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Abstract 

Shear wave travel time logs are major acoustic logs used for direct estimation of the mechanical 
properties of rocks. They are also important for prediction of critical drawdown pressure of the 
reservoir. However, core samples are sometimes not available for direct laboratory 
measurements, and the time-consuming dipole shear imager tool is generally not used. Hence, 
there is a need for simple indirect techniques that can be used reliably. In this study, cross-plots 
between the available measured shear travel time and compressional travel time from three oil 
wells were used, and three artificial intelligence tools (fuzzy logic, multiple linear regression 
and neural networks) were applied to predict the shear travel time of Facha member (Gir 
Formation, Lower Eocene) in Sirte Basin, Libya. The predicted times were compared to those 
obtained by the equation of Brocher. The basic wireline data (gamma ray, neutron porosity, 
bulk density and compression travel time) of five oil wells were used. Based on principle 
component analysis, two wireline data sets were chosen to build intelligent models for the 
prediction of shear travel time. Limestone, dolomite, dolomitic limestone and anhydrite are the 
main lithofacies in the Facha member, with an average thickness of about 66 m. The simple 
equation gave 87% goodness of fit, which is considered comparable to the measured shear 
travel time logs. The Brocher equation yielded adequate results, of which the most accurate was 
for the Facha member in the eastern part of the Sirte basin. On the other hand, the three 
intelligent tools’ predictions of shear travel time conformed with the measured log, except in 
the eastern area of the basin.  
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1. Introduction

The dipole shear imaging logging tool measures both compressional (ΔTc = 1/Vp) and shear 
(ΔTs = 1/Vs) travel time waves to estimate the mechanical properties of rocks (Liu, 2017; 
Bateman, 2012). However, when ΔTs is not measured (i.e., in old wells) or cannot be measured 
(i.e., in soft formations or poor cement jobs), synthetic shear travel times are computed using 
other petrophysical data. Therefore, many empirical relations for estimating shear velocity (Vs) 
from compressional velocity (Vp) have been published, but most of them are established for 
clastic rocks, carbonate rocks and coal. For example, the Greenberg & Castagna ,(1992) relation 
is easily applied and commonly used, but it is unsuitable for anhydrite rock, such as at the site 
described in the current study.  
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Therefore, methods based on rock physics are being developed. Miraj et al., (2021) used 
seismic line and wireline log data to define the structural features and hydrocarbon potential of 
rock. Also, Tao et al., 2020 applied high-density resistivity and shallow seismic reflection 
methods in a mine in Shandong, China to define the cause of subsidence. Different techniques 
were applied on a reduced-to-magnetic equator (RTE) anomaly map to define geologic features 
and their geometry, which included solid minerals emplacement in the Igbeti-Moro area of 
southwestern Nigeria (Olasunkanmi et al., 2020).  Singh & Kanli, (2015) applied a back-
propagation artificial Neural Network (ANN) based on neutron porosity, density, true 
resistivity, compressional wave velocity and gamma ray logs as input data. They demonstrated 
good correlation between shear velocity estimated by the ANN and an empirical equation. In 
another context, Amiri et al., (2018) used NN to predict precipitation in two provinces in Iran.  

Furthermore, Khamehchi et al., (2014) estimated critical total drawdown as an index of 
sand production onset from the data of 23 problematic wells in the North Adriatic Sea. The 
authors started with simple linear regression, MLR and genetic algorithm evolved MLR to 
estimate critical total drawdown. They then developed two ANN with back propagation and 
particle swarm optimization algorithms. The study demonstrated the performance and accuracy 
of the artificial neural networks in predicting sanding onset. Also, well logging data at the BD 
Madura gas field were used to calculate drilling geological and mechanical parameters. The 
results were used to estimate drilling risk probability distributions as a function of pore pressure 
and equivalent circulation fluid density (ECD) as uncertainty analysis (Guan et al., 2018). 

