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Abstract

In this paper, some new characterizations of k-normal and k-EP matrices are obtained using the core-EP
decomposition. We obtain several equivalent conditions for a matrix A to be k-normal and k-EP in terms
of certain generalized inverses.
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1. Introduction

The concepts of the classes of k-normal matrices and k-EP matrices were introduced by Malik et al.
in (Malik et al., 2016) where the authors studied characterizations and properties of both k-normal and
k-EP matrices using the Hartwing-Spindelböck decomposition. More properties of these two types of
matrices have been given in (Ferreyra et al., 2018; Wang et al., 2019). Inspired by the previous work, the
intention of this paper is to discuss both classes and their further properties and characterizations using
some generalized inverses.

The classical Moore-Penrose inverse(Penrose et al., 1955) and Drazin inverse(Drazin et al., 1958)
were defined in the fifties and have been thoroughly studied since then. On the other hand, some general-
ized inverses such as core inverse(Baksalary et al., 2010), core EP inverse(?), DMP inverse(Malik et al.,
2014), WG inverse(Wang et al., 2018), etc., were introduced in the last decade. Nowadays, they attract
the attention of many researchers.

Let Cm×n be the set of all m × n complex matrices and Z+ denotes the set of all positive integers.
The symbols R(A), N (A), A∗, r(A) and In will denote the range space, null space, conjugate transpose,
rank of A ∈ Cm×n and the identity matrix of order n. Ind(A) means the index of A ∈ Cn×n. Let Cn×n

k

be the set consisting of n× n complex matrices with index k.

For convenience, throughout the paper we will use the following notations: Ck−N
n , Ck, †⃝

n and Ck−EP
n

will denote the subsets of Cn×n consisting of k-normal, k-core EP and k-EP matrices, respectively, i.e.,

Ck−N
n = {A | A ∈ Cn×n, AkA∗ = A∗Ak};

Ck, †⃝
n = {A | A ∈ Cn×n

k , AkA †⃝ = A †⃝Ak}
= {A | A ∈ Cn×n

k , Ak ∈ CEP
n };

Ck−EP
n = {A | A ∈ Cn×n

k , AkA† = A†Ak}.

The structure of this article is as follows: In the Section 2, we discuss several sufficient and necessary
conditions for the class of k-normal matrices in terms of generalized inverses. The Section 3 is devoted

to the characterizations of the sets Ck, †⃝
n and Ck−EP

n .
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2. Properties of the k-normal matrices

In this section, we will consider the class of k-normal matrices in terms of some generalized inverses.
In the following lemma, we will present the core-EP decomposition, which was given by Wang in

(Wang et al., 2016).

Lemma 2.1 (Wang et al., 2016)(core-EP decomposition) Let A ∈ Cn×n
k . Then A can be represented as

A = U

[
T S
0 N

]
U∗, (1)

where T ∈ Ct×t is nonsingular and t = r(T ) = r(Ak) , N is nilpotent with index k, and U ∈ Cn×n is
unitary.

Moreover, the representation of A given by (1) is unique (Wang et al., 2016, Theorem 2.4). Further-
more, in that case the core-EP inverse of A is given by

A †⃝ = U

[
T−1 0
0 0

]
U∗. (2)

Next we will introduce the following notations, that will be used throughout this paper.
Let A ∈ Cn×n

k be given by (1). Then

△ = [TT ∗ + S(In−t −N †N)S∗]−1;

T̃ =

k−1∑
j=0

T jSNk−1−j ;

Tq =

q−1∑
j=0

T jSN q−1−j(q ∈ Z+).

