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INTRODUCTION

Kenmotsu (1972) introduced a new class of almost contact metric manifolds, which
are known as Kenmotsu manifolds nowadays, and proved that a locally symmetric
Kenmotsu manifold is of constant sectional curvature — 1. Takahashi (1977) introduced
the notion of local ¢-symmetry, which is weaker than local symmetry in the context
of Sasakian geometry. Generalizing the notion of local ¢-symmetry, De et al. (2003)
introduced the notion of ¢@-recurrence on Sasakian manifolds. Since then, many
results on @-recurrent and ¢-symmetric Kenmotsu manifolds were obtained by some
authors, for more related results in this framework we refer the reader to some recent
papers by De (2008), De & Pathak (2004) and De et al. (2009a, 2009b).

On the other hand, the notion of k-nullity distribution was first introduced by
Gray (1966) and Tanno (1978) in the study of Riemannian manifolds (M , g), which
is defined for any p € M as follows:

Ny(k) ={Z € T,M : R(X,Y)Z = k[g(Y, Z)X — g(X, Z)Y]}, (1)
where X, Y denote arbitrary vectors in 7, M and k € R.

Recently, Blair et al. (1995) introduced a generalized notion of the k-nullity
distribution named the (k, u)-nullity distribution on a contact metric manifold
(M*H1 ¢, € n, g), which is defined for any p ¢ 7271 as follows:



66  Yaning Wang and Ximin Liu

No(k, 1) = {Z € T,M : R(X,Y)Z =k[g(Y, Z)X — g(X, Z)Y]

oY, 2)hX — (X, 2y

where h = %quﬁ and L denotes the Lie differentiation and (k, u1) € R2.

Later, Dileo & Pastore (2009) introduced another generalized notion of the &-nullity
distribution which is named the (k, u)' -nullity distribution on an almost Kenmotsu
manifold (M?"1 ¢, & n, g)and is defined for any p € M?" ! as follows:

Nyp(k,p) ={Z € T,M : R(X,Y)Z =k[g(Y. Z)X — g(X, Z)Y]

3
+M[9(Ya Z)h/X_g(X> Z)h/Y]}’ ( )

where b/ = h o ¢, £ denotes the Lie differentiation and (k, 1) € R Suppose that
both & and 4 in relation (2) (resp. (3)) are smooth functions on M2"*1 then such
a nullity distribution is called a generalized (k, u) (resp. (k?, /L)I)-nullity distribution
(Pastore & Saltarelli, 2011). For some recent results on almost Kenmotsu manifolds
with the characteristic vector field belonging to some nullity distributions mentioned
above, we refer the reader to Wang & Liu (2014a, 2014Db).

The object of this paper is to investigate ¢-recurrent and ¢-symmetric almost
Kenmotsu manifolds, obtaining a classification theorem of ¢@-recurrent almost
Kenmotsu manifolds with the characteristic vector fields belonging to the (k, ,u)’-nullity
distribution. It is well-known (Koufogiorgos & Tsichlias, 2000) that a generalized
(k, p1)-contact metric manifold of dimension greater than 3 must be a (k, /t)-contact
metric manifold. However, there exist non-trivial examples of almost Kenmotsu
manifolds of dimension greater than 3 such that 3 belongs to the generalized (k, ,u)
or (k, ,LL)'—nullity distribution (Pastore & Saltarelli, 2011). Under the assumption of
¢-symmetry, in this paper, we prove that on an almost Kenmotsu manifold }/27+1
of dimension greater than 3, if £ belongs to the generalized (k’, u)-nullity distribution
then both % and  are constants on /27+1.

The present paper is organized as follows. In the following section, we provide
some basic formulas and properties of almost Kenmotsu manifolds according to Dileo
& Pastore (2007, 2009) and Kenmotsu (1972). Later another section is devoted to
presenting some well-known results on almost Kenmotsu manifolds with £ belonging
to some nullity distributions. Finally, in the last section, some classification theorems
of almost Kenmotsu manifolds such that ¢ belongs to the (k, u) and (k, ,u)/—nullity
distribution are given respectively. Some corollaries of our main theorems are also
presented.

