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Abstract

In this paper, an explicit exponential finite difference method is presented to solve the generalized forms of Huxley and 
Burgers-Huxley equations. These schemes allows to handle any values of . The accuracy of the numerical solutions 
indicates that the present method is well suited for the solution of the generalized Huxley and the generalized Burgers-
Huxley equations.       
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1. Introduction

Most of the problems in various field as physics, chemistry, 
biology, mathematics and engineering are modeled 
by nonlinear partial differential equations. Two of the 
nonlinear partial differential equations are the generalized 
Huxley equation and the generalized Burgers-Huxley 
equation. Firstly, we consider the generalized Huxley 
equation

    (1)

with the initial condition

and the boundary conditions

 and 

The equation describes nerve pulse propagation in 
nerve fibres and wall motion in liquid crystals. Where  

 and  are arbitrary constant depending on 
the parameters. 

Various methods for obtaining numerical solutions 
to the generalized Huxley equation have been proposed. 
Hashim et al. (2006a) used the Adomian decomposition 
method for the numerical solution of the mentioned 
equation. The solution of the generalized Huxley equation 
was obtained using homotopy perturbation method and 
Adomian decomposition method by Hashemi et al. 
(2007). Batiha et al. (2007) proposed variational iteration 
method for the solution of the equation. Based on the 

homotopy analysis method, a scheme was developed to 
obtain approximation solution of the generalized Huxley 
equation by Hemida & Mohamed (2012).

Secondly, we consider the generalized Burgers-
Huxley equation. The generalized Burgers-Huxley 
equation of the form;

                                                         (2)

with the following initial conditions taken from

and the boundary conditions

 and 

where  and  are parameters that   
 When  Equation (2) is reduced to the 

generalized Huxley equation. If we take  and 
 Equation (2) becomes the following 

Burgers-Huxley equation:

        (3)

Equation (3) shows a prototype model for describing 
the interaction between reaction mechanisms, convection 
effects and diffusion transport. This equation was 
investigated by Satsuma in 1986 (Wang et al. 1990).

In literature, many numerical methods have been 
proposed for approximating solution of the generalized 
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Burgers-Huxley equation. Adomian decomposition 
method was applied to the generalized Burgers-Huxley 
equation by Hashim et al. (2006b). Javidi (2006a, 
2006b) presented the collocation method for solving the 
equation. Spectral collocation method and Darvishi’s 
preconditionings to solve the generalized Burgers-Huxley 
equation was used by Darvishi et al. (2008). Batiha et 
al. (2008)  used the variational iteration method, which 
was based on the incorporation of a general Lagrange 
multiplier in the construction of correction functional 
for the equation. Numerical solutions of the equation 
was obtained using a polynomial differential quadrature 
method by Sari & Gürarslan (2009). A numerical solution 
of the equation, based on collocation method using Radial 
basis functions, called Kansa’s approach was presented by 
Khattak (2009). Javidi & Golbabai (2009) used the spectral 
collocation method using Chebyshev polynomials for 
spatial derivatives and fourth order Runge-Kutta method 
for time integration to solve the generalized Burgers-
Huxley equation. Biazar & Mohammadi (2010) used the 
differential transform method for solution of the equation. 
A fourth order finite-difference scheme in a two-time 
level recurrence relation was proposed for the equation by 
Bratsos (2011). Çelik (2012) used Haar wavelet method 
for solving the generalized Burgers-Huxley equation. El-
Kady et al. (2013) presented based on cardinal Chebyshev 
and Legendre basis functions with Galerkin method 
for solution of the equation. The discrete Adomian 
decomposition method was applied to a fully implicit 
scheme of the generalized Burgers-Huxley equation by 
Al-Rozbayani (2013). Also, some Burgers-type equations 
were solved with many numerical techniques by many 
authors such as Bhrawy (2013, 2014, 2015), Bhrawy & 
Abdelkawy (2015), Bhrawy et al. (2015a, 2015b), Doha 
et al. (2014) and Başhan et al. (2015).

