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Abstract 
 

Analysing information relevant to land cover changes is a fundamental issue in studies linked to 
environmental diversity. The use of multi-time satellite images at different scales allowed 
continuous observation of land cover changes. Due to significant changes in land cover, 
specifically in the decades 2000–2010 and 2010–2020, al Najaf Province was selected as the 
study area. This work aimed to study changes in land cover in Al Najaf Province from satellite 
imagery, using change vector analysis (CVA), through the last two decades (2000–2010 and 
2010–2020). The enhanced vegetation index 2 (EVI2) and the dry bare soil index (DBSI) 
represented the vegetation and soil condition in the study region. They were estimated via 
images from the satellite Landsat-5 TM for March for the two years 2000 and 2010, and Landsat 
8 OLI 2020 for the same month, then were considered the parameters for a land cover change 
analysis using the CVA. The outputs of the CVA were assessed on maps of land cover obtained 
through the supervised classification for the above-mentioned images. The results of the change 
vector magnitude found that the ratio of the changed area reached 46.58% and 56.35%, and the 
unchanged area was 53.42% and 43.65% for the periods (2000–2010) and (2010–2020), 
respectively. The results of the change direction revealed that the moisture reduction ratio was 
26.93% and 4.85%, while the vegetation regrowth ratio was 15.81% and 38.79% for the same 
two periods, respectively. The results of the two periods considered exhibited that the EVI2-
DBSI combination presented promising performance results with the overall accuracy of 0.90 
and 0.92 and a kappa index of 0.867 and 0.852, respectively. As a result, the CVA technique 
offers a promising way to track environmental changes that are connected to the dynamics of 
land use/land cover in this region.  
 
Keywords: Change vector analysis; dry bare soil index; enhanced vegetation index 2; land cover 
change; Landsat. 
 
1. Introduction 

The phrase land cover is often used to describe the general biophysical state of the land surface 
as well as giving information on the distribution of vegetation, water, soil, etc. The changes in 
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land cover resulting from several human and natural factors, represented by the changes of 
relative biophysical characteristics of the Earth's surface, have significant effects on the quality 
of environmental systems. So, the changes in the cover of land can represent the principal indices 
of environmental changes at various temporal and spatial scales (Polykretis et al., 2020).  
 The survey of land cover/use change is significant for the management of natural resources in 
the regional and local areas of the country (Sangpradid, 2018). Change detection may be defined 
as a methodology for distinguishing variations in the status of a target or phenomenon by 
monitoring them at various times (Tong et al., 2020). For studying the land cover changes of a 
particular area, it is essential to obtain the information that reveals its condition at different time 
intervals (Polykretis et al., 2020). Change detection utilising satellite imagery and a GIS platform 
is an effective method (Mohammed, 2021), where it is characterised by quickly collecting multi-
spatial data and a multi-temporal resolution that allows the mapping of changes of land cover at 
various levels (Tong et al., 2020). 

Depending on the methods of processing data for change detection, the techniques used 
were divided, according to Johnson & Kasischke (1998), into two major groups: (a) depending 
on the input data's spectral categorisation (classification) and (b) techniques that build on the 
radiometric changes for data with different dates, like band ratio, band difference, image 
difference obtained from band conversion (e.g., vegetation and soil indicators) and change vector 
analysis (CVA).  

Vegetation cover or bare soil are often indicated as biophysical characteristics of the land 
surface. These characteristics can be measured using several spectral indices for vegetation and 
soil (Islam et al., 2016). The spectral indicators describe the conditions of vegetation and soil 
cover, respectively, for a particular area, employing a specific value range depending on the level 
of absorption/reflection from the surface of the Earth in the various parts of the electromagnetic 
spectrum or satellite bands (Münch et al., 2019). The relation between the spectral indicators and 
change detection of land cover is well established as a result of their commonly used application 
in this type of analysis.  

The CVA technique has been employed by many researchers to study land cover 
changes, for example, detecting changes in the forests (Malila,1980), detecting the change of 
land cover in rural-urban regions (He et al., 2011), evaluating humid land dynamics (Landmann 
et al., 2013), detecting the changes in agricultural land use (Aravind, S., & Sivakumar, R.2016), 
observation of the changes of fuzzy shorelines (Dewi et al., 2017), and monitoring forest 
resources (Xiao-hui et al., 2021). The CVA method allows the user to classify various kinds of 
change concerning land cover dynamics in a given region (Ebrahimian, R., & Alesheikh, A. 
2019). It provides the possibility to determine the nature of the change, in addition to its 
magnitude, where it is a powerful tool for detecting radiometric changes (Fernandes et al., 2014). 

