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Abstract

The aim is to compare the performances of fast regression methods, namely dimensional reduction of
correlation matrix (DRCM), nonparametric dimensional reduction of correlation matrix (N-DRCM),
variance inflation factor (VIF) regression, and robust VIF (R-VIF) regression in the presence of mul-
ticollinearity and outliers problems. In all simulation-scenarios, all the target variables were chosen for
final models using four methods. The DRCM and N-DRCM are the methods that reach the final model
in the shortest time, respectively. The time to reach the final model using R-VIF regression was approxi-
mately twice shorter than that of VIF regression. In each method, as the number of variables and the level
of outliers increased, the time taken to reach the final model increased. When the level of multicollinear-
ity and the number of variables (p > 500) increased, the times to reach the final models using DRCM
in datasets with outliers were slightly shorter than the those of N-DRCM. The largest numbers of noise
variables were selected to the model using DRCM and N-DRCM, but the least number of them were
selected to the model using the R-VIF regression. The RMSE values obtained using DRCM, N-DRCM
and VIF regression were similar in each scenario. As a result of the real dataset, the final model selected
using R-VIF regression had the highest R2. It also had the lowest RMSE value among those obtained
with other approaches excluding VIF regression. As such, the R-VIF regression method demonstrated a
better performance than the others in all datasets.
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1. Introduction

In many fields, large data are studied, where the number of variables and observations is quite high.
Through the development of modern technology, recording and storing information has become sig-
nificantly easier. However, many researchers still experience issues in relation to accessing suitable
information using datasets. Common issues include associated time-limit, theoretical, and costs among
others. Researchers currently seek new approaches or algorithms that will allow them to access informa-
tion quickly with minimal errors and few features. As such, algorithms that are easy to implement, can
select the most suitable features for predictive statistical complex models, find solutions to frequently
run into problems in modeling researches and application, and reach the final model quickly are being
investigated. The most efficient approaches are becoming increasingly popular.

A review of current literature suggests the following algorithms are the ones most frequently used in
relation to huge datasets especially high-dimensional datasets: least absolute shrinkage selection operator
(LASSO) (Tibshirani, 1996), adaptive LASSO (Zou, 2006), elastic net (Zou & Hastie, 2005), least angle
regression (LARS) (Efron et al., 2004), robust LARS (Khan et al., 2007), Dantzig (Candes & Tao,
2007), iterative sure independent screening (ISIS) (Fan & Lv, 2008), generalized path-seeking algorithm
(GPS) (Friedman , 2008), forward-backward greedy algorithm (FoBa) (Zhang, 2009), variance inflation
factor (VIF) regression (Lin et al., 2011), robust variance inflation factor (R-VIF) regression (Dupuis
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& Victoria-Feser, 2013), dimensional reduction of correlation matrix (DRCM) (Midi & Uraibi, 2014),
jack-knife robust LARS (JKR-LARS) (Shahriari et al., 2014), and VIF regression screening algorithm
(VIFRegS) (Uraibi, 2020). Fast algorithms that meet the needs of researchers working with large datasets
are currently being developed. Researches include the recently developed VIF regression method that
has been used in health research (Liu et al., 2017; Cai et al., 2018), the DRCM method that claims to be
faster and simpler than the VIF regression estimator, and the R-VIF regression method that can overcome
issues including multicollinearity, overfitting, and outliers.

As previously noted, the assumptions of fast regression algorithms are not always met in dataset, or
although it is claimed that some algorithms can overcome prominent issues in the cases that the severities
of the problems and the number of variables increase, few studies have investigated how fast algorithms
perform. As such, this simulation examines whether fast regression algorithms such as VIF regression,
DRCM, R-VIF regression and nonparametric DRCM (N-DRCM) perform as well as current research
suggests, especially in relation to the dataset containing multicollinearity and outliers. In addition, N-
DRCM, which is the nonparametric version of DRCM, is discussed in this study. Whether this method
can compete with others as a fast estimator is examined through implementing a multiple scenario sim-
ulation.

2. Methods

2.1 Variance inflation factor (VIF) regression method

The VIF regression is an approach developed from the streamwise variable selection algorithm with
the α- investing rule. The streamwise algorithm ensures that the method implemented is fast, while
the α-investment control is to prevent model overfitting. This method was improved using the sparsity
assumption (k�p) when k is the subset of p predictors, and can control marginal false discovery rate-
mFDR (Zhou et al., 2006; Foster & Stine, 2008). Lin et al. (2011) improved this method as stepwise
regression remained unresolved in relation to the multicollinearity problem. The regression model y =
β0 + β1x1 + · · · + βkxk + βnewxnew + ε (ε ∼ N(0,σ2I) was tested to obtain the predictive regression
model through forward selection. In this model, y is the dependent variable, x1, . . . , xk are independent
variables, β0, . . . , βk are regression coefficients, and ε is error. Here, X = [1n x1 . . .xk], X̃ = [X xnew] ,
β = (β0, . . . , βk)

T , and β̃ = (β0, . . . , βk , βnew)
T . The algorithm of this method is shown in Algorithm 1.

Algorithm 1.

Input: data y, x1, x2, . . . (centered);
Set: α0 = 0.50, and pay-out ∆α = 0.05, and subsample size m;

Initialize S = {0}; r = y− ŷ = r = y−XS
(
XTSXS

)−1
XTS y;

σ̂ = sd(y) = ‖r‖ /
√
(n− |S | − 1); j = 1; α1 = α0;f = 0.

Sample I = {j1, . . . , jm} ∈ {1, . . . ,n}. // the subsample Ix randomly selected from predictors x
Compute γ̃new = 〈r, xnew〉 / ‖xnew‖ and

IR
2 = xTnewIXS

(
IXT

S IXS
)−1

IXT
Sxnew/‖xnew‖

2.
repeat

set threshold αj = αj / (1 + j - f )
get t̂j=γ̃new/σ̂

√
(1− IR2) // compute corrected t-statistic

if 2Φ
(
|tj

∣∣∣) > 1−αj // compare p-value to threshold then
S = S ∪ {j} // add feature to model
update r = y− ŷS , σ̂ = RMSES
αj+1 = αj +∆α
f = j

else
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αj+1 = αj −αj /
(
1−αj

)
end if
j = j +1

until maximum CPU time or memory is reached.

