real
life applications. So, we opt the PSO for energy efficiency optimization. To get better results, we make
it adaptive by varying the inertia weight. Using the time-varying inertia weight, premature convergence
and local optima is avoided.

Fig. 4. Flowchart of OPA-APSO

Here, we present the Optimal Power Allocation algorithm using Adaptive PSO (OPA-APSO) to solve
the optimization problem formulated in eq.(16). Flow chart of the proposed scheme is shown in Figure 4.
Here, the algorithm is explained in detail.

Algorithm 1 is divided into two sections: Initialization and Updation. In the initialization section
, all the algorithm parameters are initialized and in the updation section, values are updated to find the
optimal result.

4.1 Initialization
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Algorithm 1 : Optimal Power Allocation algorithm using Adaptive PSO
Procedure OPA-APSO

1: Initialize the nPop, MaxIt, c1, c2, wMax, wMin, gBest=0
2: for i=1 to nPop do
3: Initialize the positions of particles xi by assigning random values of power transmitted by source.
4: Initialize the velocity of particle vi using random value
5: Evaluate the fitness EE(xi) using Algorithm 2
6: Set the pBesti to the current position xi
7: for i=1 to nPop do
8: if EE(pBesti) > EE(gBest) then gBest=pBesti
9: if EE(pBesti) = EE(gBest) then

10: if EH(pBesti) > EH(gBest) then gBest=pBesti
11: for it=1 to MaxIt do
12: for each particle xi do
13: Update the velocity of particle using eq.(17)
14: Update new position using eq.(18)
15: Evaluate the Fitness EE(xi) using Algorithm 2
16: if EE(xi)> EE(pBesti) then pBesti=xi
17: if EE(xi)= EE(pBesti) then
18: if EH(xi)> EH(pBesti) then pBest=xi
19: if EE(pBesti) > EE(gBest) then gBest=pBesti
20: if EE(pBesti) = EE(gBest) then
21: if EH(pBesti) > EH(gBest) then gBest=pBesti
22: Update inertia w=wMax-it*((wMax-wMin)/MaxIt);
23: return gBest

From steps 1 to 8, all the parameters are initialized. In step 1, various parameters are set which are:

a. nPop: Total number of population.

b. MaxIt: Total number of iterations.

c. Learning Parameters (c1,c2): c1 is a cognitive learning parameter and represents the particle’s
desirability moving towards its own success. c2 is a social learning parameter and represents the
particle’s desirability moving towards the neighbor’s success.

d. Inertia weight (w): used to control variation of velocity in the succeeding iteration from the pre-
vious one. The value of w has an impact on exploration and exploitation. Higher value of w
facilitates exploration, while smaller w is beneficial for local search.

In steps 3 and 4, population vector and velocity vectors are initialized. In the population vector, each
particle is assigned position xi randomly. Velocity vector is initialized by assigning a random velocity vi
to each particle. Then calculate the fitness of particles using step 5. Assign current particle position to
personal best (pBest) for each particle in step 6, which is the best position of particle till now. From all
the personal bests, find the global best position (gBest) in step 7 to step 10. If EE of the personal best
is greater than the global best then set gBest to pBest in step 8. If EE of the pBest and gBest are the
same then their energy harvested is checked in step 9. If the EH(pBest) is greater than the EH(gBest)
then gBest is reset to pBest in step 10.
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4.2 Updation

In this section, values are updated to find the optimal solution.

a Velocity Update: In step 13, the velocity of each particle is updated in each iteration using personal
best position and global best. The velocity is updated using eq.(17) to move the particle towards
global best and its own best (Chen and Yu, 2005).

vij = w ∗ vij + c1 ∗ r1 ∗ (pBesti − xij)︸ ︷︷ ︸
particle personal best

+ c2 ∗ r2 ∗ (gBest− xij)︸ ︷︷ ︸
global best

(17)

Here, xij and vij are the position and velocity of ith particle in jth iteration respectively. r1 and
r2 are random values between 0 and 1.

b Position Update: Using the updated velocity in step 13, the position of each particle is updated so
that the particle can move towards optimal value. In step 14, a new position for each particle is
obtained using eq.(18) in each iteration. As the velocity is calculated using both personal best and
global best factors, the same impact will be on particle position.

xij = xij + vij (18)

c Personal Best Update: Step 15 calculate the fitness value for each particle and then based on new
fitness, each particle’s personal best is updated. If the new fitness value is higher than the pBest
of the particle the pBest is updated to that position in steps 16-18.

d Global Best Update: Based on the previous steps, steps 19-21 update the global best to current
best position. It yields the highest fitness value among all personal bests till that iteration along
with the highest energy harvested for the same energy efficiency.

e Inertia Weight Update (w): Value of w affects the ability of exploitation and exploration. We need
to avoid local minima and exploit the global space. Hence, to obtain exploration & exploitation
trade-off, time adaptive w is used (Shi and Eberhart, 1998). The inertia weight is calculated as:

w = wMax− it ∗ ((wMax− wMin)/MaxIt), (19)

where, wMax represents initial inertia weight and wMin is the final value of inertia weight. it is
the current iteration.