ALMOST KENMOTSU MANIFOLDS

From Dileo & Pastore (2007, 2009), we shall recall some basic notions and properties
of almost Kenmotsu manifolds. An almost contact structure (Blair, 2010) on a
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(2n 4 1)-dimensional smooth manifold 727+ is a triplet (¢, £, 1), where ¢ is an
(1 , 1)-type tensor field, £ a global vector field and 17 an 1-form, such that

¢’ =—id+n®¢ nE) =1, )

where id denotes the identity mapping, which imply that (Z)(f ) =0, no¢ =0 and
rank(qb) = 2n. A Riemannian metric g on A/2"*+1 is said to be compatible with the
almost contact structure (¢, &, n) if

9(¢ X, 0Y) = g(X,Y) = n(X)n(Y) (5)

for any vector fields X, Y on M/2"*+1. An almost contact structure endowed with
a compatible Riemannian metric is said to be an almost contact metric structure.
Moreover, a manifold endowed with an almost contact metric structure is said to be
an almost contact metric manifold. The fundamental 2-form ¢ on an almost contact
metric manifold A/27+1 is defined by (X, Y) = g(X, ¢Y) for any vector fields
X,Y on M 2n+1  An almost Kenmotsu manifold is defined as an almost contact
metric manifold such that dn = 0 and d® = 2n A ®. It is well-known (Blair, 2010)
that the normality of almost contact structure is expressed by the vanishing of the
tensor Ny = [, @] + 2dn ® &, where [¢, ¢] is the Nijenhuis tensor of ¢. From
Kenmotsu (1972), we see that the normality of an almost Kenmotsu manifold is
expressed by

(Vx9)Y = g(¢X,Y)§ —n(Y)pX

for any vector fields X, Y on M?2"+1. According to Janssens & Vanhecke (1981), a
normal almost Kenmotsu manifold is said to be a Kenmotsu manifold.

Next, we consider two tensor fields | = R(-,£)¢ and h = %quf) on an almost
Kenmotsu manifold (M?"1 ¢ € n,g), where R is the Riemannian curvature
tensor of g and L is the Lie differentiation. From Dileo & Pastore (2007, 2009)
and Kim & Pak (2005), we know that the two (1, 1)-type tensor fields / and A, are
symmetric and satisfy

he¢ =0, 1I£=0, trth=0, tr(h¢) =0, ho¢+ oh =0, (6)

Vyé = 02X — ¢hX, 7

Pl — 1 =2(h* — ¢%), ®)

tr(l) = S(€,€) = 9(Q€, &) = —2n — trh?, ©)
R(X,Y)E=n(X)(Y = 6hY) = (Y )(X — 0hX) + (Vysh)X — (Vxoh)Y, (10)
for any vector fields X,Y € I'(TM), where S, Q, V and I'(T'M) denote the
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Ricci curvature tensor, the Ricci operator with respect to metric g, the Levi-Civita
connection of 9 and the Lie algebra of all vector fields on )/27t1, respectively. On
the other hand, according to Takahashi (1977) and De et al. (2003), we have the
following two definitions.

Definition 1. An almost Kenmotsu manifold is said to be ¢-recurrent if it satisfies

»*(VwR)(X,Y)Z) = AW)R(X,Y)Z (11)

for any vector fields X,Y, Z, W € I'(T'M), where A is an l-form on )/?n+1.
If equation (11) holds for any vector fields X, Y, Z, W orthogonal to &, then the
manifold is called a locally ¢-recurrent manifold.

Definition 2. An almost Kenmotsu manifold is said to be ¢-symmetric, if it satisfies
¢*(VwR)(X,Y)Z) =0 (12)

for any vector fields X, Y, Z, W € I'(T'M). If relation (12) holds for any vector
fields X,Y, Z, W orthogonal to &, then the manifold is called a locally ¢-symmetric
manifold.