Lemma 2.2 Let A ∈ Cn×n
k be given by (1). Then (Ferreyra et al., 2018; Wang et al., 2018):

A† = U

[
T ∗△

(In−t −N †N)S∗△
−T ∗△SN †

N † − (In−t −N †N)S∗△SN †

]
U∗; (3)

AD = U

[
T−1 (T k+1)−1T̃
0 0

]
U∗; (4)

AD,† = U

[
T−1 (T k+1)−1T̃NN †

0 0

]
U∗; (5)

A†,D = U

[
T ∗△

(In−t −N †N)S∗△
T ∗△T−kT̃

(In−t −N †N)S∗△T−kT̃

]
U∗; (6)

Aw⃝ = U

[
T−1 T−2S
0 0

]
U∗. (7)

According to (1) and (3), we have

AA† = U

[
It 0
0 NN †

]
U∗, (8)

A†A = U

[
T ∗△T T ∗△S(In−t −N †N)

(In−t −N †N)S∗△T N †N + (In−t −N †N)S∗△S(In−t −N †N)

]
U∗. (9)
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Lemma 2.3 Let A ∈ Cn×n
k be given by (1). Then A ∈ Ck−N

n if and only if T kT ∗ = T ∗T k and S = 0.
Proof. Using (1), we have

Ak = U

[
T k T̃
0 0

]
U∗. (10)

Now it is easy to check that A ∈ Ck−N
n if and only if T kT ∗ = T ∗T k and S = 0.

Lemma 2.4 Let A ∈ Cn×n
k be given by (1) and q ∈ Z+. Then Tq = 0 if and only if S = 0. In particular,

T̃ = 0 if and only if S = 0.
Proof. The proof is similar to (Wang et al., 2019), Theorem 2.3.

Lemma 2.5 (Sylvester et al., 1884) Let A ∈ Cp×p and B ∈ Cq×q have no common eigenvalues. Then
AY − Y B = 0 has a unique solution Y = 0, where Y ∈ Cp×q.

Theorem 2.6 Let A ∈ Cn×n
k be given by (1) and q ∈ Z+. Then the following conditions are equivalent:

(a) A ∈ Ck−N
n ;

(b) Ak+1A†A∗ = A∗Ak+1A†;

(c) A∗A†Ak+1 = A†Ak+1A∗;

(d) A∗Ak+q = AkA∗Aq;

(e) Ak+qA∗ = AqA∗Ak.

Proof. That (a) implies all other items (b), (c), (d) and (e) follow directly by Lemma 2.3.
(b) ⇒ (a). It follows from (1), (3) and (10) that T kT ∗ = T ∗T k and S = 0. Hence by Lemma 2.3,

we have that (a) holds.
(c) ⇒ (a). By taking the conjugate transpose of A∗A†Ak+1 = A†Ak+1A∗ and applying item (b) we

get that A ∈ Ck−N
n .

(d) ⇒ (a). Since A∗Ak+q = AkA∗Aq, it follows from (1) and (10) that T kT ∗ = T ∗T k and S = 0.
Hence by Lemma 2.3, we have that (a) holds.

(e) ⇒ (a). By taking the conjugate transpose of Ak+qA∗ = AqA∗Ak and applying point (d) ⇒ (a),
we can deduce A ∈ Ck−N

n .

Next we will present 10 conditions involving A∗, X , A and their powers to assure that A ∈ Ck−N
n ,

where X ∈ {A †⃝, AD, AD,†, A†,D, Aw⃝}.

Theorem 2.7 Let A ∈ Cn×n
k be given by (1) and X ∈ {A †⃝, AD, AD,†, A†,D, Aw⃝}. The following

assertions are equivalent:

(a) A ∈ Ck−N
n ;

(b) A(A∗)kX = (A∗)k;

(c) X(A∗)kA = (A∗)k;

(d) (A∗)kAX = A(A∗)kX;

(e) (A∗)kXA = A(A∗)kX;

(f ) A∗AkX = AkA∗X;

(g) A∗Ak+1X = XAk+1A∗;

(h) A∗Ak+1X = Ak+1XA∗;
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(i) A∗XAk+1 = XAk+1A∗;

(j) A∗XAk+1 = Ak+1XA∗;

(k) A∗AXk+1 = AXk+1A∗.

Proof. From (2), (4), (5), (6) and (7), that (a) implies all items (b) − (k) can be directly verified
by Lemma 2.3.

On the converse, we have to prove that each of conditions (b)− (k) implies that T kT ∗ = T ∗T k and
S = 0.