α0: the initial alpha-wealth according to α-investing rule, ∆α: if a hypothesis is rejected, the change
of alpha-wealth value, r: residuals, S: the set of predictors, αj : α value in the jth test, sd: standard
deviation, f : the time at which the last hypothesis is rejected, I : subsample, Φ: the standard normal
cumulative distribution, RMSE: root mean squared error, CPU: central processing unit

This method contains two components: evaluation and search. The evaluation step contains forward
stagewise regression and evaluates variables using marginal correlations. The stagewise regression algo-
rithm contains small step sizes and behaves similarly to l1 algorithms such as Lasso and LARS. As such,
it suffers from collinearities between the predictors. Lin et al. (2011) corrected this bias by selecting a
small sample from the dataset to calculate the VIF of each variable. The resultant evaluation phase is
fast and contains no significant loss of accuracy. In the search step, each variable is sequentially tested
using the α-investing rule. This rule ensures that models do not overfit and can generate highly accurate
results. VIF procedure can be combined with various algorithms such as stepwise regression, LARS, and
FoBa. This algorithm is particularly useful when feature systems are created dynamically and the size of
the candidate features collection is unknown or even infinite. It can also serve as an “online” algorithm
for loading extremely large-scale data into RAM according to its properties (Lin et al., 2011).

2.2 Robust VIF regression method

Robust VIF regression method is developed by Dupuis & Victoria-Feser (2013) as the classical VIF
regression method can be adversely affected by outliers in the dataset. It contains all properties of the
classic approach. Dupuis & Victoria-Feser (2013) used the robust weighted slope estimator and the fast
robust t-statistic in this method. Therefore, this method is very robust against small model deviations.
The R-VIF regression procedure, which is based on a streamwise variable selection algorithm and the α-
investing rule, is shown in Algorithm 2.

Algorithm 2.

Input: data y, x1, x2, . . . (standardized);
Set: initial wealth α0 = 0.50, and pay-out ∆α =0.05, and subsample size m, and robustness

constant c
Compute efficiency e−1c where ec is as in

ec =
[∫ c
−c

(
5
(
r
c

)4
− 6

(
r
c

)2
+1

)
dΦ(r)

]2
/
∫ c
−c r

2
((
r
c

)2
− 1

)4
dΦ(r)

Get all marginal weights wij by fitting p marginal models y = β01+β1x1+ε1, . . . , y = β0k+βkxk+εk
using

∑n
i=1wi(ri ;c)rixi = 0 and wi(ri ;c) =min

{
1; c
|ri |

}
(c=1.345)

Initialize j = 1,S = {0}, XS = 1, XwS = diag
(√

w0
iS

)
XS and yw = diag

(√
w0
iS

)
y where w0

iS is

computed using wi (ri ;c) =


((
ri
c

)2
− 1

) 2

if |ri | ≤ c,

0 if |ri | > c,

where r0 =
(
y− 1β̂0

)
/σ̂0 using Xw0 = Xw20 = 1, β̂

0
=

[(
Xw0

)T
Xw0

]−1(
Xw20

)T
y ,
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σ̂0 = 1.483med
∣∣∣̃r0 −med (̃r0)∣∣∣ and r̃0 = y− 1β̂0.

repeat
set αj = αj / (1 + j − f )

compute rwS = yw −XwS
(
XwS

TXwS
)−1

XwS
T yw //start Fast Robust Evaluation Procedure

γ̂wj =
(
zwj

T zwj
)−1

zwj
T rwS and σ̂ =MAD

(
rwS − z

w
j

(
zwj

T zwj
)−1

zwj
T rwS

)
where zwj = diag

(√
wij

)
zj

sample I = {i1, . . . , im} ∈ {1, . . . ,n} // the subsample Ix randomly selected from predictors

get Rw2jS = Izwj
T
IHw

S Iz
w
j

(
Izwj

T
Izwj

)−1
// a robust R2 coefficient

where IHw
S = IXwS

(
IXwS

T
IXwS

)−1
IXwS

T , and find ρw = 1−Rw2jS
get Tw = (ρw)−1/2γ̂wj /

√
σ̂2

(∑
i z
w2
ij

)−1
e−1c from Fast Robust Evaluation Procedure

//compute the approximate robust t-statistic

if 2(1−Φ (Tw)) < αj then

S = S ∪ {j}, XS =
[
1 xj

]
, XwS = diag

(√
w0
iS

)
XS , and yw = diag

(√
w0
iS

)
y,

where w0
iS is computed using wi (ri ;c) =


((
ri
c

)2
− 1

) 2

if |ri | ≤ c,

0 if |ri | > c,

where r0 =
(
y−XS β̂0

)
/σ̂0 using Xw0 =

[
1 √wij xij

]
, Xw20 =

[
1 wijxij

]
, i=1,. . . ,n,

β̂
0
=

[(
Xw0

)T
Xw0

]−1(
Xw20

)T
y ,

where σ̂0 = 1.483med
∣∣∣̃r0 −med (̃r0)∣∣∣ and r̃0 = y−XS β̂

0

αj+1 = αj +∆α
f = j

else αj+1 = αj −αj /
(
1−αj

)
end if
j = j +1

until all p covariates have been considered.