Carbonate rocks are common reservoir rocks in the western part of Sirte Basin (Zallah 
Trough), and petrophysics studies generally focus on reservoir evaluation. However, most 
exploration wells do not have ΔTs logs and lack some of the basic wireline data such as neutron 
porosity and litho-density logs. Therefore, prediction of ΔTs of the Facha reservoir requires the 
development of a geomechanical model in order to minimize drilling problems and instability 
in newly developed wells. Loss of circulation was recognized in two wells located in Dahab 
and Ghani oil fields in the lower part of the Facha member, and was attributed to a change of 
rock type from porous dolomite to limestone.  Different intelligent tools can be used to predict 
ΔTs in carbonate lithofacies, and these predictions can be compared with both simple cross-
plot regression and the results of the Brocher, (2005) equation. Here, the intelligent tools, the 
Brocher equation and the simple cross-plots of measured travel times were applied to data from 
five oil wells in the Ghani oil field, El Nagah field, Mabrouk area, and Sarir trough in Libya to 
find a suitable prediction tool for generating synthetic ΔTs logs. 

2. Geological background

The Sirte Basin is one of the main hydrocarbon provinces of Libya with clastic (pre-Tertiary) 
and carbonate (Tertiary) reservoirs. Platforms and troughs are the main structural features of 
the basin in the northwest to southeast trend (figure. 1).  

The structural setting of this basin was postulated based on continental rifting 
(extensional) related to evidence of Cretaceous–Tertiary events (Hallett & El Ghoul, 1996; 
Gras, 1996; Guiraud, 1998; Tawadros, 2001; Ahlbrandt, 2001). Abdunaser & McCaffrey, 
(2014) interpreted the structural configuration of Sirte basin as related to the African plate 
motion.  Accordingly, Sirte Arm, Tibesti Arm and Sarir Arm are the three main rifting arms 
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formed in early Cretaceous and early Tertiary (Harding, 1984; Gras & Thusu, 1998; Ambrose, 
2000).   

Fig. 1. Study area and wells location 

Three troughs (Dur al Abd, Zallah and Abu Tumayam) have a northwest-southeast 
direction in the western part of the Sirte Basin. These troughs are asymmetric from the north to 
the south trend, with the northeast tilting towards Ajdabiya (Hallett & Lowes, 2017). The 
formations of Gir, Beda, Dahra, Zelten and Farrud are the major reservoir rocks in the western 
Sirte Basin. The Gir Formation of Lower Eocene (Mijalkovice, 1977; Banerjee, 1980) has a 
thickness of about 610 meters (Barr & Weeger, 1972). Also, Facha member, Hon Evaporite 
member and Mesdar Limestone member are parts of the Gir Formation with different lithofacies 
(figure 2). 

Fig. 2. Generalized stratigraphic section of the Gir Formation. 

The variety of lithofacies is due to three depositional environments: deep marine outer 
shelf, shallow marine inner shelf and restricted shelf. The restricted condition, which includes 
lagoon, tidal flats, sabkhas, bays, ponds and subbasins (Abugares, 1996), is prevalent in the 
Zallah trough. Therefore, the rock types of the Facha member are limestone, dolomite, 
dolomitic limestone and anhydrite, with the dolomite being predominant. Lashhab & West, 
(1996) and Elag , (1996) demonstrated an early and late diagenetic dolomitization phases and 
classified the dolomite into microsparitic crystalline, fine-to-medium crystalline, and coarse-
grained dolomite.   

16 ̊ 20 ̊ 22 ̊18 ̊

32 ̊
30 ̊

28 ̊

0 160 Km

N

Mediterranean sea

Al Haruj Al 
Aswad

Hameimat 
trough

Sarir 
trough

Jabal as 
Sawda

5 6
8

10

9

Age Lithology
Stratigraphic unit

Limestone and anhydrite
interbedding

Te
rti

ar
y 

Lo
w

er
 E

oc
en

e

G
ir

Ú Ú Ú Ú Ú
Ú Ú Ú Ú Ú
Ú Ú Ú Ú

Ú Ú Ú

Mesder

Hon 
Evaporite 

Facha

Fm. Mbr.

v v

Salt and dolomite
interbedding within
thick anhydrite beds

Dolomite with anhydrite 
and shaly limestone

Description 

Bahia M. Ben Ghawar, Moncef Zairi, Samir Bouaziz 

3



 
 

3. Methodology for predicting DTs 

The major basic wireline data recorded in wells 5, 6, 8, 9 and 10 are GR, ΔTc, ΔTs, Øn, ρb, 
photoelectrical factor (PEF), caliper (CAL), and electrical resistivity (induction, laterolog or 
array). Figure 3 illustrates the workflow for the processing track of these data to define a 
suitable prediction model for the shear travel time of the Facha member. 
 