The explicit exponential finite difference method was 
originally developed by Bhattacharya (1985) for solving 
of the heat equation. Bhattacharya (1990) and Handschuh 
& Keith (1992) used exponential finite difference method 
for the solution of Burgers equation. Bahadır (2005) 
solved the KdV equation by using the exponential finite 
difference technique. İnan & Bahadır (2013) solved the 
linearized Burgers equation by Hopf-Cole transformation 
using an explicit exponential finite difference method.

In this paper, we design new scheme for solving 
the generalized forms of Huxley and Burgers-Huxley 
equations. Tables are presented for the ability of the 
method to solve the equations for different values of . It 

is clearly seen that the numerical results are reasonably in 
good agreement with the exact solutions.

2. Explicit exponential finite difference method

In this section, we obtain numerical solutions of the 
equations by explicit exponential finite difference 
method. The solution domains are discretized into cells 
as  in which ,  and 

,  is the spatial 
mesh size and  is the time step. Explicit exponential 
finite difference method for Equation (1) and Equation 
(2) take the following linear forms, which are valid for 
values of  lying in the interval  Also, 
where  denotes the explicit exponential finite difference 
approximation and  denotes exact solution. All 
numerical computations are performed with the space step 

 and the time step  The accuracy of 
the proposed method is measured using the absolute error, 
which is defined as

2.1. The generalized Huxley equation

We rearrange Equation (1) to obtain

             (4)

Dividing by 

        (5)

Using the finite difference approximations for 
derivatives Equation (5) have been taken following form

                   

                                              (6)   

or Equation (6) can be written as

                                                      (7)        

2.2. Numerical example

In this section, numerical solutions for the generalized 
Huxley equation are presented to demonstrate the accuracy 
of the proposed method.
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Consider the generalized Huxley equation of the 
form;

    (8)

with the initial condition 

and the boundary conditions

and 

The exact solution of this equation was derived by 
Wang et al. (1990) using nonlinear transformations and 
is given by

where  and 

For the numerical computation, we use the parameters 
 and  and . Numerical 

results, exact solutions and absolute errors at different 
values of  are given in Table 1-4. Table 5 shows 
comparison of the present method with  (Hashim et al. 
2006a), HPM (Hashemi et al. 2007) and VIM  (Batiha et al. 
2007) methods for . From these tables, it is obvious 
that numerical solutions are in excellent agreement with 
the exact solutions.

Table 1. Numerical solutions for .

Present Method Exact Absolute Error

0.1

0.05
0.1
1
2
5

0.000500020
0.000500028
0.000500245
0.000500495
0.000501244

0.000500030
0.000500043
0.000500268
0.000500517
0.000501267

1.030307E-08
1.506294E-08
2.248771E-08
2.248873E-08
2.248861E-08

0.5

0.05
0.1
1
2
5

0.000500078
0.000500075
0.000500276
0.000500526
0.000501275

0.000500101
0.000500113
0.000500338
0.000500588
0.000501338

2.313697E-08
3.843952E-08
6.246539E-08
6.246868E-08
6.246834E-08

0.9

0.05
0.1
1
2
5

0.000500161
0.000500169
0.000500386
0.000500636
0.000501386

0.000500172
0.000500184
0.000500409
0.000500659
0.000501408

1.030307E-08
1.506294E-08
2.248771E-08
2.248872E-08
2.248859E-08

Table 2. Numerical solutions for .

Present Method Exact Absolute Error

0.1
0.05
0.1
1

0.022361423
0.022361769
0.022371493

0.022361884
0.022362443
0.022372499

4.608094E-07
6.736791E-07
1.005330E-06

0.5
0.05
0.1
1

0.022363431
0.022363305
0.022372287

0.022364466
0.022365024
0.022375079

1.034739E-06
1.719095E-06
2.792493E-06

0.9
0.05
0.1
1

0.022366586
0.022366932
0.022376654

0.022367047
0.022367606
0.022377659

4.607405E-07
6.736028E-07
1.005253E-06
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Table 3. Numerical solutions for .