& BELONGS TO THE NULLITY DISTRIBUTION

Let (M?"t1 ¢, £, 1, g) be an almost Kenmotsu manifold for which & belongs to the
generalized (k, ,LL)' -nullity distribution, from (3) we have

R(X,Y)E=kn(Y)X —n(X)Y]+ un(Y)WX —n(X)RY],  (13)

where both k and 1 are smooth functions on /2" +1. Throughout the paper, we denote
by D the distribution which is defined by D = ker(n) = Im(¢). Replacing Y by £ in
equation (13) gives that [X = k (X — 77<X )f ) + ,uh’X , making using of equations
(4) and (6) in this equation then we get PlpX = —]{Z(X - n(X)O + uth.
Substituting the above equation into (8) we have

B2 = (k+1)¢? (& b2 = (k+ 1)¢?). (14)

Let X € D be an eigenvector field of 4/ with the corresponding eigenvalue )\,
from relation (14) we have that )\2 = —(k+1). It follows that k< —1 and
A=+v—-k—1. In what follows, we denote by [)\]' and [—)\]/ the eigenspaces

associated with A’ corresponding to the eigenvalue A # () and —\ of R/ respectively.
Thus we have the following two lemmas.

Lemma 1 (Pastore & Saltarelli, 2011). Let (M?"*1 ¢ £ 1, g) be an almost
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Kenmotsu manifold with i # (). If the generalized (k’, /L)'—nullity condition holds,
then

§N) = =Ap+2), (k) = =2k +1)(p+2). (15)
Moreover, if 2n + 1 > 5, then we have
X =0, X(k)=0, X(u)=0 (16)
forany X € D.

Lemma 2 (Dileo & Pastore, 2009). Let (M2, ¢, £, 7, g) be an almost Kenmotsu
manifold such that h # 0 and & belongs to the (k, /L)/-nullity distributions. Then
for any X,,Y), Z) € [)\]/ and X_,,Y_\,Z_, € [—)\]’, the Riemannian curvature
tensor satisfies:
R(X)\,Y2)Z-x =0,
R(X_\,Y_2)Z) =0,
R(X)\, Y_»)Zy = (k+2)g(X\, Z\)Y_),
R(X5,Y_\)Zoy = = (k+2)g(Y_x, Z-0) X0,
R(X),Y\)Z\ = (k—2X)[g(Y), Z)) X — g(X\, Z))Y)],
R(X_5,Yon)Zoy = (k4 2X)[g(Yoy, Zo3) Xox — g(Xy, Z20) Y20,

where \2 = —(k + 1).

Dileo & Pastore (2009) proved that an almost Kenmotsu manifold with & belonging
to the (k, ,u)’—nullity distribution satisfies ;1 = —2. Thus, making use of the above
Lemma 2 and Theorem 5.1 of Pastore & Saltarelli (2011), we obtain the following
lemma.

Lemma 3 (Wang & Liu). Let (M, ¢, £, 1, g) be a (2n + 1)-dimensional almost
Kenmotsu manifold with & belonging to the generalized (k‘, /L)/-nullity distribution
and b’ # 0. If n > 1, then we have

QX =-2nX+2n(k+ )n(X),+[p—2(n—1)|K'X (17)

for any X € ['(TM). Moreover, if both k and /1 are constants, then we have
QX = —2nX + 2n(k + 1)n(X)¢ — 2nh' X (18)
forany X € ['(T'M). In both cases, the scalar curvature of A/27+1is 2n(k — 2n).

Similarly, making use of Theorem 4.1 of Pastore & Saltarelli (2011), by a
straightforward computation the present authors also obtained the following lemma.

Lemma 4 (Wand & Liu). Let (M?" ™ ¢, £, 1, g) be a (2n + 1)-dimensional almost
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Kenmotsu manifold with £ belonging to the generalized (k, u)’—nullity distribution
and h' # 0.1f n > 1, then we have

QX = —2nX + 2n(k + 1)n(X)€ — 2(n — 1)W' X + phX (19)
for any X € ['(TM). Moreover, the scalar curvature of of M2+ is 2n(k — 2n).