If the number of iteration exceeds MaxIt then the algorithm stops by returning the gBest.

Algorithm 2 : Evaluate Fitness EE(x) and Energy Harvested EH

1: Input all the parameters Ps,a,b,g,h,η, ρh, dsr, drd, σd, σr
2: Calculate SNRd at destination using eq.(9)
3: Calculate outage probability Pout using eq.(12)
4: Calculate throughput THR of system using eq.(13)
5: Calculate energy harvested EH by relay using eq.(1)
6: Calculate energy efficiency EE of system using eq.(14)
7: return EE and EH

Algorithm 2 describes the evaluation of fitness function. Step 1 initializes the various parameters for
the system model. Using all the parameters and eq.(9), signal-to-noise ratio at destination is calculated in
step 2. Then using SNRd and eq.(12), step 3 calculates the outage probability which is used in step 4 to
obtain the throughput. Step 5 provides the energy harvested by the relay node. Finally, in step 6 energy
efficiency of the system is evaluated which is our objective function.
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4.3 Computational complexity

OPA-APSO aims to maximize the system energy efficiency with the best value of energy harvested
by relay. In each iteration, OPA-APSO moves towards the convergence by finding the optimal value of
power transmitted. Computational complexity is analyzed under the worst case scenario, i.e, convergence
is obtained after completing every iteration.

We assume that the algorithm takes m population size and n number of iterations. Step 1 initializes
all the parameters with O(1) time complexity. For loop (Steps 2 to 6) runs for m times to calculate the
pBest of each particle. So, the complexity of this loop is O(m).

The next pBest of ith particle (i=1,....., m) is achieved by some set of operations like addition, mul-
tiplication and comparison. Hence, predicting the pBest of each particle is computed in m computation
time. Therefore, the computation time of steps 7 to 10 is O(m), as all the operations have O(1) time
complexity. Now, each operation from steps 13 to 21 is performed for each particle in each iteration, i.e,
m times. So, the time complexity of steps 11 to 22 is equivalent to O(m*n).

Hence, overall complexity of proposed OPA-APSO is O(m)+O(m)+O(m*n) in dual-hop relay based
IoT system which is equivalent to O(m*n).

5. Results and analysis

Analytical results using the expressions derived in the previous section are presented here. We have
obtained results into two sets using MATLAB 2016. First set is carried out to investigate the effect
of system parameters on energy efficiency. This set provides how energy efficiency varies with each
parameter. And based on this analysis, the second set is used to optimize the energy efficiency keeping
in consideration to give the best value of energy harvested.

We compare our approach with approaches (Ji et al., 2018), (Nasir et al., 2013) and (Do, 2019). (Ji
et al., 2018) consider a dual-hop relay network system exploiting PSR protocol and optimize the energy
efficiency at the destination. Authors optimize the solution by using the optimal value of the power-
splitting factor. (Nasir et al., 2013) study the impact of various parameters on throughput of the system
for both TSR and PSR protocols and optimize the throughput. They provide the analysis which protocol
performs better in which situation. Further, (Do, 2019) optimizes the throughput of relay based model
using PSR. They find the optimal value of the power-splitting factor to optimize the throughput of the
system. Mentioned approaches use numerical methods to solve the optimization problem.

5.1 Impact of various system parameters

In our considered system, default values for the various parameters are adopted as Ps =1 Joules/sec,
η =1, m =2.7 and R =3 bits/sec/Hz. dsr and drd are normalized to 1. Antenna noise covariances (σ2a)
and conversion noise covariances (σ2c ) at both relay and destination are assumed equal for simplicity.
The mean values Mh and Mg of channel gain parameters |h|2 and |g|2 are assigned unit values. These
simulation settings are in line with work by (Nasir et al., 2013). Power consumption parameters: a
varies from 2 to 10 and b = 10,100 and 300 (Ji et al., 2018).