 
Fig. 3. Workflow of a process for shear travel time prediction 

Data from wells 5, 6 and 8 were used to construct simple or direct cross-plots between 
measured interval travel times, and models were built by using intelligent tools. Wells 10 and 
9 were used for models validation. The Øn, ρb and PEF logs were used to discriminate the 
Facha lithofacies by cross-plots of ρb–Øn and ρb–PEF. Data of the measured shear and 
compressional interval travel time (DSI logs) of wells 5, 6 and 8 were used to construct simple 
cross-plots of the Facha member.  

Interactive Petrophysics (version 4.2) was used for principal component analysis (PCA), 
FL, MLR and NN tools to construct the best model for ΔTs prediction. Different sets of basic 
measured wireline data (GR, ΔTc, Øn and ρb) were used as input. Equation 1 (Brocher, 2005), 
which is dependent on log (Vp = 1/ΔTc), was used for different lithologies with primary 
velocities (Vp) between 1.5 km/sec and 8.5 km/s (Maleki et al., 2014). 

 
𝑉! 	= 	0.7858	-	1.2344	V" 	+ 	0.7949	V"#	-	0.1238	V"$ 	+ 	0.006	V"%                            (1) 
 
where Vp = sonic velocity (compressional velocity = 1/ΔTc, km/s), Vs = sonic velocity (shear 
velocity = 1/ ΔTs, km/s), ΔTs = shear travel time (µsec/ft), and ΔTc = compressional travel 
time (µsec/ft).  

The PCA is used to reduce multidimensional data sets to lower dimensions for analysis. 
The PCA curves can be used for multi-well tops correlation and regression analysis. The FL 
curve prediction module uses FL as described by Cuddy, (1997), which allows the prediction 
of a result curve from a number of input curves. In fuzzy estimation, the number of bins was 
set to 10 for training divided data. Thus, the two statistics parameters µ and σ are calculated of 
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each data bin and used to compute the FL average probability. Whereas the MLR allows the 
prediction of a result curve from a number of input curves, the least squares regression routine 
is intended to find the best fit to the input data.  

The same well-logging input data of the PCA, FL and MLR were used in the NN tool 
with one input layer, one hidden layer and one output layer. The trial zones were selected in 
front of input data curves at different depths of the Facha member. Training passes, epoch per 
pass and cross-validation percentage are three training settings of the NN technique. The 
training passes specify how many times the NN will be trained each time, and in this case, it 
was 3. The epoch per pass shows how many times the training data will be taken, and in this 
case, it was 100. The cross-validation percentage of the input data defines how much of the 
training data cross-check to process, and this was 5%. Epochs trained, the epoch of best cost 
and raw sensitivity are four outputs of the training settings.  Therefore, after training the tool 
many times, it was used to build the NN model. 

4. Results and discussion  

Figure 4 shows a plot of bulk density (ρb) versus neutron porosity (Øn) in four wells, illustrating 
the average matrix density (ρma) lines of different lithology; Sandstone = 2.65 g/cm3, 
Limestone = 2.71 g/cm3, Dolomite = 2.87 g/cm3 and Anhydrite = 2.98 g/cm3.  Most of the 
plotting points fall between the average matrix density lines of limestone rock (2.71 g/cm3) and 
anhydrite rock (2.98 g/cm3). The shifting of the plotted points of wells 5, 6 and 8 from the 
dolomite line towards the anhydrite line is attributed to the existence of the anhydrite as a 
cement material, while the plotting points of well 9 fall on the average matrix density of the 
dolomite line with high values of neutron porosity (Øn). The cluster points in the lower part of 
the plot close to zero neutron porosity and less than 2.8 g/cm3 of bulk density demonstrate 
anhydrite lithofacies. Also, anhydrite strips are clearly present within the Facha member at 
different depths: 3990, 4215 and 4240 ft in well 8 (figure 6). It worth mentioning that well 10 
was excluded because no neutron and litho-density logs are available. Therefore, dolomite is 
the most common rock type in the Facha member, along with limestone, dolomitic limestone 
and anhydrite.  

