New characterizations of \boldsymbol{k}-normal and \boldsymbol{k}-EP matrices

ZhiMei Fu ${ }^{1}$, KeZheng Zuo ${ }^{2, *}$, Yang Chen ${ }^{3}$
Dept. of Mathematics
Hubei Normal University, China
*Corresponding author: xiangzuo28@163.com

Abstract

In this paper, some new characterizations of k-normal and k-EP matrices are obtained using the core-EP decomposition. We obtain several equivalent conditions for a matrix A to be k-normal and k-EP in terms of certain generalized inverses.

Keywords: Core-EP decomposition; generalized inverses; k-core EP matrices; k-EP matrices; k-normal matrices.

1. Introduction

The concepts of the classes of k-normal matrices and k-EP matrices were introduced by Malik et al. in (Malik et al., 2016) where the authors studied characterizations and properties of both k-normal and k-EP matrices using the Hartwing-Spindelböck decomposition. More properties of these two types of matrices have been given in (Ferreyra et al., 2018; Wang et al., 2019). Inspired by the previous work, the intention of this paper is to discuss both classes and their further properties and characterizations using some generalized inverses.

The classical Moore-Penrose inverse(Penrose et al., 1955) and Drazin inverse(Drazin et al., 1958) were defined in the fifties and have been thoroughly studied since then. On the other hand, some generalized inverses such as core inverse(Baksalary et al., 2010), core EP inverse(?), DMP inverse(Malik et al., 2014), WG inverse(Wang et al., 2018), etc., were introduced in the last decade. Nowadays, they attract the attention of many researchers.

Let $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ complex matrices and \mathbb{Z}^{+}denotes the set of all positive integers. The symbols $\mathcal{R}(A), \mathcal{N}(A), A^{*}, r(A)$ and I_{n} will denote the range space, null space, conjugate transpose, rank of $A \in \mathbb{C}^{m \times n}$ and the identity matrix of order n. $\operatorname{Ind}(A)$ means the index of $A \in \mathbb{C}^{n \times n}$. Let $\mathbb{C}_{k}^{n \times n}$ be the set consisting of $n \times n$ complex matrices with index k.

For convenience, throughout the paper we will use the following notations: $\mathbb{C}_{n}^{k-\mathbb{N}}, \mathbb{C}_{n}^{k, \oplus}$ and $\mathbb{C}_{n}^{k-E P}$ will denote the subsets of $\mathbb{C}^{n \times n}$ consisting of k-normal, k-core EP and k-EP matrices, respectively, i.e.,

$$
\begin{aligned}
\mathbb{C}_{n}^{k-\mathrm{N}} & =\left\{A \mid A \in \mathbb{C}^{n \times n}, A^{k} A^{*}=A^{*} A^{k}\right\} ; \\
\mathbb{C}_{n}^{k, \oplus} & =\left\{A \mid A \in \mathbb{C}_{k}^{n \times n}, A^{k} A^{\oplus}=A^{\oplus} A^{k}\right\} \\
& =\left\{A \mid A \in \mathbb{C}_{k}^{n \times n}, A^{k} \in \mathbb{C}_{n}^{\mathrm{EP}}\right\} ; \\
\mathbb{C}_{n}^{k-\mathrm{EP}} & =\left\{A \mid A \in \mathbb{C}_{k}^{n \times n}, A^{k} A^{\dagger}=A^{\dagger} A^{k}\right\} .
\end{aligned}
$$

The structure of this article is as follows: In the Section 2, we discuss several sufficient and necessary conditions for the class of k-normal matrices in terms of generalized inverses. The Section 3 is devoted to the characterizations of the sets $\mathbb{C}_{n}^{k, \oplus}$ and $\mathbb{C}_{n}^{k-E P}$.

2. Properties of the \boldsymbol{k}-normal matrices

In this section, we will consider the class of k-normal matrices in terms of some generalized inverses.
In the following lemma, we will present the core-EP decomposition, which was given by Wang in (Wang et al., 2016).