(b) ⇒ (a). Assume that A(A∗)kA†,D = (A∗)k. From (6) and (10), we obtain that

(i) (T (T k)∗ + ST̃ ∗)T ∗△ = (T k)∗;

(ii) (T (T k)∗ + ST̃ ∗)T ∗△T−kT̃ = 0;

(iii) NT̃ ∗T ∗△ = T̃ ∗;

(iv) NT̃ ∗T ∗△T−kT̃ = 0.

From (iii) we have that HT̃ − T̃N∗ = 0, where H = (△∗T )−1. Notice that H is invertible and N∗ is
nilpotent, hence H and N∗ have no common eigenvalues. By Lemma 2.5, we get that T̃ = 0, which
implies S = 0. Now we obtain T kT ∗ = T ∗T k by (i). The other cases follow similarly.

(c) ⇒ (a). Let X̃ ∈ {A †⃝, AD, AD,†, Aw⃝}. From X̃(A∗)kA = (A∗)k, using (2), (4), (5), (7) and
(10), it can be easily verified that T ∗T k = T ∗T k and S = 0. If A†,D(A∗)kA = (A∗)k, then it follows
from (6), (10) and Lemma 2.4 that T ∗T k = T ∗T k and S = 0.

(d) ⇒ (a) and (e) ⇒ (a). These proofs are similar to the proof of the part (b) ⇒ (a).
(f) ⇒ (a). By (2), (4), (5), (6), (7) and (10), it follows from A∗AkX = AkA∗X that T ∗T k =

T ∗T k and S = 0.
(g) ⇒ (a). Let X̃ ∈ {A †⃝, AD, AD,†, Aw⃝}. If A∗Ak+1X̃ = X̃Ak+1A∗, then we get T ∗T k =

T ∗T k and S = 0 by (2), (4), (5), (7) and (10). In the case when A∗Ak+1A†,D = A†,DAk+1A∗, the
proof is similar to that for (b) ⇒ (a).

(h) ⇒ (a). If A∗Ak+1X = Ak+1XA∗, then it follows from (2), (4), (5), (6), (7) and (10) that
T ∗T k = T ∗T k and S = 0.

(i) ⇒ (a), (j) ⇒ (a) and (k) ⇒ (a). These are all similar to the proof of (g) ⇒ (a).

3. More properties of the k-core EP and k-EP matrices

In the section, we discuss the necessary and sufficient conditions to satisfy a matrix A such that A ∈
Ck, †⃝
n and A ∈ Ck−EP

n using some generalized inverses.

Lemma 3.1 (Ferreyra et al., 2018) Let A ∈ Cn×n
k be given by (1). Then A ∈ Ck, †⃝

n if and only if T̃ = 0.

We recall that the class of k-core EP matrices are defined by satisfying AkA †⃝ = A †⃝Ak(Ferreyra
et al., 2018), which is equivalent with Ak(Ak)† = (Ak)†Ak(in short, Ak ∈ CEP

n ). Next, we will give

a new sufficient and necessary condition for A such that A ∈ Ck, †⃝
n .

Theorem 3.2 Let A ∈ Cn×n
k be given by (1) and q ∈ Z+. Then A ∈ Ck, †⃝

n if and only if Aq(Ak)† =
(Ak)†Aq.

Proof. It follows from (Ferreyra et al., 2018) that

(Ak)† = U

[
(T k)∗(T k(T k)∗ + T̃ T̃ ∗)−1 0

T̃ ∗(T k(T k)∗ + T̃ T̃ ∗)−1 0

]
U∗. (11)

From Aq(Ak)† = (Ak)†Aq and (T k)∗(T k(T k)∗ + T̃ T̃ ∗)−1 is invertible, we obtain T̃ = 0, we now have

A ∈ Ck, †⃝
n by Lemma 3.1.

Conversely, if A ∈ Ck, †⃝
n , it is simple to show that Aq(Ak)† = (Ak)†Aq by Lemma 3.1.
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Next we will consider different characterizations of A ∈ Ck, †⃝
n using several generalized inverses.