 
Fig. 4. Cross-plot of bulk density (ρb) versus neutron porosity (Øn) 
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The PCA on models run with the first input data set (GR, ΔTc, Øn and ρb) of wells 5, 6 
and 8 has a variability of 64.7%, 23.2%, 7.9% and 4.2%, respectively. PCA of the second input 
set has a variability of 58.6% and 41.3 % for GR and ΔTc, respectively. These two sets of basic 
well logging data were used to build an intelligent model of ΔTs. The second set of logs enabled 
the prediction of synthetic ΔTs for wells that had no basic wireline logs, such as well 10, which 
has neither a Øn nor a ρb log.  Wells 9 and 10 were used to validate different ΔTs models. 
Figure 5 shows a simple plot between measured ΔTs and ΔTc for wells 5, 6 and 8 using 787 
data points. A simple regression equation was generated (Equation 2, R2 = 0.87). The model 
built on MLR used 787 data points from the first and second input data sets from the same 
wells, and Equations 3 and 4 were extracted with a regression coefficient R2 = 0.91 and 0.89, 
respectively.  
 
ΔTs = 3.32 + (1.6 * ΔTc)                                                                                        (2) 
ΔTs = 122.7 – (0.3* GR) + (1.3 * ΔTc) – (26.7 * Øn) – (33.6 * ρb)                             (3) 
ΔTs = 14.9 – (0.3 * GR) + (1.5 * ΔTc)                                                                            (4) 

 

Fig. 5. Plot of log data of measured ΔTs and ΔTc 

One stage of training was performed on the NN tool, with the epoch of best cost equal 
to 65 as the second and third training passes did not improve the first pass. Also, the minimum 
error of the best cost was equal to 1.4E-314, where a lower value is better. 

MLR, NN, simple plot and the Brocher (2005) equation (Equation 1) yielded ΔTs values 
that generally agreed with the measured values. In wells 5 and 6, ΔTs values derived from the 
simple cross-plot equation were higher than the measured values in porous dolomite lithofacies. 
On the other hand, in wells 8, 9 and 10 it was less than the measured log in dolomitic limestone 
and anhydrite lithofacies. In less porous dolomite lithofacies, ΔTs calculated from simple plots 
was similar to the measured values (figures 6 and 7). Well 9 is located at the Sarir Trough 
(southern shelf), and the depositional environment is the shallow carbonate-inner shelf in the 
Eocene time (Hallett & Lowes, 2017). However, in this well, the simple plot and intelligent 
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models yielded lower estimations of ΔTs, whereas the Brocher (2005) equation yielded the 
most accurate estimate (figure 8). 

Figure 9 compares the ΔTs of well 10 showing clear agreement between the predicted 
and measured values, except below the depth of 3430 feet due to the increase of GR. The NN 
tool gave the best prediction of ΔTs in this well throughout the Facha member.

Fig. 6. Measured and predicted ΔTs and basic wireline data of well 5 

 
Fig. 7. Measured and predicted ΔTs and basic wireline data of well 6. 
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Fig. 8. Measured and predicted ΔTs from basic wireline data of well 9 

 

Fig. 9. Measured and predicted ΔTs of well 10, GR and PEF
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The statistical analysis tools, IHS Kingdom and IBM SPSS Statistics 20, were applied by Ehsan 
et al., (2018) to well logs and seismic data to classify reservoir and source rocks depth at Sindh 
province in the Southern Lower Indus Basin of Pakistan. Hence, the Table 1 summarizes the 
statistical of error measurements and performance of the models. It includes the average 
difference between measured and predicted values of ΔTs (ΔTsM – ΔTsP), standard error (SE), 
and goodness of fit (R2). The differences between the measured and predicted values of ΔTs 
for the first and second input data sets were 5-15 µsec/ft and 4-17 µsec/ft, respectively. The SE 
of the predicted shear travel time, calculated by using Equation 5, reached up to 19 µsec/ft. 

𝑆𝐸 = 	%(∆#$%&∆#$')
!

)&*
                                                                                        (5) 

ΔTsM: measured shear travel time (µsec/ft); ΔTsP: shear travel time (µsec/ft) predicted by the 
different techniques; n = number of data points; SE: standard error. 