Lemma 2.1 (Wang et al., 2016)(core-EP decomposition) Let $A \in \mathbb{C}_{k}^{n \times n}$. Then A can be represented as

$$
A=U\left[\begin{array}{cc}
T & S \tag{1}\\
0 & N
\end{array}\right] U^{*}
$$

where $T \in \mathbb{C}^{t \times t}$ is nonsingular and $t=r(T)=r\left(A^{k}\right), N$ is nilpotent with index k, and $U \in \mathbb{C}^{n \times n}$ is unitary.

Moreover, the representation of A given by (1) is unique (Wang et al., 2016, Theorem 2.4). Furthermore, in that case the core-EP inverse of A is given by

$$
A^{\oplus}=U\left[\begin{array}{cc}
T^{-1} & 0 \tag{2}\\
0 & 0
\end{array}\right] U^{*} .
$$

Next we will introduce the following notations, that will be used throughout this paper.
Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then

$$
\begin{gathered}
\triangle=\left[T T^{*}+S\left(I_{n-t}-N^{\dagger} N\right) S^{*}\right]^{-1} \\
\widetilde{T}=\sum_{j=0}^{k-1} T^{j} S N^{k-1-j} \\
T_{q}=\sum_{j=0}^{q-1} T^{j} S N^{q-1-j}\left(q \in \mathbb{Z}^{+}\right)
\end{gathered}
$$

Lemma 2.2 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then (Ferreyra et al., 2018; Wang et al., 2018):

$$
\begin{gather*}
A^{\dagger}=U\left[\begin{array}{cc}
T^{*} \triangle & -T^{*} \triangle S N^{\dagger} \\
\left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle & N^{\dagger}-\left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle S N^{\dagger}
\end{array}\right] U^{*} ; \tag{3}\\
A^{D}=U\left[\begin{array}{cc}
T^{-1} & \left(T^{k+1}\right)^{-1} \widetilde{T} \\
0 & 0
\end{array}\right] U^{*} ; \tag{4}\\
A^{D, \dagger}=U\left[\begin{array}{cc}
T^{-1} & \left(T^{k+1}\right)^{-1} \widetilde{T} N N^{\dagger} \\
0 & 0
\end{array}\right] U^{*} ; \tag{5}\\
A^{\dagger, D}=U\left[\begin{array}{cc}
T^{*} \triangle & T^{*} \triangle T^{-k} \widetilde{T} \\
\left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle & \left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle T^{-k} \widetilde{T}
\end{array}\right] U^{*} ; \tag{6}\\
A^{@}=U\left[\begin{array}{cc}
T^{-1} & T^{-2} S \\
0 & 0
\end{array}\right] U^{*} . \tag{7}
\end{gather*}
$$

According to (1) and (3), we have

$$
\begin{align*}
& A A^{\dagger}=U\left[\begin{array}{cc}
I_{t} & 0 \\
0 & N N^{\dagger}
\end{array}\right] U^{*}, \tag{8}\\
& A^{\dagger} A=U\left[\begin{array}{cc}
T^{*} \triangle T & T^{*} \triangle S\left(I_{n-t}-N^{\dagger} N\right) \\
\left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle T & N^{\dagger} N+\left(I_{n-t}-N^{\dagger} N\right) S^{*} \triangle S\left(I_{n-t}-N^{\dagger} N\right)
\end{array}\right] U^{*} . \tag{9}
\end{align*}
$$

Lemma 2.3 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then $A \in \mathbb{C}_{n}^{k-N}$ if and only if $T^{k} T^{*}=T^{*} T^{k}$ and $S=0$. Proof. Using (1), we have

$$
A^{k}=U\left[\begin{array}{cc}
T^{k} & \widetilde{T} \tag{10}\\
0 & 0
\end{array}\right] U^{*}
$$

Now it is easy to check that $A \in \mathbb{C}_{n}^{k-N}$ if and only if $T^{k} T^{*}=T^{*} T^{k}$ and $S=0$.
Lemma 2.4 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^{+}$. Then $T_{q}=0$ if and only if $S=0$. In particular, $\widetilde{T}=0$ if and only if $S=0$.