?-RECURRENT ALMOST KENMOTSU MANIFOLDS
We now give a classification result of a type of almost Kenmotsu manifolds.

Theorem 1. Let (M?"*1 ¢ £ n, g)bea(2n + 1)-dimensional ¢-recurrent almost
Kenmotsu manifold with " # (). Suppose that the characteristic vector field ¢ belongs
to the (k‘, ,u)l—nullity distribution, then k = —2 and hence M 2"t is locally isometric
to the product H" ™ (—4) x R™.

Proof. Assume that }/2"t1is a ¢-recurrent almost Kenmotsu manifold, by virtue of
equations (4) and (11) we obtain

—(VwR)(X,Y)Z +0((VwR)(X,Y)2)¢ = AW)R(X,Y)Z  (20)

for any vector fields X, Y, Z, W € ['(TM). Taking the inner product of relation (20)
with arbitrary vector field U € ['(T' M) we get

—g((VwR)(X,Y)Z,U) +n((VwR)(X,Y)Z)n(U) = AW)g(R(X,Y)Z,U) D)

for any vector fields X,Y,Z, W € F(TM ) Considering a local orthonormal

basis {El =12+ 2n+ 1} of tangent space at each point of the manifold
M?7+1 By setting X = U = E; in equation (21) and taking summation over
1:1 <1 <2n+ 1, we obtain

(Vw9 (Y, Z) +n((VwR)(£,Y)Z2) = AW)S(Y,Z)  (22)
forany Y, Z, W € F(TM ) In view of the skew-symmetry property of the curvature
tensor R we conclude that 7)((V R)(§,Y)€) = 0 for any Y, W € I'(TM). Thus it
follows from (22) that

—(VwS)(Y,§) = A(W)S(Y¢) (23)
forany Y, W € F(TM).

Applying Lemma 3 in this context, we obtain from (18) that Q¢ = 2nk¢.
Replacing Y by £ in relation (23) yields that 2nkA(W) = —g(VwS)(£,&) =0
for any W € ['(T'M), then we get A = 0 and hence M?"*! is ¢-symmetric. Also,
it follows from (18) that
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(VyQ)X + 2n(Vyh)X
=2n(k+ 1)[n(X)Y = 2n(X)n(Y)§ +n(X)R'Y + (X, Y)E + (W' X, Y)¢]

for any X,Y € F(TM). Noticing that g((VXQ)Y, Z) = (VXS)(Y, Z) for any
XY Z¢€ F(TM) and making use of (23) we obtain
(VwS)(Y,¢)
=9((Vw@Q)Y¢)
= 2n{g(Vwh'Y,§) = (k + )[g(Y, W) + (W'Y, W) = n(Y )n(W)]}
= —2n{g(h*Y, W)+ (k+ D)[g(Y; W) = n(Y )n(W)] + (k +2)g(h'Y, W)}

for any vector fields Y, W € ['(T'M). Taking into account A = () and comparing the
above equation with (23) we get

g(B*Y, W) + (k+ D)lg(YV, W) = (Y )n(W)] + (k +2)g(NY, W) =0 24)

forany Y, W € F(TM ) Letting Y € [)\]' in relation (24) and applying Lemma 2 we
obtain

M (k+2)A+k+1=0. (25)

In view of the fact that \? = — (k 4 1) and the assumption that } is non-vanishing,
then we see from (25) that k = —2 and hence )\ = 4]. The remaining proof is easy
to check. For the sake of completeness, we give the details of the remaining proof.
Without losing the generality, we now choose A = 1, then by Lemma 2 we get:

R(X)\,Y)\)Z)\ = —4[g(Y,\, Z)\>X/\ - g(X)\, Z)\)Y)\] and R(X_)\, Y_)\)Z_,\ =0 (26)

forany X),Y\,Z) € [\'and X_,,Y_,,Z_, € [—A]". Moreover, noticing jt = —2
then it follows from (13) that K (X, {) = —4 forany X € [\’ and K(X,{) = 0 for
any X € [—A]'. As shown in Dileo & Pastore (2009) that the distribution [{] & [A]’
is integrable with totally geodesic leaves and the distribution [—)\]’ is integrable with
totally umbilical leaves by H = —(1 - )\)f , where H is the mean curvature vector
field for the leaves of [—)\]/ immersed in /271, Being \ = 1, we know that two
orthogonal distribution [{] . [)\]’ and [—/\] are both integrable with totally geodesic
leaves. This completes the proof.