The Correlation between ΔTsM and ΔTsP for the first input data set for wells 6 and 9 
are shown in figure 10. The assessment of the intelligent tools in predicting shear travel time in 
the Zallah and Sarir Troughs were with the R2 equal to 0.9 and 0.6, respectively. On the other 
hand, cross-plots and the Brocher equation were more suitable for the Facha member at 
different locations in the Sirte Basin, with 90% goodness of fit. The lower R2 in well 9 could be 
attributed to dolomitic limestone lithofacies and higher shale content. Similar results have been 
reported by Akhundi et al., 2014, who applied artificial NN, the Castagna empirical equation 
and MLR to estimate ΔTs. They found that ΔTs prediction by the ANN was acceptable in 
relation to the measured values. Also, the MLR yielded predictions with 92% fit, but it cannot 
be used for generalization across different lithologies. However, the Castagna empirical 
equation had a correlation coefficient (R2) of 0.72 and was considered acceptable for use in 
wells with incomplete well logging data.  
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Fig. 10. Correlation between measured and predictions ΔTs by different models in wells 6 
and 9 by using the first set of data
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5. Conclusions   

In general, prediction of ΔTs on the basis of GR, ΔTc, Øn, and ρb is important in old wells or 
wells with borehole problems, such as collapse or caving. Predicted ΔTs is useful for 
understanding the mechanical behavior of rocks and helpful in dealing with well instability. 
However, though this approach is applicable to clastic and carbonate rocks, it is not applicable 
to situations where limestone, dolomite, dolomitic limestone and anhydrite are present, and the 
use of any empirical equation could be ruled out. 
 

Table 1. Goodness of fit, average difference and standard error of the input data set 