Proof. The proof is similar to (Wang et al., 2019), Theorem 2.3.
Lemma 2.5 (Sylvester et al., 1884) Let $A \in \mathbb{C}^{p \times p}$ and $B \in \mathbb{C}^{q \times q}$ have no common eigenvalues. Then $A Y-Y B=0$ has a unique solution $Y=0$, where $Y \in \mathbb{C}^{p \times q}$.

Theorem 2.6 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^{+}$. Then the following conditions are equivalent:
(a) $A \in \mathbb{C}_{n}^{k-N}$;
(b) $A^{k+1} A^{\dagger} A^{*}=A^{*} A^{k+1} A^{\dagger}$;
(c) $A^{*} A^{\dagger} A^{k+1}=A^{\dagger} A^{k+1} A^{*}$;
(d) $A^{*} A^{k+q}=A^{k} A^{*} A^{q}$;
(e) $A^{k+q} A^{*}=A^{q} A^{*} A^{k}$.

Proof. That (a) implies all other items $(b),(c),(d)$ and (e) follow directly by Lemma 2.3 .
$(b) \Rightarrow(a)$. It follows from (1), (3) and (10) that $T^{k} T^{*}=T^{*} T^{k}$ and $S=0$. Hence by Lemma 2.3, we have that (a) holds.
$(c) \Rightarrow(a)$. By taking the conjugate transpose of $A^{*} A^{\dagger} A^{k+1}=A^{\dagger} A^{k+1} A^{*}$ and applying item (b) we get that $A \in \mathbb{C}_{n}^{k-\mathrm{N}}$.
$(d) \Rightarrow(a)$. Since $A^{*} A^{k+q}=A^{k} A^{*} A^{q}$, it follows from (1) and (10) that $T^{k} T^{*}=T^{*} T^{k}$ and $S=0$. Hence by Lemma 2.3, we have that (a) holds.
$(e) \Rightarrow(a)$. By taking the conjugate transpose of $A^{k+q} A^{*}=A^{q} A^{*} A^{k}$ and applying point $(d) \Rightarrow(a)$, we can deduce $A \in \mathbb{C}_{n}^{k-\mathrm{N}}$.

Next we will present 10 conditions involving A^{*}, X, A and their powers to assure that $A \in \mathbb{C}_{n}^{k-\mathrm{N}}$, where $X \in\left\{A^{\oplus}, A^{D}, A^{D, \dagger}, A^{\dagger, D}, A^{\circledR}\right\}$.

Theorem 2.7 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $X \in\left\{A^{\oplus}, A^{D}, A^{D, \dagger}, A^{\dagger, D}, A^{凶}\right\}$. The following assertions are equivalent:
(a) $A \in \mathbb{C}_{n}^{k-N}$;
(b) $A\left(A^{*}\right)^{k} X=\left(A^{*}\right)^{k}$;
(c) $X\left(A^{*}\right)^{k} A=\left(A^{*}\right)^{k}$;
(d) $\left(A^{*}\right)^{k} A X=A\left(A^{*}\right)^{k} X$;
(e) $\left(A^{*}\right)^{k} X A=A\left(A^{*}\right)^{k} X$;
(f) $A^{*} A^{k} X=A^{k} A^{*} X$;
(g) $A^{*} A^{k+1} X=X A^{k+1} A^{*}$;
(h) $A^{*} A^{k+1} X=A^{k+1} X A^{*}$;
(i) $A^{*} X A^{k+1}=X A^{k+1} A^{*}$;
(j) $A^{*} X A^{k+1}=A^{k+1} X A^{*}$;
(k) $A^{*} A X^{k+1}=A X^{k+1} A^{*}$.

Proof. From (2), (4), (5), (6) and (7), that (a) implies all items $(b)-(k)$ can be directly verified by Lemma 2.3.