Corollary 1. A locally symmetric almost Kenmotsu manifold with the characteristic
vector field belonging to the (k, ,u)/—nullity distribution and the non-vanishing tensor
h. is locally isometric to the product H" ™ (—4) x R™

The above result was proved by Dileo & Pastore (2009).
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Theorem 2. Let (M2, ¢, £, 7, g) be a(2n + 1)-dimensional ¢-recurrent almost
Kenmotsu manifold with , > 1 and }/ 7é (. If the characteristic vector field & belongs
to the generalized (k, u)’-nullity distribution, then the 1-form A is given by

1
S (27)
A kdk’

where k is a non-zero function on }\/2n+1.

Proof. Proceeding similarly to proof of Theorem 1, we see that the relation (23) holds
in this context. Since & belongs to the generalized (k, ,u)'-nullity distribution, then by
applying Lemma 3 we may obtain

(VwQ)Y =2nW (k)n(Y)§ + W(R'Y + [ = 2(n = 1)|(Vh)Y

+ 2n(k + (Y)W = 29(Y)p(W)E +n(Y)R'W + g(W, Y )¢ + (K'Y, W)¢]
forany Y, W € F(TM ) Taking the inner product of the above equation with £ and
making use of ¢((ViyQ)Y, Z) = (Vi S)(Y, Z) we obtain

(VwS)(Y,§) =20W (k)n(Y) + 2n(k + 1)[g(Y, W) = n(W)n(Y)]
+(2n =2 — ) g(h?Y, W) + (2nk +4dn — p — 2)g(K'W,Y)

for any Y, W € I'(TM). Replacing Y by & in the above equation and using the first
term of (6) we see that (VWS)(f, f) = QHW(]C) for any IV € F(TM). On the other
hand, using relation (17) we get ()¢ = 2nk¢ then it follows from equation (23) that

(VwS)(&,6) = —AW)S(E,€) = —2nkA(W) for any W € ['(TM), this means
that

EAW) = -W(k) (28)

forany W € T'(T M). Moreover, from (14) we see that the smooth function & satisfies
k < —1, hence, (27) follows from (28). This completes the proof.

Corollary 2. Let (M?" 1 ¢, £, n, g)bea(2n + 1)-dimensional ¢-recurrent almost
Kenmotsu manifold with the characteristic vector field £ belonging to the generalized
(k’, /L)’—nullity distribution and h’ # (. Then the following statements are equivalent:

(1): k is a constant;
(ii): M2+l is ¢-symmetric;
(iii): & belongs to the (K, 1t)-nullity distribution.

Moreover, if the dimension of }/27t1 is assumed to be greater than 5, then the above
three assertions are equivalent to the following statement:

(iv): the vector field associated to the 1-form A is orthogonal to €.

Proof. The equivalence between (i) and (ii) follows from relation (27). If £ is a
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constant, then by (14) we know that the eigenvalues A and — )\ of h/ are also non-zero
constants. Using the first term of equation (15) we conclude that y = —2, that is, £
belongs to the (k‘, —2)/—nullity distribution. Conversely, (iii)=>(i) is obviously.

Next, we assume that n > 1 and prove (iv)=>(i). If the vector field associated to
the 1-form A is orthogonal to &, in view of (27) we obtain 13 (k’) = 0. As the dimension
of M2n+1is greater than 5, then the second term of equation (16) and £ (k) = 0 assure
that k is a constant. Also, (i)=(iv) follows from (27). This completes the proof.

We now present some classification theorems of almost Kenmotsu manifolds for
which £ belongs to the (k, it)-nullity distribution.