α0: the initial alpha-wealth according to α-investing rule, ∆α: if a hypothesis is rejected, the change
of alpha-wealth value, r and r: residuals, S: the set of predictors, αj : α value in the jth test, c =
4.685, wi : Tukey’s biweight weights, ri : standardized residuals, Φ: the standard normal cumulative
distribution, med: median, MAD: median absolute deviation, diag: diagonal, Rw2jS : a robust R2

coefficient proposed by Renaud and Victoria-Feser (2010)

2.3 Dimensional reduction of correlation matrix (DRCM) method

The DRCM method was suggested by Midi & Uraibi (2014). This method can reduce the time for
selecting only the variables which provide important information to the response variable. The proce-
dure consists of two steps: in the first step, DRCM tries to reduce the dimension of correlation matrix
by including only those variables that have absolute correlations greater than a threshold value, in the
potential model. In the second step, the p-values for the parameter estimates of potential model were
computed using multiple linear regression method. The final regression model only includes those vari-
ables that are significant. The algorithm of this method, which is based on the regression method, is
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shown in Algorithm 3.

Algorithm 3.

Input: data y, x1, x2, . . . (standardized);
Initialize S1 = {0}, S = {0}, j = 1,

Cos(θx,y) =
<x, y>
‖x‖.‖y‖ = Cov(x, y)√

V ar(x)V ar(y)
= Corr(x, y),

β̂=
[
XTX

]−1
XTy , 1nX

Ty=1
n β̂=Rxy ,r=y−y=r=y−X

[
XTX

]−1
XTy,

Cov( β̂) = σ2
[
XTX

]−1
, σ̂2 = yTy−β̂TXTy=MSE. // from the linear regression model y =

xβ + ε
Compute Cos(θx,y) =

<x, y>
‖x‖.‖y‖ = Cov(x, y)√

V ar(x)V ar(y)
= Corr(x, y) // First step

β̂=
[
XTX

]−1
XTy , 1nX

Ty=1
n β̂=Rxy // Rxy is the correlation between x and y

// The value of
∣∣∣Rxy ∣∣∣ is between 0 and 1.

where XTX=I
set threshold M =

∑p
j=1 |Rxy |
p // Pearson correlation matrix Rxy ; the number of all candidate

covariates p
if

∣∣∣β̂∣∣∣ = ∣∣∣Rxy

∣∣∣ ≥M
compare Corr(x,y) -values to threshold
// The dimension of the correlation matrix is reduced
then
S1 = S1 ∪ {j} // add candidate feature for model
end if
j = j + 1
until all p covariates have been considered.

// Second step
set αj = αj /(1+j-f ), S1 = {0}, f = j

get t̂ = β̂j /(σ̂
2
(
[
XTX

]−1
) // compute t-statistic

if 2
(
1−Φ

(
t̂
))
< αj // compare p-value

then
S = S ∪ {j} // add feature from S1to model
else
αj+1 = αj −αj /

(
1−αj

)
end if
j = j + 1

until all covariates in S1have been considered.

S1: the set of candidate predictors in first step, S: the set of predictors,
∣∣∣Rxy

∣∣∣: the absolute values
of correlation matrix, Φ: the standard normal cumulative distribution, f : the time at which the last
hypothesis is rejected, αj : α value in the jth test

2.4 Nonparametric DRCM (N-DRCM) method

The N-DRCM method is a nonparametric version of the DRCM method. The procedure consists
of two steps. In the first step, Spearman correlation matrix is used to determine monotonic relationship
between variables. These variables can be continuous or at least one of them can be ordinal. N-DRCM
tries to reduce the dimension of correlation matrix by including only those variables that have absolute
correlations greater than a threshold value, in the potential model. In the second step, the p-values for
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the parameter estimates of potential model are computed by robust regression method using iteratively
reweighted least squares (IRLS). The final regression model only includes those variables that are sig-
nificant. This algorithm is shown in Algorithm 4.

Algorithm 4.

Input: data y, x1, x2, . . .(standardized);
Initialize S1 = {0}, S = {0}, j = 1,

SPCos
(
θ(rxry)

)
= Cov(rx,ry)√

V ar(rx)V ar(ry)
= SPCorr(rx, ry)

// Spearman correlation matrix for the ranked data ry, rx1, rx2,...
r β̂=

[
rXTrX

]−1rXTry , 1n
rXTry=1

n
r β̂

T
=R(rx,ry),

rr=ry−ry=r=ry−rX
[
rXTrX

]−1 rXTry,

Cov(r β̂) = rσ2
[
rXTrX

]−1
, r σ̂2 = ryTry−rβTXTy=MSE.

// from the linear regression model y = xβ + ε

Compute SPCorr(rx, ry)
Cov(rx,ry)√
V ar(rx)V ar(ry)

= 1− 6
∑
d2i√

V ar(rx)V ar(ry))
// First step

// Spearman correlation matrix

where
√
V ar (rx)V ar(ry) =

{
n(n2 − 1) if all n ranks are distinct integers,
(n2 − 1)/12 if all ranks are distinct,

r β̂=
[
rXTrX

]−1rXTry , 1n
rXTry=1

n
r β̂

T
=R(rx,ry)

SPRxy is the Spearman correlation between the ranked x and y
// The value of

∣∣∣SPR(rx,ry)

∣∣∣ is between 0 and 1.
where XTX=I
set threshold M =

∑p
j=1 |SPR(rx,ry)|

p // Spearman correlation matrix SPR(rx,ry);
// The number of all candidate covariates p
if

∣∣∣SPR(rx,ry)

∣∣∣ ≥M
compare SPCorr(rx, ry) -values to threshold
// The dimension of the correlation matrix is reduced
then
S1 = S1 ∪ {j} // add candidate feature for model
end if
j = j + 1

until all p covariates have been considered.
// Second step

Compute min
β

∑n
j=1ρ

(
yj−xTj β
σ

)
// minimize β’s using the standardized data from the linear model

y = xβ + ε∑n
j=1 xijψ

(
yj−xTj β
σ

)
= 0 for all i=0,1,2,. . . ,p // solution using nonlinear optimization

method – Iteratively reweighted least squares (IRLS)
where ψ = ρT, xi0 = 1, σ = σ̂0 = 1.483med