This research aims to detect the changes in land cover of Al Najaf Province employing 
the CVA technique. The CVA technique was applied using EVI2 and DBSI indices from 
Landsat satellite data for the two periods 2000–2010 and 2010–2020. 
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2. Materials and Methods 

2.1. Study Site 

Al-Najaf Province is situated in the southwest part of Iraq, at 70 m above sea level. It is 160 km 
from the capital, Baghdad, with an area of about 28,824 km2. The study zone represents the 
north-eastern portion of the province (figure 1), with an area estimated at 2,112 km2, and lies 
between latitude 31º 37′–32º 21′ N and longitude 44º 7′– 44º 37′ E. The area selected for the 
study includes the land cover types that experienced significant changes in the period 2000–
2020. The region witnessed the transformation of significant parts of bare lands and agricultural 
areas into urban areas, in addition to considerable changes in water areas as a result of the large 
variation in total annual rainfall from 2000 to 2020 ( General Authority for Meteorology , ) as 
indicated in figure 2, which influenced the large variations in vegetation cover. 

 

 

 

 

 

 

 

Fig. 1. Study area site. From left to right: location of al Najaf Province in Iraq, study site in al 
Najaf province and Landsat image (2020) for the study area (band combination RGB 3, 5, 7). 

 

Fig. 2. Total annual precipitation for the period from 2000 to 2020. 
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2.2. Data utilised 

In this research, Landsat satellite images for the period 2000–2020 were selected to assess the 
changes in the land cover of the study region. The time period was chosen based on the 
significant changes that occurred in the land cover and the availability of appropriate data for 
that period. All images, downloaded from http://landsat.usgs.gov, were cloud-free and were 
systematically rectified at downloaded. The multi-spectral imagery data with a resolution of 30 
m were obtained for the Landsat-5 TM in March 2000 and 2010, and Landsat 8 OLI in March 
2020, path/row 168/38. The data have been corrected to a Universal Transverse Mercator (UTM) 
projection via the WGS84 datum and zone 38. The dates of the images were chosen as they 
represent the peak of the vegetation growing season in the region (from March to May). The 
images for the three years were from the same month to reduce seasonal variation. Arc GIS 10.6 
software was employed for pre-processing data, and Excel 2019 was utilised for the other 
analyses. 

2.3. Spectral indices used 

To evaluate the biophysical characterisation of the study region, two spectral indices have been 
employed after processing Landsat imagery data. 

For measuring the changes of land cover for the studied region, the enhanced vegetation 
index 2 (EVI2) to describe vegetation conditions, and the dry bare soil index (DBSI) to describe 
the soil conditions of the zone, were computed from Landsat images. EVI2 is an improved 
version of NDVI. It reduces atmospheric effects, and it can be formulated according to the 
equation as follows (Jiang et al., 2008):  

 𝐸𝑉𝐼2 = 	2.5	 !!"#	"	!#%&	
!!"#	$%.'∗!#%&	$	)

																						       (1) 

Where 𝜌*+,	  and 𝜌,-.	are the values of surface reflectance for near-infrared and visible 
red bands (Landsat-5 TM bands 4 and 3, and Landsat 8-OLI bands 4 and 5, respectively).  

The EVI2, similar to NDVI, is a unit less variable, whose values range from -1 to 1. The 
value of 2.5 is the gain factor, the coefficient 2.4 is employed to reduce aerosol impacts and the 
value of 1 represents the soil adjustment factor utilised to reduce soil background influences. 

The DBSI, created by Rasul et al. in 2018, improves differentiation between dispersed 
vegetation and bare soil to identify bare zones in dry climates. The values of the DBSI range 
from -2.0 to +2.0. The higher value is conformed to the bare soil area. The proposed formula for 
the DBSI is (Rasul et al., 2018): 

 𝐷𝐵𝑆𝐼	 = 	 !'("#)	"!*+,,-	
!'("#)	"!*+,,-	

− 𝑁𝐷𝑉𝐼                     (2) 

2.4. Change vector analysis  

CVA is a change detection method that exhibits the change as a vector, either in two- or multi-
dimensional space. The idea of CVA includes the computation of spectral changes according to 
multi-temporal pairs of spectral indicators (Fernandes & Almeida, 2014). The computed change 
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vector involves basic information about the magnitude and direction of change, where it allows 
for mapping them between the dates specified, pixel by pixel (Polykretis et al., 2020).  

