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On -recurrent almost Kenmotsu manifolds
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ABSTRACT
The object of this paper is to investigate -recurrent and -symmetric almost Kenmotsu 
manifolds with the characteristic vector fields belonging to some nullity distributions.
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INTRODUCTION

Kenmotsu (1972) introduced a new class of almost contact metric manifolds, which 
are known as Kenmotsu manifolds nowadays, and proved that a locally symmetric 
Kenmotsu manifold is of constant sectional curvature . Takahashi (1977) introduced 
the notion of local -symmetry, which is weaker than local symmetry in the context 
of Sasakian geometry. Generalizing the notion of local -symmetry, De et al. (2003) 
introduced the notion of -recurrence on Sasakian manifolds. Since then, many 
results on -recurrent and -symmetric Kenmotsu manifolds were obtained by some 
authors, for more related results in this framework we refer the reader to some recent 
papers by De (2008), De & Pathak (2004) and De et al. (2009a, 2009b).

On the other hand, the notion of -nullity distribution was first introduced by 
Gray (1966) and Tanno (1978) in the study of Riemannian manifolds , which 
is defined for any  as follows:

           (1)

where  denote arbitrary vectors in  and .

Recently, Blair et al. (1995) introduced a generalized notion of the -nullity 
distribution named the -nullity distribution on a contact metric manifold 

, which is defined for any  as follows:



Yaning Wang and  Ximin Liu66

(2)

where  and  denotes the Lie differentiation and .

Later, Dileo & Pastore (2009) introduced another generalized notion of the -nullity 
distribution which is named the -nullity distribution on an almost Kenmotsu 
manifold  and is defined for any   as follows:

  (3)

where ,  denotes the Lie differentiation and . Suppose that 
both  and  in relation (2) (resp. (3)) are smooth functions on , then such 
a nullity distribution is called a generalized  (resp. )-nullity distribution 
(Pastore & Saltarelli, 2011). For some recent results on almost Kenmotsu manifolds 
with the characteristic vector field belonging to some nullity distributions mentioned 
above, we refer the reader to Wang & Liu (2014a, 2014b).

The object of this paper is to investigate -recurrent and -symmetric almost 
Kenmotsu manifolds, obtaining a classification theorem of -recurrent almost 
Kenmotsu manifolds with the characteristic vector fields belonging to the -nullity 
distribution. It is well-known (Koufogiorgos & Tsichlias, 2000) that a generalized 

-contact metric manifold of dimension greater than 3 must be a -contact 
metric manifold.  However, there exist non-trivial examples of almost Kenmotsu 
manifolds of dimension greater than 3 such that  belongs to the generalized  
or -nullity distribution (Pastore & Saltarelli, 2011). Under the assumption of 

-symmetry, in this paper, we prove that on an almost Kenmotsu manifold  
of dimension greater than 3, if  belongs to the generalized -nullity distribution 
then both  and  are constants on .

The present paper is organized as follows. In the following section, we provide 
some basic formulas and properties of almost Kenmotsu manifolds according to Dileo 
& Pastore (2007, 2009) and Kenmotsu (1972). Later another section  is devoted to 
presenting some well-known results on almost Kenmotsu manifolds with  belonging 
to some nullity distributions. Finally, in the last section, some classification theorems 
of almost Kenmotsu manifolds such that  belongs to the  and -nullity 
distribution are given respectively. Some corollaries of our main theorems are also 
presented.

ALMOST KENMOTSU MANIFOLDS

From Dileo & Pastore (2007, 2009), we shall recall some basic notions and properties 
of almost Kenmotsu manifolds. An almost contact structure (Blair, 2010) on a 
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-dimensional smooth manifold  is a triplet , where  is an 
-type tensor field,  a global vector field and  an 1-form, such that

               (4)

where  denotes the identity mapping, which imply that ,  and 
. A Riemannian metric  on  is said to be compatible with the 

almost contact structure  if

               (5)

for any vector fields  on . An almost contact structure endowed with 
a compatible Riemannian metric is said to be an almost contact metric structure. 
Moreover, a manifold endowed with an almost contact metric structure is said to be 
an almost contact metric manifold. The fundamental 2-form  on an almost contact 
metric manifold  is defined by  for any vector fields 

 on .  An almost Kenmotsu manifold is defined as an almost contact 
metric manifold such that  and . It is well-known (Blair, 2010) 
that the normality of almost contact structure is expressed by the vanishing of the 
tensor , where  is the Nijenhuis tensor of . From 
Kenmotsu (1972), we see that the normality of an almost Kenmotsu manifold is 
expressed by

for any vector fields  on . According to Janssens & Vanhecke (1981), a 
normal almost Kenmotsu manifold is said to be a Kenmotsu manifold.

Next, we consider two tensor fields  and  on an almost 
Kenmotsu manifold , where  is the Riemannian curvature 
tensor of  and  is the Lie differentiation. From Dileo & Pastore (2007, 2009) 
and Kim & Pak (2005), we know that the two -type tensor fields  and  are 
symmetric and satisfy

   ,    (6)

                  (7)

                  (8)

           (9)

    (10)

for any vector fields , where , ,  and  denote the 
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Ricci curvature tensor, the Ricci operator with respect to metric , the Levi-Civita 
connection of  and the Lie algebra of all vector fields on , respectively. On 
the other hand, according to Takahashi (1977) and De et al. (2003), we have the 
following two definitions.