Theorem 3.3 Let A ∈ Cn×n
k be given by (1) and X ∈ {A †⃝, AD, AD,†, A†,D, Aw⃝}. The following are

equivalent:

(a) A ∈ Ck, †⃝
n ;

(b) (A∗)kXA = (A∗)k;

(c) AX(A∗)k = (A∗)k;

(d) (A∗)kAX = AX(A∗)k;

(e) (A∗)kXA = XA(A∗)k;

(f ) (A∗)kAX = XA(A∗)k;

(g) (A∗)kXA = AX(A∗)k.

Proof. The proofs of (a) ⇔ (b) and (a) ⇔ (c) follow directly by (2), (4), (5), (6) and (7).

(a) ⇒ (d). If A ∈ Ck, †⃝
n , it is not difficult to verify that (A∗)kAX = AX(A∗)k by Lemma 3.1.

(d) ⇒ (a). By (2), (4), (5), (6), (7) and Lemma 3.1, we can deduce that A ∈ Ck, †⃝
n .

The proofs of (a) ⇒ (e), (a) ⇒ (f) and (a) ⇒ (g) are similar to the proof of (a) ⇒ (d).
The proofs of (e) ⇒ (a), (f) ⇒ (g) and (g) ⇒ (a) are similar to the proof of (d) ⇒ (a).

In (Ferreyra et al., 2018), the authors presented some equivalent conditions for AkA† = A†Ak.
Inspired by this work, we will present several new characterizations of the class of k-EP matrices.

Lemma 3.4 Let A ∈ Cn×n
k be given by (1) and p ≥ k. The following are equivalent:

(a) A ∈ Ck−EP
n ;

(b) (Ferreyra et al., 2018) S = SN †N and T̃ = T̃NN †;

(c) Ap+1A† = A†Ap+1.

Proof. The proof follows directly by (1), (3) and (10).

Theorem 3.5 Let A ∈ Cn×n
k be given by (1) and p, q ≥ k. The following are equivalent:

(a) A ∈ Ck−EP
n ;

(b) AA†(A∗)p = (A∗)pA†A;

(c) Ap+1A† = Ap and A†Aq+1 = Aq;

(d) Ap+1A† +A†Aq+1 = Ap +Aq.

Proof. (a) ⇒ (b). It follows from Lemma 3.4 that Ap+1A† = A†Ap+1, then by taking the conjugate
transpose of Ap+1A† = A†Ap+1, we obtain AA†(A∗)p = (A∗)pA†A.

(b) ⇒ (c). By taking the conjugate transpose of AA†(A∗)p = (A∗)pA†A, we get that Ap+1A† =
A†Ap+1. Then, by Lemma 3.4, we obtain that A ∈ Ck−EP

n . Furthermore, we can directly check
Ap+1A† = Ap and A†Aq+1 = Aq by condition (b) of Lemma 3.4.

(c) ⇒ (d). It is evident.
(d) ⇒ (a). Premultplying and postmultiplying the condition Ap+1A† + A†Aq+1 = Ap + Aq by A,

we get Ap+2A† = Ap+1 and A†Aq+2 = Aq+1, respectively, which imply A ∈ Ck−EP
n .
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In the next result, we will show certain necessary and sufficient conditions for a matrix A such that
A ∈ Ck−EP

n using MP and Drazin inverse.

Theorem 3.6 Let A ∈ Cn×n
k be given by (1) and q ∈ Z+. The following are equivalent:

(a) A ∈ Ck−EP
n ;

(b) Aq(AD)kA† = A†Aq(AD)k;

(c) A†A2(AD)kA† = (AD)k;

(d) (AD)kA† = A†(AD)k.

Proof. (b) ⇔ (a). By (1) and (4), we get that Aq(AD)kA† = A†Aq(AD)k is equivalent with
S = SN †N and T̃ = T̃NN †, i.e., A ∈ Ck−EP

n .
The proofs of (c) ⇔ (a) and (d) ⇔ (a) follow as the proof of the part (b) ⇔ (a).
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