If two components are used, the two-dimensional space is represented with two axes via a 
Cartesian coordinate system. The change vector consists of two points corresponding with the 
same pixel at two different times, where the beginning and ending points represent the pixel 
positions in EVI2-DBSI space on these two dates (Sangpradid, 2018). The change magnitude 
(M) is measured between the first (t1) and second (t2) dates, across the length of the change 
vector as in figure 3A where it is calculated utilising the Euclidean distance according to the 
formula: 

𝑀 = 0	(𝐸𝑉𝐼2/% −	𝐸𝑉𝐼2/))% 	+ 	(𝐷𝐵𝑆𝐼/% − 𝐷𝐵𝑆𝐼/))%                       (3) 

Where 𝐸𝑉𝐼2/) and 𝐸𝑉𝐼2/% are the pixel values of the EVI2 index at the two dates of t1 
and t2, respectively. As well, 𝐷𝐵𝑆𝐼/) and 𝐷𝐵𝑆𝐼/% are the values of pixels for the DBSI index for 
the same two dates. 

 
 Fig. 3. The change vector analysis for space of EVI2-DBSI, 
(A) the magnitude of change and (B) the direction of change. 

 
A threshold is set according to standard deviations for the values of magnitude to 

differentiate between changed and unchanged portions from the study region. The direction of 
change is determined by computing the change vector angle, which varies with the number of 
components utilised. This angle refers to the kinds of changes that have occurred during two 
particular dates (Fernandes & Almeida, 2014), which describes the type of change concerning 
the directions of mutual change within the pixel units of the two components. In general, the 
number of direction classes is equivalent to 2n, where n represents the number of components or 
spectral bands (Karnieli et al., 2014). In this paper, two components (DBSI and EVI2) were 
employed as input, so the direction of change is classified into four categories of angles, or four 
quadrants, as shown in figure 3B. The change vector direction was calculated in a two-
dimensional space, using the following equation: 
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 tan 𝛼 = .01+./	"	.01+.)
	-2+%./"	-2+%.)

                                                                             (4) 

 Where, tan(α) represents the tangent of angle α. 

 Based on the directions of change within pixels in the DBSI and EVI2 components: Angle 
measurements between 0⁰–90⁰ indicate an increase in both bands. The angles between 90⁰–180⁰ 
represent an increase in the EVI2 and a decreased DBSI. Angle measurements between 180⁰–
270⁰ indicate a decrease in both components. Finally, the angles between 270⁰–360⁰ refer to a 
decrement in EVI2 and an increase in DBSI (Fernandes & Almeida, 2014).  
 
2.5. Methodology 

In this research, the CVA technique has been applied to reveal the changes in land cover using 
two spectral indices, EVI2 and DBSI. The changes in magnitude in land cover for the studied 
area for the two periods 2000–2010 and 2010–2020 were estimated utilising equation (3) in 
ArcGIS software. Relying on prior expertise in change detection analysis, the standard deviation 
(ST) by the value of one from the average, has been specified as a threshold (Bayarjargal et al., 
2006; Paz-Kagan et al., 2014; Volcani et al., 2005) for a distinction between changed and 
unchanged regions. In a similar way, the change level has been classified into low change and 
high change. The results of the change magnitude are displayed as maps graded into three 
classes: high change, low change and no change, for the two periods 2000–2010 and 2010–2020. 
The change direction has been determined based on the angles of the change vectors using 
equation (4). 

Each of the four angle categories is associated with types of land cover changes for the 
study region. The angles 0º–90º represent the increment in both the EVI2 and DBSI indices. This 
category identifies areas of varying biomass or low humidity and is often associated with 
changes in agricultural zones. The angles 90º–180º, which correspond to a decrease of the EVI2 
indicator and an increase of the DBSI indicator, represent the extension of bare soil or degraded 
areas. The angles 180º–270º, which conform to a decrease in both spectral indicators, represent 
water bodies or increased humidity. The range angles 270º–360º are connected with an increase 
and a decrease of the EVI2 and DBSI indicator values, respectively, which indicates the re-
growth of vegetation cover, i.e., areas that experienced an improvement in land quality (Karnieli 
et al., 2014). 

3. Results 

3.1 The results of the EVI2 and the DBSI  

The results of the EVI2 and the DBSI were assessed for the 2000, 2010, and 2020 Landsat 
imagery data. Figure 4 shows the results of the EVI2 for 2000, 2010, and 2020. The area of 
vegetation cover was lower in 2010 than it was in 2000, specifically in the south-eastern section 
of the region, while in 2020, vegetation increased in most eastern and south-eastern parts of the 
studied zone. Figure 5 displays the DBSI results for the period 2000–2020. The low values of the 
DBSI have accompanied the areas with a high vegetation density. 
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Fig. 4. Results of the enhanced vegetation index 2 for years (A) 2000, (B) 2010, and (C) 2020 

 

 
 

Fig. 5. Results of the dry bare Soil index for years (A) 2000, (B) 2010, and (C) 2020 
 

3.2 Analysis of CVA  

The outcomes of CVA have two parameters: the change magnitude and the change vector 
direction. Figure 6 A and B illustrate the maps of change magnitude generated by the EVI2-
DBSI combination for the two periods 2000–2010 and 2010–2020.  
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Fig. 6. Maps of change magnitude (A) for the period 2000–2010 and (B) for 2010–2020 from 
EVI2-DBSI combination. 