On the converse, we have to prove that each of conditions $(b)-(k)$ implies that $T^{k} T^{*}=T^{*} T^{k}$ and $S=0$.
$(b) \Rightarrow(a)$. Assume that $A\left(A^{*}\right)^{k} A^{\dagger, D}=\left(A^{*}\right)^{k}$. From (6) and (10), we obtain that
(i) $\left(T\left(T^{k}\right)^{*}+S \widetilde{T^{*}}\right) T^{*} \triangle=\left(T^{k}\right)^{*}$;
(ii) $\left(T\left(T^{k}\right)^{*}+S \widetilde{T}^{*}\right) T^{*} \Delta T^{-k} \widetilde{T}=0$;
(iii) $N \widetilde{T}^{*} T^{*} \triangle=\widetilde{T}^{*}$;
(iv) $N \widetilde{T^{*}} T^{*} \triangle T^{-k} \widetilde{T}=0$.

From (iii) we have that $H \widetilde{T}-\widetilde{T} N^{*}=0$, where $H=\left(\triangle^{*} T\right)^{-1}$. Notice that H is invertible and N^{*} is nilpotent, hence H and N^{*} have no common eigenvalues. By Lemma 2.5 , we get that $\widetilde{T}=0$, which implies $S=0$. Now we obtain $T^{k} T^{*}=T^{*} T^{k}$ by (i). The other cases follow similarly.
$(c) \Rightarrow(a)$. Let $\widetilde{X} \in\left\{A^{\oplus}, A^{D}, A^{D, \dagger}, A^{@}\right\}$. From $\widetilde{X}\left(A^{*}\right)^{k} A=\left(A^{*}\right)^{k}$, using (2), (4), (5), (7) and (10), it can be easily verified that $T^{*} T^{k}=T^{*} T^{k}$ and $S=0$. If $A^{\dagger, D}\left(A^{*}\right)^{k} A=\left(A^{*}\right)^{k}$, then it follows from (6), (10) and Lemma 2.4 that $T^{*} T^{k}=T^{*} T^{k}$ and $S=0$.
$(d) \Rightarrow(a)$ and $(e) \Rightarrow(a)$. These proofs are similar to the proof of the part $(b) \Rightarrow(a)$.
$(f) \Rightarrow(a)$. By (2), (4), (5), (6), (7) and (10), it follows from $A^{*} A^{k} X=A^{k} A^{*} X$ that $T^{*} T^{k}=$ $T^{*} T^{k}$ and $S=0$.
$(g) \Rightarrow(a)$. Let $\widetilde{X} \in\left\{A^{\oplus}, A^{D}, A^{D, \dagger}, A^{凶}\right\}$. If $A^{*} A^{k+1} \widetilde{X}=\widetilde{X} A^{k+1} A^{*}$, then we get $T^{*} T^{k}=$ $T^{*} T^{k}$ and $S=0$ by (2), (4), (5), (7) and (10). In the case when $A^{*} A^{k+1} A^{\dagger, D}=A^{\dagger, D} A^{k+1} A^{*}$, the proof is similar to that for $(b) \Rightarrow(a)$.
(h) $\Rightarrow(a)$. If $A^{*} A^{k+1} X=A^{k+1} X A^{*}$, then it follows from (2), (4), (5), (6), (7) and (10) that $T^{*} T^{k}=T^{*} T^{k}$ and $S=0$.
$(i) \Rightarrow(a),(j) \Rightarrow(a)$ and $(k) \Rightarrow(a)$. These are all similar to the proof of $(g) \Rightarrow(a)$.

3. More properties of the k-core EP and k-EP matrices

In the section, we discuss the necessary and sufficient conditions to satisfy a matrix A such that $A \in$ $\mathbb{C}_{n}^{k, \oplus}$ and $A \in \mathbb{C}_{n}^{k-E P}$ using some generalized inverses.
Lemma 3.1 (Ferreyra et al., 2018) Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then $A \in \mathbb{C}_{n}^{k, \oplus}$ if and only if $\widetilde{T}=0$.
We recall that the class of k-core EP matrices are defined by satisfying $A^{k} A \oplus=A^{\oplus} A^{k}$ (Ferreyra et al., 2018), which is equivalent with $A^{k}\left(A^{k}\right)^{\dagger}=\left(A^{k}\right)^{\dagger} A^{k}$ (in short, $A^{k} \in \mathbb{C}_{n}^{E P}$). Next, we will give a new sufficient and necessary condition for A such that $A \in \mathbb{C}_{n}^{k, \oplus}$.
Theorem 3.2 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^{+}$. Then $A \in \mathbb{C}_{n}^{k, \oplus}$ if and only if $A^{q}\left(A^{k}\right)^{\dagger}=$ $\left(A^{k}\right)^{\dagger} A^{q}$.