From eq.(14), it can be seen that a system’s energy efficiency depends on various parameters Ps, R, η,
ρh, dsr, drd, σ

2
c , σ

2
a, etc. So, we study the analysis of different parameters on the system’s energy effi-

ciency individually keeping all other parameters fixed.
Figure 5 plots energy efficiency of the system vs. power transmitted by the source node for various

values of power consumption parameters. From Figure 5, it is obvious that the energy efficiency increases
with the increase in Ps till it reaches an optimal value and then it starts decreasing for each curve.
It is due to an increase in total network power consumption (aPs+b) with the increase in transmitted
power. Throughput increases as Ps increases. For lower value of power, increase in throughput is more
considerable than the total power consumption. On the other hand, increase in total power consumption
is more considerable than throughput at the higher values of power. So this results in first increasing the
energy efficiency of the system upto optimal value then it starts decreasing. Total power expenditure is
low for the lower values of a and b, but it increases with increase in a and b. For the lower values of
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Fig. 5. Energy Efficiency vs. Ps

b, aPs is considerable when Ps changes. It results in a significant change in energy efficiency with an
increase in Ps for lower values of a and b. But due to the high value of b, change in aPs is significantly
low as compared to b with the increase of Ps. Hence, there is negligible change in energy efficiency.

Fig. 6. Energy efficiency vs. power splitting factor (ρh)

Figure 6 shows achievable energy efficiency as a function of power splitting factor (ρh). We can see
the energy efficiency of the system first increases upto some optimal point and then start decreasing as ρh
approaches to 1 for various values of a and b as depicted in Figure 6. Reason is that for the smaller values
of ρh relay harvests less power which yields lower energy efficiency of the system. On the contrary, for
the values of ρh larger than the optimal value, the relay node has more power to harvest and less energy to
process the information. Therefore, the relay node has low signal strength and it results in lower energy
efficiency.

Further, the location of the relay (dsr) between source and destination also affects the efficiency as
shown in Figure 7. Here, drd is set to drd = 2 − dsr for all curves. As we can see from Figure 7, the
system’s energy efficiency decreases as dsr increases. It is due to the reason that as dsr increases both
signal received and energy harvested by the relay decrease which results in lower energy efficiency.

Figure 8 plots the variation of energy efficiency with different values of R. Energy efficiency increases
with increase in R upto optimal value and then starts decreasing as shown in Figure 8 for every curve.
At lower data transmission rate energy efficiency increases with increase in data rate. Contrary to this, at
higher values of R, the receiver is not able to decode a large amount of data correctly in a limited period.
Therefore, there is an increase in outage probability (Pout), which leads to decrease in energy efficiency.

Figure 9 plots the variation of energy efficiency with different values of energy conversion efficiency
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Fig. 7. Energy efficiency vs. distance between source and relay (dsr)

Fig. 8. Energy efficiency vs. data transmission rate (R)

Fig. 9. Energy efficiency vs. energy conversion efficiency (η)

(η). Energy efficiency increases with increase in η.
Figure 10 depicts the effect of conversion noise variance (σ2c ) on the energy efficiency of a system by

keeping all other parameters fixed. From Figure 10, it can be observed that energy efficiency decreases
with increase in σ2c . The increased conversion noise affects the throughput at destination which results
in lowering the energy efficiency for various values of a and b. And the similar trend is followed in
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Fig. 10. Energy efficiency vs. conversion noise variance

Figure 11, which plots the variation of energy efficiency with different values of antenna noise variance
(σ2a).

Fig. 11. Energy efficiency vs. antenna noise variance

Fig. 12. Optimized Energy Efficiency for various parameters
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5.2 Optimized energy efficiency using OPA-APSO

In the previous section, we analyzed how energy efficiency of system is affected by various system
parameters. Energy efficiency varies linear fashion with η, dsr, σ2c and σ2a while with Ps, ρh, R param-
eters varies in parabolic pattern. Based on this analysis, we employ the OPA-APSO to find the optimal
values of power transmitted to optimize the energy efficiency. Based on this analysis, we employ the
OPA-APSO to find the optimal values of system parameters to optimize the energy efficiency. OPA-
APSO optimizes the energy efficiency against only one parameter at a time. We also optimize the R and
ρh using OPA-APSO. Figure 12 represents the optimized energy efficiency of the system for the various
parameters and the obtained optimal values of different system parameters Ps, R, η, ρh, dsr, σ2c , σ

2
a are

2.0468,2.6288,0.63799,1.2024E-07,0.0001,0.0001 and 1 respectively.