Definition 1. An almost Kenmotsu manifold is said to be -recurrent if it satisfies

         (11)

for any vector fields , where  is an 1-form on . 
If equation (11) holds for any vector fields  orthogonal to , then the 
manifold is called a locally -recurrent manifold.

Definition 2.  An almost Kenmotsu manifold is said to be -symmetric, if it satisfies

                   (12)

for any vector fields . If relation (12) holds for any vector 
fields  orthogonal to , then the manifold is called a locally -symmetric 
manifold.

 BELONGS TO THE NULLITY DISTRIBUTION

Let  be an almost Kenmotsu manifold for which  belongs to the 
generalized -nullity distribution, from (3) we have

       (13)

where both  and  are smooth functions on . Throughout the paper, we denote 
by  the distribution which is defined by . Replacing  by  in 
equation (13) gives that , making using of equations 
(4) and (6) in this equation then we get . 
Substituting the above equation into (8) we have

                (14)

Let  be an eigenvector field of  with the corresponding eigenvalue , 
from relation (14) we have that . It follows that  and 

. In what follows, we denote by  and  the eigenspaces 
associated with  corresponding to the eigenvalue   and  of  respectively. 
Thus we have the following two lemmas.

Lemma 1 (Pastore & Saltarelli, 2011). Let  be an almost 
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Kenmotsu manifold with . If the generalized -nullity condition holds, 
then

            (15)

Moreover, if , then we have

               (16)

for any .

Lemma 2 (Dileo & Pastore, 2009). Let  be an almost Kenmotsu 
manifold such that  and  belongs to the -nullity distributions. Then 
for any  and , the Riemannian curvature 
tensor satisfies:

where .

Dileo & Pastore (2009) proved that an almost Kenmotsu manifold with  belonging 
to the -nullity distribution satisfies .  Thus, making use of the above 
Lemma 2 and Theorem 5.1 of Pastore & Saltarelli (2011), we obtain the following 
lemma.

Lemma 3 (Wang & Liu). Let  be a -dimensional almost 
Kenmotsu manifold with  belonging to the generalized -nullity distribution 
and . If , then we have

           (17)

for any . Moreover, if both  and  are constants, then we have

             (18)

for any . In both cases, the scalar curvature of  is .

Similarly, making use of Theorem 4.1 of Pastore & Saltarelli (2011), by a 
straightforward computation the present authors also obtained the following lemma.

Lemma 4 (Wand & Liu). Let  be a -dimensional almost 
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Kenmotsu manifold with  belonging to the generalized -nullity distribution 
and . If , then we have

            (19)

for any . Moreover, the scalar curvature of of  is .

-RECURRENT ALMOST KENMOTSU MANIFOLDS

We now give a classification result of a type of almost Kenmotsu manifolds.

Theorem 1. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with . Suppose that the characteristic vector field  belongs 
to the -nullity distribution, then  and hence  is locally isometric 
to the product .

Proof. Assume that  is a -recurrent almost Kenmotsu manifold, by virtue of 
equations (4) and (11) we obtain

       (20)

for any vector fields . Taking the inner product of relation (20) 
with arbitrary vector field  we get

      (21)

for any vector fields . Considering a local orthonormal 

basis  of tangent space at each point of the manifold
. By setting  in equation (21) and taking summation over 

, we obtain

         (22)

for any . In view of the skew-symmetry property of the curvature 
tensor  we conclude that  for any . Thus it 
follows from (22) that

                  (23)

for any .

Applying Lemma 3 in this context, we obtain from (18) that . 
Replacing  by  in relation (23) yields that  
for any , then we get  and hence  is -symmetric. Also, 
it follows from (18) that
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for any . Noticing that  for any 
 and making use of (23) we obtain

for any vector fields . Taking into account  and comparing the 
above equation with (23) we get

      (24)

for any . Letting  in relation (24) and applying Lemma 2 we 
obtain

                   (25)

In view of the fact that  and the assumption that  is non-vanishing, 
then we see from (25) that  and hence . The remaining proof is easy 
to check. For the sake of completeness, we give the details of the remaining proof. 
Without losing the generality, we now choose , then by Lemma 2 we get:

          (26)

for any  and . Moreover, noticing  
then it follows from (13) that  for any  for 
any . As shown in Dileo & Pastore (2009) that the distribution  
is integrable with totally geodesic leaves and the distribution  is integrable with 
totally umbilical leaves by , where  is the mean curvature vector 
field for the leaves of  immersed in . Being , we know that two 
orthogonal distribution  and  are both integrable with totally geodesic 
leaves. This completes the proof.

Corollary 1. A locally symmetric almost Kenmotsu manifold with the characteristic 
vector field belonging to the -nullity distribution and the non-vanishing tensor 

 is locally isometric to the product .