Present Method Exact Absolute Error

0.1
0.05
0.1
1

0.079372385
0.079373613
0.079408123

0.079374020
0.079376004
0.079411690

1.635704E-06
2.391262E-06
3.567016E-06

0.5
0.05
0.1
1

0.079378283
0.079377837
0.079409710

0.079381956
0.079383939
0.079419618

3.672757E-06
6.101814E-06
9.907906E-06

0.9
0.05
0.1
1

0.079388254
0.079389482
0.079423978

0.079389889
0.079391872
0.079427544

1.635280E-06
2.390793E-06
3.566539E-06

Table 4. Numerical solutions for .

Present Method Exact Absolute Error

0.1
0.05
0.1
1

0.218677837
0.218681220
0.218776259

0.218682343
0.218687808
0.218786078

4.506511E-06
6.587901E-06
9.819106E-06

0.5
0.05
0.1
1

0.218690074
0.218688845
0.218776619

0.218700192
0.218705655
0.218803892

1.011803E-05
1.680963E-05
2.727357E-05

0.9
0.05
0.1
1

0.218713530
0.218716909
0.218811884

0.218718034
0.218723495
0.218821701

4.504603E-06
6.585790E-06
9.816960E-06

Table 5. Comparisons of the numerical solutions for .

Exact Present Method HPM VIM

0.1
0.05
0.1
1

0.079374020
0.079376004
0.079411690

0.079372385
0.079373613
0.079408123

0.079370053
0.079368069
0.079332345

0.079370053
0.079368069
0.079332344

0.079370053
0.079368070
0.079332364

0.5
0.05
0.1
1

0.079381956
0.079383939
0.079419618

0.079378283
0.079377837
0.079409710

0.079377989
0.079376006
0.079340288

0.079377989
0.079376006
0.079340288

0.079377989
0.079376006
0.079340307

0.9
0.05
0.1
1

0.079389890
0.079391872
0.079427544

0.079388254
0.079389482
0.079423978

0.079385924
0.079383941
0.079348230

0.079385924
0.079383941
0.079348230

0.079385924
0.079383941
0.079348250

2.3. Generalized Burgers-Huxley equation

When Equation (2) is rearranged, following equation is 
obtained

       (9)

Dividing by 

   
 (10)       

Using the finite difference approximations for derivatives 
Equation (10) have been taken following form

               
   (11)

2.4. Numerical example

Then, we consider the following generalized Burgers-
Huxley equation,
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                             (12)

with the following initial conditions taken from

and the boundary conditions

and

The exact solution of Equation (2) is

where

 

In Tables 6-8, we present numerical and exact solutions 
for various values of ,  and  with   

. Absolute errors for various values of ,  and 
 with  ,  showed in Table 

9. Table 10 shows comparison of the present method with 
Ismail et al. (2004), Hashim et al. (2006b), Batiha et al. 
(2008), Biazar & Mohammadi (2010) and Al-Rozbayani 
(2013) for  . From Table 6-10, it 
can be observed that the computed results show excellent 
agreement with the exact solutions.

Table 6. Numerical solutions for .

Present Method Exact Absolute Error

0.1

0.05
0.1
1
2
5

0.000500022
0.000500040
0.000500478
0.000500978
0.000502477

0.000500037
0.000500062
0.000500512
0.000501012
0.000502511

1.545406E-08
2.259326E-08
3.372930E-08
3.373074E-08
3.373004E-08

0.5

0.05
0.1
1
2
5

0.000500053
0.000500055
0.000500468
0.000500968
0.000502467

0.000500087
0.000500112
0.000500562
0.000501061
0.000502561

3.470545E-08
5.765928E-08
9.369803E-08
9.370276E-08
9.370081E-08

0.9

0.05
0.1
1
2
5

0.000500122
0.000500140
0.000500578
0.000501078
0.000502577

0.000500137
0.000500162
0.000500612
0.000501112
0.000502611

1.545515E-08
2.259559E-08
3.373379E-08
3.373524E-08
3.373453E-08

Table 7. Numerical solutions for .