 

Between 2000 and 2010, about 46.58% (983.9 km2) of the study region suffered changes, 
as against 53.42% (approximately 1,128.54 km2) unchanged, as in figure 6A. The area with low-
level changes reached 754.76km2, while high-level changes were 229.14 km2, which were 
concentrated in the western section of the study site in the Bahr Al-Najaf depression and some of 
the zones of agricultural fields. 

From 2010–2020, many changes occurred in large parts of the study site compared to the 
2000–2010 period, as illustrated in figure 6B. Land totalling 56.35% (approximately 1,190.82 
km2) witnessed a change, while the rest, about 43.65% (921.82 km2) showed no change. Of the 
total changing area, 36.4% (about 769.02 km2) was associated with low-level changes, observed 
in most agricultural land, and 19.95% (about 431.54 km2) had high-level changes, which were 
mainly concentrated in water zones as well as a few areas of bare soil. 

Concerning the direction of change from 2000 to 2010, figure 7A, nearly 26.93% 
(approximately 577.33 km2) of the study zone suffered biomass variation/moisture reduction, 
followed by about 15.81% (334.06 km2) that experienced regrowth of vegetation cover, and 
2.75% (approximately 31.60 km2) witnessed a bare soil expansion. A small portion of the study 
zone equal to 1.09% (approximately 23.02 km2) showed a water body/moisture increase. 
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Fig. 7. Maps of change direction, left, for 2000–2010, and 
on the right, for 2010–2020, from EVI2-DBSI combination. 

 

According to the change directions for the period 2010–2020 (figure 7B), a large part of 
the study area witnessed about 38.7% (5,096 km2) of vegetation regrowth, according to the 
scattered spatial coverage of vegetation cover. There was an increase in water bodies/moisture of 
approximately 8.92% (183.08 km2). A less extensive part, which is 4.85% (about 100.5 km2), 
suffered a biomass variation/moisture reduction. Finally, the expansion of bare soil increased 
slightly, around 3.79% (approximately 67.03km2). Figures 8 and 9 show the percentage of 
change magnitude calculated for the relative categories for each period. 

 

 

 

 

 

 

   
Fig. 8. Percentages of change magnitude classes for the two study periods. 
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Fig. 9. Percentages of change direction classes for the two study periods. 

 

3.3 Accuracy assessment 

Accuracy evaluation of the CVA outputs was performed using the error (or confusion) matrix for 
defining the overall accuracy, and the kappa index (Equations 5 and 6) (Thakkar et al., 2017; 
Keshtkar & Alizadeh, 2017) was used to test the accuracy of results and compare them with 
actual reality. The confusion matrix is a two-dimensional table that enables the performance of 
an image classification method to be visualised. The truth data is represented by the table's 
columns (x-axis), while the classified image results are represented by the rows (y-axis) (or vice 
versa) (Congalton, 1991). The kappa coefficient ranges from 0 for very low accuracy to 1 for 
excellent accuracy. Because precise field-derived data was unavailable, new data produced 
through remote sensing was developed to establish reference data. It was generated utilising a 
supervised classification of Landsat satellite images to create detailed maps of land cover. On 
composite RGB colour images of 2000, 2010, and 2020, about 246 random sample zones were 
collected. Visual interpretation was used to designate these locations as a distinct land cover 
type, resulting in a total of five categories being represented. ArcGIS software was used to create 
a detailed map of land cover for each date, using the identified areas and a supervised 
classification method through a maximum likelihood classifier (MLC). The maximum-likelihood 
algorithm locates the likeness with an unknown data item and a defined dataset via a covariance 
matrix depending on the correlations within a dataset and the data distribution. To determine 
changing or non-changing regions through the periods 2010–2000 and 2020–2010, spatial 
analysis based on GIS was performed for pairs of these maps. The type of change was then 
assigned and named based on the change direction classes of CVA. Finally, for obtaining the 
statistics of overall accuracy and the kappa index, the specified information as reference data was 
compared with the outputs of CVA (the magnitude and direction of change) in confusion 
matrices. 
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 34/56	789:;<	4=	>4<<;>/	?59@6;?
34/56	789:;<	4=	?59@6;?.