∣∣∣∣(yj − xj β̂0)−med(yj − xj β̂0)∣∣∣∣,
βt+1 =

(
XTwtX

)−1
XTwt

where wjt =

 ψ[(yj−xTβjt)/σt]
(yj−xTβjt)/σt

if yj , x
Tβjt

1 if yj = xTβjt

w(u) =min
{

1 if |u| < 0
c
|u| if |u| ≥ 0 // Huber’ method (c=1.345)
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Cov
(
β̂
)
= σ2

∑n
i=1ψ

2
[(
yi−xTj β

)
/σ

]{∑n
i=1ψ

T
[(
yi−xTj β

)
/σ

]}2 (XTX
)−1
,V ar

(
β̂
)
= σ̂2

(
XTwtX

)−1
set αj = αj /(1+j-f ), S1 = {0}, f f = j

get t̂w =
(
XTwtX

)−1
XTwty /

√
σ̂2(XTwtX

)−1 // compute the robust t-statistic

if 2
(
1−Φ

(
t̂w

))
< αj // compare p-value

then
S = S ∪ {j} // add feature from S1to model
else
αj+1 = αj −αj /

(
1−αj

)
end if
j = j + 1

until all covariates in S1have been considered.

S1: the set of candidate predictors in first step, S: the set of predictors, di : difference in paired ranks,
wt: diagonal matrix of weights, ρ (.): likelihood function for a suitable choice of the distribution of
the residuals,Φ: the standard normal cumulative distribution, f : the time at which the last hypothesis
is rejected, αj : α value in the jth test, ψ: influence function

2.5 Simulation study

This simulation study has been designed in a similar way to studies conducted by Rahman & Khan
(2010) and Dupuis & Victoria-Feser (2013). A linear model was established as

y = x1 + x2 + . . .+ xk + σεj (1)

where x1, x2, . . . ,xk are multivariate normal variables with E
(
xj

)
= 0, V ar

(
xj

)
= 1, and corr

(
xj ,xi

)
= θ

(i , j, i, j = 1, . . . , k). θ is chosen to produce a range of theoretical R2 =
(
Var(y)−σ2

)
/Var(y) values

for (1) and σ to give t values for target covariates of about 5-6 under normality. x1, x2, . . . ,xk represent
k target covariates. ε is an independent standard normal variable. A set of p predictors was generated as
follows:

xk+1 = x1 + δek+1

xk+2 = x1 + δek+2

.

.

.

x3k = xk + δe3k (2)

Variables xk+1, xk+2, . . . ,x3k were noise covariates that correlated with target covariates. Variables
x3k+1, , . . . ,xp were the noise covariates that did not correlate with the target covariates (xj = ej , j =
3k + 1, 3k + 2, . . . ,p). ek+1, . . . , ep were independent standard normal variables. In each scenario, the
number of target covariates was set as five. The constant δ = 3.18 was selected so that corr (x1, xk+1) =
corr (x1,xk+2) = . . . = corr (xk , x3k) = 0.3. The estimated final model was given in equation 3.

y = β0 + β1x1 + · · ·+ βkxk + βnewxnew + ε (3)

The datasets consisted of “normal (no contamination)” and “outliers (with 5% and 10%)” to examine
the effect outliers had on datasets. The datasets were generated using ε ∼ N(0, 1) for normal data,
ε ∼ 95%N(0, 1) + 5%N(30, 1) for the dataset with 5% outliers and ε ∼ 90%N(0, 1) + 10%N(30, 1)
for the dataset with 10% outliers. To examine the effect of multicollinearity in datasets, correlations
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among target regressors were specified as θ1 = 0.1
(
R2 = 0.20

)
and θ2 = 0.85

(
R2 = 0.80

)
so that

corr
(
xj ,xi

)
= θ, (i , j i, j = 1, . . . , k). A total of 36 scenarios were created through combining

different data types, including the uncontaminated dataset and the datasets with 5% and 10% outliers,
with 50, 100, 250, 500, 750, and 1,000 independent variables. The sample size was 5,000 and the number
of repetition was 100. A total of 14,400 models were examined. The initial-wealth and pay-out were
respectively selected 0.5 and 0.05 for VIF and R-VIF regression methods. In each condition, the root
mean square error (RMSE) values calculated through the four methods were recorded. This simulation
was executed using the MATLAB/Simulink R2015a program (toolboxes: statistics and machine learning,
curve fitting, optimization, and global optimization) by a computer with Intel(R) Core(TM) i7-6500U
CPU @ 2.50 GHz, 2592 Mhz, two cores, and four logical processors.

2.6 Real data

Crime dataset taken from UCI Machine Learning Respiratory (Redmond, 2009) was used to compare
the performances of DRCM, N-DRCM, VIF regression and R-VIF regression methods. This dataset
consists socio-economic data from the 1990 US Census, law enforcement data from the 1990 US Law
Enforcement Management and Administrative Statistics (LEMAS) survey, and crime data from the 1995
Federal Bureau of Investigation’ Uniform Crime Reporting (FBI UCR). Crime dataset includes n =
1994 observations, the violent crime per capita variable (y), and 122 predictors (x) that have a possible
relationship with crime in order to estimate (y). The RMSE, R2 and estimation values (beta, standard
error, t-statistic, and p-value) of the final models selected using each method were calculated.

3. Results

3.1 Simulation

In case presences of multicollinearity and outliers, while the number of candidate covariates that
can be included in the model increased, the values (average time, average numbers of covariates with
different relationships) that show the performances of DRCM, N-DRCM, VIF regression and R-VIF
regression methods are demonstrated in Table 1, Table 2, and Table 3, respectively.