Well Model 
 1st PCA input 

data  
  2nd PCA input 

data 
 

R2 Difference  SE R2 Difference SE 

5 Fuzzy logic 0.83 7.1 10.66 0.89 4.1 5.6 

 Multiple linear regression 0.86 4.6 6.25 0.88 4.9 6.3 

 Neural Network 0.85 5.4 7.58 0.86 6.8 8.7 

 Simple cross plot  0.89 14.1 17.70 - - - 

 Brocher (2005) equation 0.88 13.4 18.40 - - - 

6 Fuzzy logic 0.91 4.7 8.06 0.93 4.7 6.2 

 Multiple linear regression 0.90 5.8 9.00 0.93 5.2 6.6 

 Neural Network 0.92 4.9 8.20 0.92 12.2 13.8 

 Simple cross plot  0.91 4.9 8.30 - - - 

 Brocher (2005) equation 0.96 6.5 8.56 - - - 

8 Fuzzy logic 0.92 6.9 9.05 0.93 7.7 8.9 

 Multiple linear regression 0.89 6.9 8.99 0.94 7.5 8.7 

 Neural Network 0.93 8.6 12.2 0.95 4.8 6.7 

 Simple cross plot  0.89 11.0 16.3 - - - 

 Brocher (2005) equation 0.89 11.9 19.2 - - - 

9 Fuzzy logic 0.44 36.2 38.54 0.45 36.9 39.4 

 Multiple linear regression 0.58 30.7 32.68 0.58 32.7 34.8 

 Neural Network 0.43 44.2 46.38 0.55 26.3 28.8 

 Simple cross plot  0.60 31.0 33.00 - - - 

 Brocher (2005) equation 0.60 12.3 15.29 - - - 

10 Fuzzy logic - - - 0.88 16.6 17.7 

 Multiple linear regression - - - 0.89 15.4 16.3 

 Neural Network - - - 0.85 4.1 5.4 

 Simple cross plot  0.92 15.4 16.4 - - - 

 Brocher (2005) equation 0.91 10.5 11.5 - - - 
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The measured basic wireline data were used as input data to predict ΔTs by using intelligent 
tools. These tools predicted ΔTs with a good of fit (about 90%). In addition, simple cross-plots 
of measured versus predicted ΔTs in the wells show that ΔTs is overestimated at dolomite 
lithofacies due to increasing neutron porosity. Both the simple plots and MLR models show 
estimated values of ΔTs lower than measured values in the dolomitic limestone and limestone 
lithofacies. The Brocher, (2005) equation results fit well with the measured ΔTs at dolomite 
and dolomitic limestone lithofacies, but the predicted ΔTs were shorter than the measured time 
due to the reduced porosity and the changes to the limestone lithofacies. For the anhydrite 
lithofacies, the intelligent tools and the Brocher equation yielded predictions of ΔTs equivalent 
to the measured values, but the simple plot equation provided less accurate predictions. 
According to that, the simple cross-plot and the Brocher equation could be used for the dolomite 
and dolomitic limestone lithofacies in the Facha member, particularly if no intelligent tools are 
available. MLR yielded results closer to the measured shear travel time than the NN results in 
dolomite lithofacies, but NN is more suitable for dolomitic limestone. Generally, the second 
PCA input data set gave better results than the first PCA input data set for the ΔTs estimated 
by the intelligent tools.  
 
ACKNOWLEDGMENTS 

The authors are grateful to the National Oil Corporation (NOC) in Libya and to all its oil 
companies for providing the data used in this study.
 
References 

Abdunaser, K. & McCaffrey, K. (2014). Rift architecture and evolution: The Sirt Basin, 
Libya: The influence of basement fabrics and oblique tectonics. Journal of African Earth 
Sciences, (100):203-226.  

Abugares, Y.I. (1996). Sedimentology and hydrocarbon potential of the Gir Formation. Sirt 
Basin. Libya. First Symposium on the Sedimentary Basins of Libya, Geology of the Sirt Basin, 
vol. 2. (Eds. M. J. Salem, A. S. El Hawat, A.M. Sbeta). Amsterdam, Netherlands. 

Akhundi, H., Ghafoori, M. & Lashkaripour, G.R. (2014). Prediction of shear wave velocity 
using artificial neural network technique, multiple regression and petrophysical data: A case 
study in Asmari reservoir (SW Iran). Open Journal of Geology, (4):303-313.  

Ahlbrandt, T.S. (2001). The Sirte basin province of Libya: Sirte-Zelten total petroleum 
system: US Department of the Interior, US Geological Survey. 29p. 

Ambrose, G. (2000). The geology and hydrocarbon habitat of the Sarir Sandstone, SE Sirt 
Basin, Libya. Journal of Petroleum Geology, 23(2):165-192. 

Amiri, M.A., Conoscenti, C., & Mesgari, M.S. (2018). Improving the accuracy of rainfall 
prediction using a regionalization approach and neural networks. Kuwait Journal of Science, 
45(4):66-75. 

Using artificial intelligence methods for shear travel time prediction: A case study of Facha member, Sirte basin, Libya

12



 
 

Banerjee, S. (1980). Stratigraphic lexicon of Libya. Department of geological researches & 
mining. Bulletin (13). 

Barr, F. & Weeger, A. (1972). Stratigraphic nomenclature of the Sirte Basin, Libya: Petroleum 
Exploration Society Libya, Tripoli. 179p. 

Bateman, M.R. (2012). Openhole Log Analysis and Formation Evaluation. Society of 
Petroleum Engineers, United States of America. 653p.  

Brocher, T.M. (2005). Empirical relations between elastic wave speeds and density in the 
Earth's crust. Bulletin of the seismological Society of America, 95(6), 2081-2092.   

Cuddy, S. (1997). The application of the mathematics of fuzzy logic to petrophysics. Paper 
presented at the SPWLA 38th annual logging symposium. 

Ehsan, M., Gu, H., Akhtar, M.M., Abbasi, S.S. & Ehsan, U. (2018). A geological study of 
reservoir formations and exploratory well depths statistical analysis in Sindh Province, 
Southern Lower Indus Basin, Pakistan. Kuwait Journal of Science, 45(2):84-93. 

Elag, M. O. (1996). Sedimentological study of the Facha Member in the southwest Sirt Basin, 
Libya. Paper presented at The First Symposium on the Sedimentary Basins of Libya, Geology 
of the Sirt Basin. Amsterdam, Netherlands. 

Gras, R. (1996). Structural style of the southern margin of the Messlah High. The geology of 
the Sirt Basin. Amsterdam, Elsevier, (3):201-210. 