5.3 Statistical analysis

We run the OPA-APSO algorithm over 15 cycles and the simulation results are represented by the
mean values. To evaluate the statistical performance of the proposed algorithm, we have used the stan-
dard deviation and coefficient of variance (CoV). Standard Deviation (SD) is a method used to measure
the distribution of the data about the mean value. CoV% is calculated as:

CoV% =
SD

Mean
∗ 100

Lower values of SD and CoV mean results provided by the algorithm are stable. Table 2 gives the values
of mean, SD and CoV for various parameters.

Table 2. Statistical Analysis of Results

Parameter Mean SD CoV%
Data Rate 0.061872 1.11E-05 0.018
Power 0.070682 1.24E-05 0.01756
Antenna Noise Variance 0.077338 1.51E-05 0.01954
Conversion Noise Variance 0.087339 1.48E-05 0.01689
Distance 0.125 2.23E-05 0.01782
Power Splitting Factor 0.061559 1.17E-05 0.01895
Energy Conversion Efficiency 0.053423 1.07E-05 0.01998

Fig. 13. Optimized Energy efficiency of OPA-APSO and (Ji et al., 2018) at various ρh values

5.4 Comparison of OPA-APSO with existing approaches
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To show the efficacy of the proposed approach, we compare OPA-APSO with already existing relay-
ing techniques (Nasir et al., 2013; Ji et al., 2018; Do, 2019) for energy harvesting. Table 3 summarizes
above discussed approaches w.r.t. to parameters, objective and method used to achieve optimal results.

Figure 13 shows the comparison of optimized energy efficiency between OPA-APSO and (Ji et al.,
2018). Optimized energy efficiency values of (Ji et al., 2018) are shown for three different values of ρh
0.1, 0.5 and 0.9 as shown in Figure 13. OPA-APSO achieves 96% higher efficiency than (Ji et al., 2018).

Fig. 14. Comparison of optimized throughput with existing approaches at various parameters

Figure 14 presents a comparison between throughput of the considered IoT system by using OPA-
APSO and approaches used in (Do, 2019) and (Nasir et al., 2013) and it is observed that OPA-APSO
gives better results than these approaches for optimal value of power-splitting factor, data rate, antenna
and conversion noise variance, and distance respectively. The results show that there is a considerable
improvement in the throughput using the OPA-APSO algorithm to find out the optimal transmission
power. Throughput is enhanced by 50% and 35% over approaches (Do, 2019) and (Nasir et al., 2013)
respectively.

Table 3. Comparison of proposed approach with existing approaches

Author (Nasir et al., 2013) (Ji et al., 2018) (Do, 2019) OPA-APSO
System Dual-Hop Dual-Hop Dual-Hop Dual-Hop
Type Amplify-and-Forward Amplify-and-Forward Amplify-and-Forward Amplify-and-Forward
Technique Numerical Analysis Lagrangian multiplier method Monte Carlo Method Adaptive PSO
Objective Throughput Energy Efficiency Throughput Energy Efficiency
Parameter Power-Splitting Factor Transmitted Power Power-Splitting Factor Transmitted Power
Throughput 0.724 - 0.65 0.98955
Energy Efficiency No 0.036 No 0.070682
Considering Amount of Energy Harvested No No No Yes

6. Conclusions and future directions

In this article, we have studied the EH enabled cooperative communication network for IoT devices.
Relay employs PSR to harvest the energy and process the information in the amplify-and-forward IoT
network. Our main motive is to optimize the system’s energy efficiency. For this, we present the ex-
pressions for the outage probability and energy efficiency for delay limited transmission mode under
quasi-static block fading. Also, we investigate the impact of Ps, R, η, ρh, dsr, drd, σ2c , σ

2
a on energy ef-

ficiency individually. Numerical results reveal how these parameters affect energy efficiency and drive
us to optimize the parameters to obtain the maximized energy efficiency. Further, we formulate the op-
timization problem for achievable energy efficiency at the destination, simultaneously considering the
amount of energy harvested by the relay. In order to solve the optimization problem, we have proposed
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a meta-heuristic based OPA-APSO algorithm to achieve the maximized energy efficiency. The proposed
approach also gives the best value of the amount of harvested energy by the relay node for the achieved
energy efficiency. Results show the efficacy of OPA-APSO over the existing schemes. Further, statistical
analysis is performed which shows the stability of the algorithm. In the future, it would be interesting to
optimize other important factors along with energy efficiency as multi-objective optimization problem.
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