In all scenarios, all the target independent variables were selected to the final models by four methods.
Respectively, the DRCM and N-DRCM methods reached the final model in the shortest time.The plots
of average times taken to reach the final models for fast regression methods in datasets with outliers
for each theta value were given Fig. 1, respectively. When the number of variables was 250 or less
in datasets with 5% and 10% outliers, the times taken to reach the final models for both DRCM and
N-DRCM were similar. However, when theta value was 0.10 and the number of variables was 500 or
more, the times taken to reach the final models in datasets with 10% outliers were significantly longer
than the those of DRCM and N-DRCM in datasets with 5% outliers. Moreover, when theta value was
0.85 and the number of variables was 500 or more, the times to reach the final models using DRCM
in datasets with outliers were slightly shorter than those of N-DRCM. When the number of variables
was over 750 in both datasets with outliers, the times to reach the final models decreased in line with
increasing theta values for both DCRM and N-DCRM. The decrement amount increased as the level of
outliers increased. However, this was not observed in the R-VIF and VIF regression methods. The time
to reach the final model using R-VIF regression was approximately two times shorter than that of VIF
regression. The largest numbers of noise variables were selected to the final models using DRCM and
N-DRCM methods.

The RMSE values obtained using DRCM, N-DRCM and VIF regression were similar in each sce-
nario. The RMSE values calculated by each method were higher in the datasets with outliers compared
to uncontaminated datasets. In addition, the RMSE values tended to decrease when the number of vari-
ables increased. This conclusion applies to the RMSE values obtained using R-VIF regression, except
for when the number of variables in datasets with 10% outliers was 500 or above. When the number
of variables in datasets with 10% outliers was 500 or above, the RMSE values obtained using R-VIF
regression were lower than the values obtained in uncontaminated datasets.
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When the number of variables was 500 or above, the approximate ratios of total noise variables cho-
sen for the final models using DRCM and N-DRCM methods were found to be 2.1% in uncontaminated
datasets, 2.3% in datasets with 5% outliers, and 4.1% in datasets with 10% outliers.In addition, when the
number of variables was 500 or above, the approximate ratios of total noise variables chosen for the final
model using R-VIF and VIF regression were 1.8�in datasets with outliers and 1.7�in uncontami-
nated datasets. In addition, in all datasets, when the number of variables was over 750, no noise variables
were chosen for the final model by R-VIF regression. In all scenarios, the R-VIF regression method
omitted noise covariates that did not correlate with the target variables in the final model. The time taken
for each method to reach the final model was longer in datasets with outliers than in uncontaminated
datasets. This became more evident as the number of variables increased. In addition, in dataset with
10% outliers, the time each method took to reach the final model was slightly higher than the time taken
in dataset with 5% outliers. This became more evident when the number of variables was 500 or more.

Fig. 1. The plots of average times taken to reach the final models for fast regression methods in the
datasets with outliers for a) θ = 0.10 and b) θ = 0.85.

In all datasets, when the theta value was 0.85 and the number of variables was over 750, 19.8% of
noise covariates that correlated with target variables was involved in the final models obtained by DRCM
and N-DRCM. A further 9% were included in the final model when using VIF regression method. Also
the numbers of total noise covariates selected to final models by both DRCM and N-DRCM methods
increased slightly with increasing of multicollinearity level when the number of variables was over 100.
It was determined that the numbers of total noise covariates selected to final models by the R-VIF and VIF
regression methods decreased when the numbers of variables increased in both the datasets with outliers.
The numbers of total noise covariates selected to finals model by both R-VIF and VIF regression methods
had not changed considerably with increasing of multicollinearity level. Additionally, the numbers of
total noise covariates selected to final models by the R-VIF and VIF regression methods were absent in
uncontaminated dataset.

3.2 Real data

This large dataset with sample size (n=1994) and number of predictors (p = 122) was firstly exam-
ined in terms of multicollinearity and outliers. The VIF values of 88% of the variables were greater than
10, and their collinearity tolerance values were very close to zero. Condition index values of all dimen-
sions except the twenty two dimensions were above 15. Moreover, the most of the variables were skew
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Table 1. The performances of fast regression methods in uncontaminated dataset.

n=5000 No Contamination
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.118 0.140 0.569 1.304 0.106 0.130 0.570 1.305
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0
C (pC = 35) (%) 0.06 0.06 0 0 0.06 0.06 0 0
D (pD = 45) (%) 0.04 0.04 0 0 0.04 0.04 0 0

RMSE 0.921 0.921 0.923 0.924 0.923 0.923 0.923 0.924

100

Avg.Time 0.182 0.250 1.092 2.480 0.159 0.224 1.119 2.487
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0
C (pC = 85) (%) 0.86 0.85 0 0 1.29 1.16 0 0
D (pD = 95) (%) 0.77 0.76 0 0 1.15 1.04 0 0

RMSE 0.921 0.921 0.919 0.920 0.920 0.920 0.910 0.920

250

Avg.Time 0.592 0.705 2.702 5.817 0.604 0.704 2.693 5.823
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 9.9 0 0 0 0 0 0

C (pC = 235) (%) 1.28 1.26 0 0 1.59 1.49 0 0
D (pD = 245) (%) 1.22 1.61 0 0 1.53 1.43 0 0

RMSE 0.907 0.906 0.904 0.904 0.907 0.906 0.904 0.904

500

Avg.Time 1.903 2.145 5.335 11.416 1.888 1.999 5.425 11.460
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.1 0.1 0 0.1 0.1 10 0 0.1

C (pC = 485) (%) 1.86 1.65 0 0 2.47 2.27 0 0
D (pD = 495) (%) 1.82 1.62 0 0.002 2.42 2.43 0 0.002

RMSE 0.908 0.908 0.907 0.908 0.905 0.905 0.904 0.904

750

Avg.Time 4.190 4.482 8.000 17.004 4.386 4.811 8.842 17.944
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0 0 0 0 0 0

C (pC = 735) (%) 1.77 1.64 0 0 2.17 2.14 0 0
D (pD = 745) (%) 1.75 1.62 0 0 2.14 2.11 0 0

RMSE 0.905 0.904 0.903 0.904 0.905 0.905 0.904 0.904

1000

Avg.Time 6.365 6.796 10.757 22.835 6.032 6.740 11.697 23.916
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 9.9 9.9 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 2.47 1.94 0 0 2.14 2.03 0 0
D (pD = 995) (%) 2.54 2.02 0 0.10 2.32 2.21 0 0.10