Present Method Exact Absolute Error

0.1
0.05
0.1
1

0.022362607
0.022364803
0.022414941

0.022364010
0.022366855
0.022417997

1.403437E-06
2.051589E-06
3.056211E-06

0.5
0.05
0.1
1

0.022362800
0.022363561
0.022411444

0.022365952
0.022368796
0.022419934

3.151589E-06
5.235663E-06
8.490079E-06

0.9
0.05
0.1
1

0.022366490
0.022368686
0.022418814

0.022367893
0.022370738
0.022421871

1.403378E-06
2.051624E-06
3.056441E-06



Finite difference methods for the generalized Huxley and Burgers-Huxley equations25

Table 8. Numerical solutions for .

Present Method Exact Absolute Error

0.1
0.05
0.1
1

0.079382153
0.079397429
0.079737642

0.079390945
0.079410279
0.079756666

8.792581E-06
1.285017E-05
1.902468E-05

0.5
0.05
0.1
1

0.079377393
0.079383675
0.079709947

0.079397138
0.079416470
0.079762802

1.974459E-05
3.279434E-05
5.285446E-05

0.9
0.05
0.1
1

0.079394539
0.079409809
0.079749911

0.079403331
0.079422659
0.079768936

8.791420E-06
1.284951E-05
1.902522E-05

 
Table 9. Absolute errors for various values of ,  and .

0.1
0.2
0.5
0.8

1.562197E-13
1.770078E-13
1.780854E-13

3.838587E-11
4.349372E-11
4.375841E-11

1.277322E-09
1.447292E-09
1.456095E-09

1.277322E-09
1.447292E-09
1.456095E-09

0.5
0.2
0.5
0.8

4.238971E-13
4.911674E-13
4.946513E-13

1.041588E-11
1.206880E-11
1.215443E-11

3.465972E-09
4.016006E-09
4.044490E-09

3.465972E-09
4.016006E-09
4.044490E-09

0.9
0.2
0.5
0.8

1.697482E-13
1.770078E-13
1.780854E-13

3.838586E-11
4.349372E-11
4.375840E-11

1.277324E-09
1.447294E-09
1.456098E-09

1.277324E-09
1.447294E-09
1.456097E-09

Table 10. Comparisons of the absolute for .

Present
 Method

Ismail et al. 
(2004)

Hashim et al. 
(2006b)

Batiha et al. 
(2008)

Biazar & 
Mohammadi

(2010)
Al-Rozbayani

(2013)

0.1
0.05
0.1
1

1.545406E-08
2.259326E-08
3.372930E-08

1.93715E-07
3.87434E-07
3.87501E-06

1.87406E-08
3.74812E-08
3.74812E-07

1.87405E-08
3.74813E-08
3.74812E-07

1.87406E-08
3.74813E-08
3.748125E-07

1.87406E-08
3.74812E-08
3.74812E-07

0.5
0.05
0.1
1

3.470545E-08
5.765928E-08
9.369803E-08

1.9373E-07
3.87464E-07
3.87531E-06

1.87406E-08
3.74812E-08
3.74812E-07

1.87405E-08
1.37481E-08
3.74813E-07

1.87406E-08
3.74813E-08
3.748125E-07

1.87406E-08
3.74812E-08
3.74812E-07

0.9
0.05
0.1
1

3.470545E-08
5.765928E-08
9.369803E-08

1.93745E-07
3.87494E-07
3.87561E-06

1.87406E-08
3.74812E-08
3.74812E-07

1.87405E-08
3.74813E-08
3.74813E-07

1.87406E-08
3.74813E-08
3.748125E-07

1.87406E-08
3.74812E-08
3.74812E-07

3. Conclusion

In this paper, explicit form for the numerical solutions 
obtained by applied exponential finite difference method 
in the space and the time has been presented. Numerical 
solutions for different values of  are given using tables 
for both equations. According to the results presented in 
these tables, the present method offer high accuracy for the 
numerical solutions of the nonlinear generalized forms of 
Huxley and Burgers-Huxley equations. Table 5 and Table 

10 clearly show that explicit exponential finite difference 
method is more efficient than the other methods.
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