Gras, R. & Thusu, B. (1998). Trap architecture of the Early Cretaceous Sarir sandstone in the 
eastern Sirt Basin, Libya. Geological Society, London, Special Publications, 132(1):317-334. 

Greenberg, M.L. & Castagna, J.P. (1992). Shear-Wave Velocity Estimation in 
Porous Rocks: Theoretical Formulation, Preliminary Verification and Applications. 
Geophysical Prospecting, (40):195-209. 

Guiraud, R. (1998). Mesozoic rifting and basin inversion along the northern African Tethyan 
margin, an overview. Geological Society, London, Special Publications, 132(1):217-229. Guan, 
Z., Sheng, Y., Luo, M., Xu, Y., Zhang, B. & Wang, Q. (2018). A new quantitative evaluation 
method for drilling risk based on uncertainty analysis. Kuwait Journal of Science, 45(3):105-
113. 

Hallett, D. & Clark-Lowes, D. (2017). Petroleum geology of Libya. Elsevier, Netherlands. 
393p. 

Hallett, D. & El Ghoul, A. (1996). Oil and gas potential of the deep trough areas in the Sirt 
Basin, Libya. In Salem, M.J., El-Hawat, A.S., and Sbeta, A.M., eds., The geology of Sirt Basin: 
Amsterdam, Netherlands. 

Harding, T. (1984). Graben hydrocarbon occurrences and structural style. AAPG Bulletin, 
68(3):333-362.  

Bahia M. Ben Ghawar, Moncef Zairi, Samir Bouaziz 

13



 
 

Khamehchi, E., Kivi, I.R. & Akbari M. (2014). A novel approach to sand production 
prediction using artificial intelligence. Journal of Petroleum Science and Engineering, (123): 
147-154. 

Lashhab, M.I. & West, I.M. (1996). Dolomitization of the Jir and Rawaghah Formations in 
Jabal al Jir and the western Sirt Basin. First Symposium on the Sedimentary Basins of Libya. 
Geology of the Sirt Basin, vol. 2. (Eds. M.J. Salem. A.S. El-Hawat and A.M. Sbeta).  Elsevier, 
Amsterdam, Netherlands. 

Liu, H. (2017). Principles and Applications of Well Logging. In: Sonic Logs, Pp. 59-114. 
Springer, China.  

Maleki, S., Moradzadeh, A., Riabi, R.G., Gholami, R. & Sadeghzadeh, F. (2014). 
Prediction of shear wave velocity using empirical correlations and artificial intelligence 
methods. NRIAG Journal of Astronomy and Geophysics, (3):70-81.  

Mijalkovic, N. (1977). Geological Map of Libya, Al Qaddahiyah (NH33-3). Explanatory 
Booklet. Industrial Research Centre, SPL AJ. Tripoli. 

Miraj, A. F. M., Ali, A., Javaid, H., Rathore, P.S., Ahsan, N., Saleem., R., Afgan, S. & 
Malik, B.M. (2021). An integrated approach to evaluate the hydrocarbon potential of Jurassic 
Samana Suk Formation in Middle Indus Basin, Pakistan. Kuwait Journal of Science, 48(4):1-
11. 

Olasunkanmi, N., Sunmonu, L.A. & Adabanija, M.A. (2020). Geophysical investigation for 
mineral prospect in Igbeti-Moro area, southwestern Nigeria. Kuwait Journal of Science, 
47(3):2-14. 

Singh, S., Kanli, A.I. (2015). Estimating shear wave velocities in oil fields: a neural network 
approach. Geosciences Journal, DOI 10.1007/s12303-015-0036-z. 

Tao, L.Z., Ming, L.Q. & Hong, Z. (2020). Integrated physical detection technology in 
complicated surface subsidence area of mining area. Kuwait Journal of Science, 47(1):86-
96.Tawadros, E. (2001).  Geology of Egypt and Libya. Balkema-Rotterdam, Netherlands. 468p. 

 

Submitted:  07/09/2021 
Revised:  14/10/2021 
Accepted:   02/12/2021 
DOI:   10.48129/kjs.16117 

Using artificial intelligence methods for shear travel time prediction: A case study of Facha member, Sirte basin, Libya

14