RMSE 0.893 0.892 0.891 0.893 0.892 0.892 0.891 0.893
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM
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Table 2. The performances of fast regression methods in dataset with 5% outliers.

n=5000 5% outliers
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.186 0.213 1.003 2.186 0.153 0.210 0.965 2.094
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 0 0 0 0
C (pC = 35) (%) 0 0 0 0 0 0 0 0
D (pD = 45) (%) 0.04 0.04 0.02 0.02 0 0 0 0

RMSE 0.968 0.968 0.970 0.970 0.969 0.969 0.970 0.970

100

Avg.Time 0.315 0.486 1.983 4.258 0.330 0.462 1.882 4.149
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1
C (pC = 85) (%) 1.41 1.43 0 0 1.62 1.55 0 0
D (pD = 95) (%) 1.26 1.28 0.01 0.01 1.45 1.39 0.01 0.01

RMSE 0.967 0.967 0.966 0.966 0.967 0.967 0.966 0.966

250

Avg.Time 1.157 1.504 4.476 9.312 1.043 1.257 4.430 9.319
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1

C (pC = 235) (%) 1.74 1.74 0 0 2.08 2.04 0 0
D (pD = 245) (%) 1.67 1.67 0.004 0.004 2.00 1.96 0.004 0.004

RMSE 0.953 0.954 0.953 0.953 0.951 0.950 0.952 0.953

500

Avg.Time 2.871 3.457 8.734 19.079 2.708 3.442 8.713 19.029
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.1 0.2 0.1 0.1 10 10.2 0.1 0.1

C (pC = 485) (%) 2.08 2.06 0 0 2.47 2.27 0 0
D (pD = 495)(%) 2.04 2.02 0.002 0.002 2.62 2.43 0.002 0.002

RMSE 0.952 0.951 0.949 0.950 0.952 0.951 0.949 0.949

750

Avg.Time 5.835 6.683 12.745 27.248 6.214 6.585 13.242 27.412
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10)(%) 0.1 0 0.2 0.1 0 0.1 0.2 0.1

C (pC = 735) (%) 1.9 1.9 0 0 2.44 2.38 0 0
D (pD = 745) (%) 1.88 1.87 0.003 0.001 2.41 2.35 0.003 0.001

RMSE 0.950 0.950 0.948 0.949 0.950 0.950 0.948 0.949

1000

Avg.Time 9.870 10.681 17.585 37.220 9.177 10.089 17.214 36.788
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 19.8 19.8 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 2.53 1.82 0 0 2.13 2.13 0 0
D (pD = 995) (%) 2.71 2.00 0 0.10 2.31 2.31 0 0.10

RMSE 0.937 0.936 0.934 0.938 0.937 0.936 0.934 0.938
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM
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Table 3. performances of fast regression methods in dataset with 10% outliers.

n=5000 10% outliers
R2=0.20, (θ=0.10) R2=0.80, (θ=0.85)

p Results DRCM N-DRCM R-VIF VIF DRCM N-DRCM R-VIF VIF

50

Avg.Time 0.202 0.219 0.945 2.232 0.156 0.200 0.939 2.213
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 0 0 0 0
C (pC = 35) (%) 0 0 0 0 0 0 0 0
D (pD = 45) (%) 0.04 0.04 0.02 0.02 0 0 0 0

RMSE 1.019 1.020 1.019 1.020 1.019 1.019 1.019 1.020

100

Avg.Time 0.327 0.473 1.824 4.395 0.341 0.447 1.860 4.383
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1
C (pC = 85) (%) 2.02 2.00 0 0 2.99 2.94 0 0
D (pD = 95) (%) 1.81 1.79 0.01 0.01 2.67 2.63 0.01 0.01

RMSE 1.016 1.016 1.015 1.016 1.016 1.016 1.015 1.016

250

Avg.Time 1.152 1.438 4.408 9.881 1.030 1.251 4.455 9.853
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0 0 0.1 0.1 0 0 0.1 0.1

C (pC = 235) (%) 3.10 3.07 0 0 3.25 3.25 0 0
D (pD = 245) (%) 2.98 2.95 0.004 0.004 3.12 3.11 0.004 0.004

RMSE 1.003 1.005 1.001 1.002 1.002 1.002 1.001 1.001

500

Avg.Time 3.217 3.525 9.058 19.706 3.063 3.380 9.058 19.723
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.2 0.1 0.1 10 10 0.1 0.1

C (pC = 485) (%) 3.47 3.20 0 0 3.84 3.26 0 0
D (pD = 495)(%) 3.40 3.14 0.002 0.002 3.96 3.40 0.002 0.002

RMSE 0.997 0.996 0.728 0.997 0.998 0.997 0.728 0.997

750

Avg.Time 6.625 7.392 13.568 28.448 6.463 7.189 13.571 28.481
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 0.2 0.1 0.2 0.2 10 9.9 0.2 0.2
C (pC = 735)(%) 3.91 3.88 0 0 4.17 4.16 0 0
D (pD = 745) (%) 3.86 3.83 0.003 0.003 4.25 4.03 0.003 0.003

RMSE 0.996 0.996 0.725 0.998 0.996 0.996 0.725 0.998

1000

Avg.Time 11.236 11.799 18.142 38.231 9.528 10.459 18.138 38.265
A (pA = 5) (%) 100 100 100 100 100 100 100 100
B (pB = 10) (%) 9.9 19.8 0 9.9 19.8 19.8 0 9.9

C (pC = 985) (%) 4.54 4.42 0 0 5.20 5.05 0 0
D (pD = 995) (%) 4.59 4.57 0 0.1 5.35 5.20 0 0.1

RMSE 0.984 0.986 0.718 0.986 0.986 0.986 0.718 0.985
p: The number of predictors, Avg: Average, A: Average number of target covariates, B: Average number of
noise covariates that correlated with target covariates, C: Average number of noise covariates that did not
correlate with target covariates, D: Average number of total noise covariates, RMSEA: Root mean square
error, VIF: Variance inflation factor, R-VIF: Robust VIF, DRCM: Dimensional reduction of correlation
matrix, N-DRCM: Nonparametric DRCM

Comparison of fast regression algorithms in large datasets

12



distributed and contained outliers. The estimation values of the final models (without constant) selected
using each method for “crime data” are shown Table 4.