Theorem 3. Let (M?" ™, ¢, £, 1, g) be a(2n + 1)-dimensional ¢)-recurrent almost
Kenmotsu manifold with the characteristic vector field & belonging to the (k, )
-nullity distribution. Then )72n+1 is of constant sectional curvature -1, provided that
the vector field associated to the 1-form A is not orthogonal to &.

Proof. If £ belongs to the (k‘, u)-nullity distribution, it follows from Dileo & Pastore
(2009) that; = —]andhence} = (). Thus,equation (7)becomes V x§ = X — (X )¢
forany X € ['(T M) and from (10) we see that
R(X, V)¢ =n(X)Y —n(Y)X (29)

for any X,Y € ['(T'M). Taking the inner product of relation (29) with arbitrary
vector field Z € T'(TM) we get

N(R(X,Y)Z) = g(X, Z)n(Y) - g(Y, Z)n(X) (30)
for any X,Y,Z € F(TM ) Moreover, taking the covariant differentiation along
arbitrary vector field W € ['(T'M) on (29) and making use of (29) we get

(VwR)(X.Y)§ =V R(X.Y)§ - R(VwX, V)¢ - R(X, VigY)¢ = R(X,Y) V¢

— (X, Y)WV — g(Y, W)X + g(X, W)Y D

forany X, Y, W € I'(TM). Replacing Z by & in relation (30) gives

N(R(X,Y)E) =n(X)n(Y) —=n(Y)n(X) =0

for any X,Y € F(TM ), thus, using this equation and taking the inner product of
relation (31) with £ we obtain

N((VwR)(X,Y)E) =0 (32)
forany X, Y, W € F(TM). In view of (31) and (32) we obtain from (11) that
(VwR)(X,Y)§ = —A(W)R(X,Y)¢ (33)
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for any X, Y, W € I'(TM). Using (31) in the left hand side of equation (33) gives
that

forany X, Y, W € I'(TM). Replacing W by ¢ in (34) and using (30) we obtain
AQRX,Y)E=0

for any X,Y € T'(T'M). Suppose that the vector field associated to the 1-form A is
not orthogonal to £, we see from the above relation that

R(X,)Y)(=0
forany X, Y € ['(T'M). Substituting the above relation into (34) we get
RUX.Y)IV = —[g(¥. W)X — g(X,W)Y]

forany X,Y, W € F(TM ) Thus we complete the proof.

Corollary 3. A ¢-symmetric almost Kenmotsu manifold with the characteristic vector
field belonging to the (k, u)-nullity distribution is of constant sectional curvature —1.

Obviously, the above result extends Corollary 6 of Kenmotsu (1972).

Theorem 4. Let (M2, ¢, £, 7, g) be a(2n + 1)-dimensional ¢-recurrent almost
Kenmotsu manifold with i # (). If the characteristic vector field £ belongs to the
generalized (k, /J)—nullity distribution and 1 > 1, then the 1-form A is given by

1
A=—1dk, (35)

where k is a non-zero function on J\/2n+1.

Proof. Similarly as in the proof of Theorem 2, we obtain that relation (28) holds for
any vector field W € F(TM ) On the other hand, from a result of Pastore & Saltarelli
(2011), we know that the smooth function k satisfies k < —1. Therefore, (35) follows
from (28).

Corollary 4. Let (M?" 1 ¢, £, n, g)bea(2n + 1)-dimensional ¢)-recurrent almost
Kenmotsu manifold with h # (. If the characteristic vector field £ belongs to the
generalized (k, u)—nullity distribution and n > 1, then the vector field associated to
the 1-form A is never orthogonal to the characteristic vector field &.

Proof. It is casy to see from (35) that kA(£) = —&(k), using this equation in the
second term of relation (15) we obtain

Al6) = @. (36)
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Suppose that the vector field associated to the the 1-form A is orthogonal to &,
that is, A(f ) = (). We observe from Proposition 3.1 of Pastore & Saltarelli (2011) that
relation (14) holds in this context. Thus, it follows from (36) that ; = —1 and hence
by relation (14) we may get h = (), we arrive at a contradiction. This completes the
proof.
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