The above result was proved by Dileo & Pastore (2009).
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Theorem 2. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with  and . If the characteristic vector field  belongs 
to the generalized -nullity distribution, then the 1-form  is given by

                        (27)

where  is a non-zero function on .

Proof. Proceeding similarly to proof of Theorem 1, we see that the relation (23) holds 
in this context. Since  belongs to the generalized -nullity distribution, then by 
applying Lemma 3 we may obtain

for any . Taking the inner product of the above equation with  and 
making use of  we obtain

for any . Replacing  by  in the above equation and using the first 
term of (6) we see that  for any . On the other 
hand, using relation (17) we get  then it follows from equation (23) that 

 for any , this means 
that

                     (28)

for any . Moreover, from (14) we see that the smooth function  satisfies 
, hence, (27) follows from (28). This completes the proof.

Corollary 2. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with the characteristic vector field  belonging to the generalized 

-nullity distribution and . Then the following statements are equivalent:

 (i):  is a constant;

 (ii):  is -symmetric;

 (iii):  belongs to the -nullity distribution.

 Moreover, if the dimension of  is assumed to be greater than , then the above 
three assertions are equivalent to the following statement:

 (iv): the vector field associated to the 1-form  is orthogonal to .

Proof. The equivalence between (i) and (ii) follows from relation (27). If  is a 
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constant, then by (14) we know that the eigenvalues  and  of  are also non-zero 
constants. Using the first term of equation (15) we conclude that , that is,  
belongs to the -nullity distribution. Conversely, (iii) (i) is obviously.

Next, we assume that  and prove (iv) (i). If the vector field associated to 
the 1-form  is orthogonal to , in view of (27) we obtain . As the dimension 
of  is greater than 5, then the second term of equation (16) and  assure 
that  is a constant. Also, (i) (iv) follows from (27). This completes the proof.

   We now present some classification theorems of almost Kenmotsu manifolds for 
which  belongs to the -nullity distribution.

Theorem 3. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with the characteristic vector field  belonging to the 
-nullity distribution. Then  is of constant sectional curvature -1, provided that 
the vector field associated to the 1-form  is not orthogonal to .

Proof. If  belongs to the -nullity distribution, it follows from Dileo & Pastore 
(2009) that  and hence . Thus, equation (7) becomes  
for any  and from (10) we see that

                  (29)

for any . Taking the inner product of relation (29) with arbitrary 
vector field  we get

                 (30)

for any . Moreover, taking the covariant differentiation along 
arbitrary vector field  on (29) and making use of (29) we get

        (31)

for any . Replacing  by  in relation (30) gives 

for any , thus, using this equation and taking the inner product of 
relation (31) with  we obtain

                     (32)

for any . In view of (31) and (32) we obtain from (11) that

              (33)



Yaning Wang and  Ximin Liu74

for any . Using (31) in the left hand side of equation (33) gives 
that 

              (34)

for any . Replacing  by  in (34) and using (30) we obtain

for any . Suppose that the vector field associated to the 1-form  is 
not orthogonal to , we see from the above relation that

for any . Substituting the above relation into (34) we get

for any . Thus we complete the proof.

Corollary 3. A -symmetric almost Kenmotsu manifold with the characteristic vector 
field belonging to the -nullity distribution is of constant sectional curvature .

Obviously, the above result extends Corollary 6 of Kenmotsu (1972).

Theorem 4. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with . If the characteristic vector field  belongs to the 
generalized -nullity distribution and , then the 1-form  is given by

                      (35)

where  is a non-zero function on .

Proof. Similarly as in the proof of Theorem 2, we obtain that relation (28) holds for 
any vector field . On the other hand, from a result of Pastore & Saltarelli 
(2011), we know that the smooth function  satisfies . Therefore, (35) follows 
from (28).

Corollary 4. Let  be a -dimensional -recurrent almost 
Kenmotsu manifold with . If the characteristic vector field  belongs to the 
generalized -nullity distribution and , then the vector field associated to 
the 1-form  is never orthogonal to the characteristic vector field .

Proof. It is easy to see from (35) that , using this equation in the 
second term of relation (15) we obtain

                           (36)
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Suppose that the vector field associated to the the 1-form  is orthogonal to , 
that is, . We observe from Proposition 3.1 of Pastore & Saltarelli (2011) that 
relation (14) holds in this context. Thus, it follows from (36) that  and hence 
by relation (14) we may get , we arrive at a contradiction. This completes the 
proof.
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حول منطويات قرب – الكنموتسو المعاودة

*يانينغ وانغ ، **كسيمن ليو
*كلية الرياضيات وعلوم المعلومات - جامعة هنان عادي- شينشيانغ-453007 هنان 

جمهورية الصين الشعبية.
** مدرسة العلوم الرياضية، جامعة داليان للتكنولوجيا - وداليان 116024، ليونينغ

جمهورية الصين الشعبية

خلاصة
الغرض من هذا البحث هو دراسة المنطويات القرب كنموتسو المعاودة و المتناظرة و التي 

لها حقل متجهي مميز و ينتمي إلى توزيع صغرى.
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