The racepctblack (percentage of population that is African American), PctIlleg (percentage of kids
born to never married), PctPersDenseHous (percent of persons in dense housing (more than 1 person
per room)), NumStreet (number of homeless people counted in the street) variables were selected for
the final models by all four methods. The number of predictors selected for the final models ranged
from 14 to 16. Approximately the numbers of predictors selected by all methods to their final models
were similar. In descending order, these methods were N-DRCM, R-VIF regression, VIF regression, and
DRCM. The highest R2 value was obtained by the R-VIF regression method, followed by the N-DRCM
method. The R2 values obtained by VIF regression and DRCM methods were similar and considerably
lower than the values obtained by the other two methods. While the RMSE value obtained with the
VIF regression method was the lowest, this method was followed by the R-VIF regression, N-DRCM,
and DRCM methods, respectively. Overall, R-VIF regression performed better because its final model
had the highest R2 among those obtained with other methods, and the lowest RMSE value among those
obtained with others excepting VIF regression.

4. Discussion and conclusion

When large datasets contain multicollinearity and outliers, the use of fast regression algorithms has
become mandatory to address the lack of traditional methods and the loss of information that occurs
when using traditional methods. In the literature review, it was noted that a limited number of researches
about fast regression methods are being conducted. Lin etal. (2021) compared stepwise regression,
LASSO, FoBa, GPS methods to test the performance of the VIF regression method they developed. They
found the performance of VIF regression to be better than other algorithms in terms of computation
speed, out-of-sample, out-of-sample error, mFDR control, etc. Dupuis & Victoria-Feser (2013) and
Seo (2018) suggested using the R-VIF regression in place of classical VIF regression to obtain faster
estimations when working with large datasets that contain outliers. In addition, Midi & Uraibi (2014)
compared DRCM, VIF regression and Adaptive Lasso methods, and they obtained that the performance
of DRCM method was more efficient than the others. Shahriari (2014) examined the performances
of LARS, R-LARS, R-VIF and JKR-LARS methods in datasets with outliers and/or leverage points.
Shahriari (2014) found that JKR-LARS performed similarly to R-LARS and R-VIF in datasets with
outliers while outperforming R-LARS in datasets with high leverage points. However, according to her
study, R-VIF failed to robustly sequence predictor variables in datasets with high leverage points. Uraibi
(2020) investigated that VIFRegSd2, VIFRegSd3, and ISIS method in ultrahigh dimensional feature
space when presence of collinearity structure. Uraibi (2020) found that VIFRegSd2 and VIFRegSd3
methods outperform ISIS, additionally VIFRegSd2 method can be used in practice for ultrahigh feature
space and small sample size.

In this study, the performances of DRCM, N-DRCM, VIF regression, and R-VIF regression in re-
lation to large datasets with varying levels of multicollinearity and outliers were examined in different
scenarios. This study proposed that the N-DRCM method could be used as a fast regression estimator.
As the number of variables and the level of outliers increased, the time taken to reach the final model
by each method increased. When the number of variables was 500 or above and the level of outliers
in the dataset increased, the times taken to reach the final models by DRCM and N-DRCM methods
increased. When the level of multicollinearity and the number of variables (p > 500) increased, the
times to reach the final models using DRCM in datasets with outliers were slightly shorter than the those
of N-DRCM. However, in all scenarios, DRCM and N-DRCM were found to be the fastest methods to
reach the final models. When the number of variables was over 750 in uncontaminated datasets, the
times taken to reach the final models using DRCM and N-DRCM methods decreased with increasing
of multicollinearity level. Moreover the numbers of total noise covariates selected to final models by
both DRCM and N-DRCM methods increased slightly with increasing of multicollinearity level when
the number of variables was over 100. It was observed that the numbers of total noise covariates and
the numbers of total noise covariates that did not correlate with the target variables selected for the fi-
nal models by the DRCM and N-DRCM methods were higher than those achieved via R-VIF and VIF
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Table 4. The estimation values of final models selected using each methods (n=1994, p=122).

Methods Variables Beta SE t-statistic p-value R2 RMSE

VIF R.

racepctblack 0.177 0.024 7.329 <0.001

0.640 0.140

pctUrban 0.054 0.008 6.871 <0.001
pctWInvInc -0.263 0.024 -10.763 <0.001

MalePctNevMarr -0.104 0.023 -4.523 <0.001
PctWorkMom -0.117 0.020 -5.962 <0.001

PctIlleg 0.345 0.034 10.289 <0.001
PersPerOccupHous -0.356 0.036 -9.860 <0.001
PctPersDenseHous 0.281 0.036 7.756 <0.001
PctHousLess3BR -0.139 0.034 -4.073 <0.001

MedNumBR -0.053 0.018 -3.000 0.003
PctVacantBoarded 0.066 0.018 3.596 <0.001

MedOwnCostPctIncNoMtg -0.061 0.018 -3.318 0.001
NumStreet 0.242 0.036 6.767 <0.001

LemasSwornFT -0.275 0.074 -3.715 <0.001
PolicOperBudg 0.204 0.076 2.685 0.007

R-VIF R.

racepctblack 0.220 0.021 10.681 <0.001

0.904 0.439

agePct12t29 -0.185 0.044 -4.226 <0.001
agePct16t24 0.147 0.041 3.575 <0.001
numbUrban -0.129 0.027 -4.859 <0.001

pctUrban 0.064 0.013 5.112 <0.001
pctWWage -0.065 0.030 -2.175 0.030
pctWRetire -0.033 0.015 -2.295 0.022