	× 100                                 (5) 

	𝐾 = 	 ("#$	&'()*+(,	$,$-$+./	/0-×/0-	*2	3*44$3.)6/0-	(,,	*2	.#$	(4*7	.*.(,×3*,0-+	.*.(,)
"*.(,	*2	3*44$3.	/80(4$&6/0-	*2	(,,	.#$	(4*7	.*.(,×3*,0-+	.*.(,)

			  (6) 

 

Table 1. The values of overall accuracy and kappa coefficient for the two time periods. 

 
4. Discussion 

In this work, through the application of the CVA technique utilising two EVI2 and DBSI 
indexes, the land cover changes were located and evaluated for the time intervals 2000–2010, 
and 2010–2020. Vegetation and soil indicators were created based on images from the Landsat 
satellite obtained for March 2000, 2010, and 2020. CVA is a promising technique for observing 
the changes of land cover, with the ability to provide important qualitative and quantitative 
information regarding the dynamics of temporal and spatial land cover. The results of the CVA 
outputs (magnitude and direction of change) allow various magnitudes and types of change to be 
determined. 

Compared to classification-based methods, the CVA technique can simultaneously 
analyse a combination of remotely sensed data to monitor the changes within categories of land 
cover. Such changes are obtained by observing the variation between consecutive satellite 
images without going into an uncertain classification (Karnieli et al., 2014). 

The CVA results of the DBSI-EVI2 combination were mapped to define the spatial 
distribution for the change magnitudes and the types of land cover changes in the studied zone. 
The maps of magnitude in figures. 5A & B, showed that, for both periods evaluated, most of the 
study region was influenced via low-level changes. In addition, large areas remained unchanged. 
The high-level changes were significantly low in 2000–2010, but clearly increased in 2010–
2020.  

According to the change direction maps in figure 6A, the study area generally 
experienced a marked decrease in vegetation cover during the period 2000–2010. Indicating the 
decrease in regrowth areas at the expense of a raising in the degraded land area, that represent the 
biomass variations regions (or moisture reduction), where concentrated in the central, eastern, 
and south-eastern parts, with the expansion of bare soil areas. The spatial expansion of degraded 
or arid land can be attributed to reduced annual rainfall in this period (as illustrated in figure.2) 
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and droughts arising from poor land management. Also, the water bodies of the region, 
represented by the depression of Bahr Al-Najaf, witnessed a noticeable decrease in their levels 
during the same period due to the dwindling of the floodwaters that feed this depression.  

Moreover, as seen in figure 6B, the period 2010–2020 witnessed an increase in regrowth 
zones, where cultivated areas expanded due to increased agricultural activity and rainfall levels 
rising from 50.3 mm in 2010 to 128.4 mm in 2020, as illustrated in figure 2. This was evident in 
the eastern and south-eastern portions of the studied region, where there was a significant 
decrease in areas of biomass variation/humidity reduction. Water bodies have expanded 
significantly compared to the previous period because of the increased flow of torrent water, 
which is the major source of water.  

Confusion matrices have been utilised for evaluation of the accuracy of CVA outputs, 
based on change/non-change (magnitude) in addition to the type of change (direction), for the 
2000–2010 and 2010–2020 periods. Table 1 offers the values of overall accuracy and the kappa 
coefficient calculated using these matrices, in accordance with (Landis, & Koch, 1977). These 
results are considered very acceptable. 

5. Conclusion 

Currently, remote sensing imagery and different analysis techniques provide further information 
to monitor and detect changes in land cover. CVA is a powerful and effective method to detect 
radiometric changes in the multi-spectral remote sensing data. The results of the CVA technique 
implementation using two components, EVI2 and DBSI, showed the ability to detect and classify 
different categories of changes concerning biomass gain and loss. The results demonstrated that 
the number of regions that did not change was higher than those with high-level and low-level 
changes through the two periods studied.  

Between 2000 and 2010, there has been a decline in areas of regrowth and water bodies. 
From 2010 to 2020, regrowth zones and water bodies have increased as large areas of bare soil 
have shifted to agricultural use due to increased rainfall.  

The CVA technique offered satisfactory results for the two study periods, as the overall 
accuracy of the final maps was 0.885 and 0.829, with a kappa index of 0.867 and 0.852 
respectively, indicating that accurate change detection can be obtainable. The maps of change 
magnitude and direction could establish a fundamental rule for planners in determining changes 
of land cover and planning suitable land administration strategies. 
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