OtherPerCap 1.119 0.010 108.563 <0.001
PctEmploy 0.082 0.029 2.845 0.005

MalePctDivorce 0.070 0.020 3.485 0.001
PctKids2Par -0.211 0.042 -4.979 <0.001

PctWorkMom -0.053 0.013 -3.983 <0.001
PctIlleg 0.214 0.030 7.230 <0.001

PctPersDenseHous 0.220 0.015 14.621 <0.001
HousVacant 0.186 0.025 7.541 <0.001
NumStreet 0.111 0.014 8.090 <0.001

R: Regression, SE: Standard error, RMSE: Residual mean square estimation, VIF: Variance inflation factor,
R-VIF: Robust VIF, racepctblack: percentage of population that is African American, pctUrban: percent-
age of people living in areas classified as urban, pctWInvInc: percentage of households with investment,
MalePctNevMarr: percentage of males who have never married, PctWorkMom: percentage of moms of
kids under 18 in labor force, PctIlleg: percentage of kids born to never married, PersPerOccupHous: mean
persons per household, PctPersDenseHous: percent of persons in dense housing (more than 1 person per
room), PctHousLess3BR: percent of housing units with less than 3 bedrooms, MedNumBR: median number
of bedrooms, PctVacantBoarded: percent of vacant housing that is boarded up, MedOwnCostPctIncNoMtg:
median owners cost as a percentage of household income, NumStreet: number of homeless people counted
in the Street, LemasSwornFT: number of sworn full time police officers, PolicOperBudg: police operating
budget, agePct12t29: percentage of population that is 12-29 in age, agePct16t24: percentage of population
that is 16-24 in age, numbUrban: number of people living in areas classified as urban, pctWWage: per-
centage of households with wage or salary income in 1989, pctWRetire: percentage of households with
retirement income in 1989, OtherPerCap: per capita income for people with ’other’ heritage, PctEmploy:
percentage of people 16 and over who are employed, MalePctDivorce: percentage of males who are di-
vorced, PctKids2Par: percentage of kids in family housing with two parents, HousVacant: number of vacant
households
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Table 4.(continue). The estimation values of final models selected using each methods (n=1994, p=122).
Methods Variables Beta SE t-statistic p-value R2 RMSE

DRCM

racepctblack 0.873 0.103 8.490 <0.001

0.649 0.595

agePct12t29 -1.768 0.115 -15.442 <0.001
pctUrban 0.141 0.036 3.904 <0.001

pctWPubAsst 0.324 0.113 2.875 0.004
PctLess9thGrade -0.991 0.211 -4.689 <0.001
PctNotHSGrad 0.665 0.239 2.780 0.006

MalePctNevMarr 0.762 0.151 5.032 <0.001
PctIlleg 1.307 0.150 8.733 <0.001

PctPersDenseHous 0.956 0.095 10.063 <0.001
PctHousLess3BR 0.444 0.097 4.560 <0.001

HousVacant 0.681 0.119 5.711 <0.001
PctHousNoPhone 0.649 0.102 6.390 <0.001

MedOwnCostPctIncNoMtg -0.533 0.074 -7.216 <0.001
NumStreet 0.559 0.170 3.298 0.001

N-DRCM

racepctblack 0.232 0.022 10.574 <0.001

0.748 0.451

agePct12t29 -0.135 0.025 -5.347 <0.001
Pct65up -0.069 0.022 -3.081 0.002

pctWPubAsst 0.110 0.020 5.611 <0.001
PctLess9thGrade -0.206 0.038 -5.441 <0.001
PctNotHSGrad 0.275 0.048 5.741 <0.001
PctOccupManu -0.054 0.020 -2.707 0.007

MalePctNevMarr 0.052 0.024 2.179 0.030
PersPerFam -0.136 0.020 -6.843 <0.001

PctIlleg 0.296 0.029 10.239 <0.001
PctNotSpeakEnglWell -0.101 0.029 -3.445 0.001

PctPersDenseHous 0.376 0.030 12.487 <0.001
HousVacant 0.153 0.019 8.220 <0.001
NumStreet 0.076 0.014 5.535 <0.001

LemasSwornFT -0.039 0.012 -3.268 0.001
LandArea -0.034 0.016 -2.164 0.031

R: Regression, SE: Standard error, RMSE: Residual mean square estimation, DRCM: Dimensional reduc-
tion of correlation matrix, N-DRCM: Nonparametric DRCM, racepctblack: percentage of population that
is African American, agePct12t29: percentage of population that is 12-29 in age, pctUrban: percentage of
people living in areas classified as urban, pctWPubAsst: percentage of households with public assistance
income in 1989, PctLess9thGrade: percentage of people 25 and over with less than a 9th grade education,
PctNotHSGrad: percentage of people 25 and over that are not high school graduates, PctHousNoPhone:
percent of occupied housing units without phone, MedOwnCostPctIncNoMtg: median owners cost as a
percentage of household income, MalePctNevMarr: percentage of males who have never married, PctIlleg:
percentage of kids born to never married, PctPersDenseHous: percent of persons in dense housing, PctHous-
Less3BR: percent of housing units with less than 3 bedrooms, HousVacant: number of vacant households,
PctHousNoPhone: percent of occupied housing units without phone, MedOwnCostPctIncNoMtg: median
owners cost as a percentage of household income - for owners without a mortgage, NumStreet: number
of homeless people counted in the street, agePct65up: percentage of population that is 65 and over in age,
PctOccupManu: percentage of people 16 and over who are employed in manufacturing, PersPerFam: mean
number of people per family, PctNotSpeakEnglWell: percent of people who do not speak English well,
LandArea: land area in square miles, LemasSwornFT: number of sworn full time police officers
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regression methods. As a result of the real dataset, the final model selected using R-VIF regression had
the highest R2. This model also had the lowest RMSE value among those obtained with other methods
excluding VIF regression. Consequently, it was decided that the R-VIF regression method performed
best in contaminated and uncontaminated datasets.

Due to recent technological advances, the authors of this study suggest to use fast regression methods
instead of conventional methods. The R-VIF regression method is particularly recommended as a fast
regression estimator in the datasets containing multicollinearity and outliers.
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