Proof. It follows from (Ferreyra et al., 2018) that

$$
\left(A^{k}\right)^{\dagger}=U\left[\begin{array}{cc}
\left(T^{k}\right)^{*}\left(T^{k}\left(T^{k}\right)^{*}+\widetilde{T} \widetilde{T}^{*}\right)^{-1} & 0 \tag{11}\\
\widetilde{T}^{*}\left(T^{k}\left(T^{k}\right)^{*}+\widetilde{T} \widetilde{T}^{*}\right)^{-1} & 0
\end{array}\right] U^{*} .
$$

From $A^{q}\left(A^{k}\right)^{\dagger}=\left(A^{k}\right)^{\dagger} A^{q}$ and $\left(T^{k}\right)^{*}\left(T^{k}\left(T^{k}\right)^{*}+\widetilde{T} \widetilde{T}^{*}\right)^{-1}$ is invertible, we obtain $\widetilde{T}=0$, we now have $A \in \mathbb{C}_{n}^{k, \oplus}$ by Lemma 3.1.

Conversely, if $A \in \mathbb{C}_{n}^{k, \oplus}$, it is simple to show that $A^{q}\left(A^{k}\right)^{\dagger}=\left(A^{k}\right)^{\dagger} A^{q}$ by Lemma 3.1.

Next we will consider different characterizations of $A \in \mathbb{C}_{n}^{k, \oplus}$ using several generalized inverses.
Theorem 3.3 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $X \in\left\{A^{\oplus}, A^{D}, A^{D, \dagger}, A^{\dagger, D}, A^{(®)}\right\}$. The following are equivalent:
(a) $A \in \mathbb{C}_{n}^{k, \oplus}$;
(b) $\left(A^{*}\right)^{k} X A=\left(A^{*}\right)^{k}$;
(c) $A X\left(A^{*}\right)^{k}=\left(A^{*}\right)^{k}$;
(d) $\left(A^{*}\right)^{k} A X=A X\left(A^{*}\right)^{k}$;
(e) $\left(A^{*}\right)^{k} X A=X A\left(A^{*}\right)^{k}$;
(f) $\left(A^{*}\right)^{k} A X=X A\left(A^{*}\right)^{k}$;
(g) $\left(A^{*}\right)^{k} X A=A X\left(A^{*}\right)^{k}$.

Proof. The proofs of $(a) \Leftrightarrow(b)$ and $(a) \Leftrightarrow(c)$ follow directly by (2), (4), (5), (6) and (7).
$(a) \Rightarrow(d)$. If $A \in \mathbb{C}_{n}^{k, \oplus}$, it is not difficult to verify that $\left(A^{*}\right)^{k} A X=A X\left(A^{*}\right)^{k}$ by Lemma 3.1.
$(d) \Rightarrow(a)$. By $(2),(4),(5),(6),(7)$ and Lemma 3.1, we can deduce that $A \in \mathbb{C}_{n}^{k, \oplus}$.
The proofs of $(a) \Rightarrow(e),(a) \Rightarrow(f)$ and $(a) \Rightarrow(g)$ are similar to the proof of $(a) \Rightarrow(d)$.
The proofs of $(e) \Rightarrow(a),(f) \Rightarrow(g)$ and $(g) \Rightarrow(a)$ are similar to the proof of $(d) \Rightarrow(a)$.
In (Ferreyra et al., 2018), the authors presented some equivalent conditions for $A^{k} A^{\dagger}=A^{\dagger} A^{k}$. Inspired by this work, we will present several new characterizations of the class of k-EP matrices.

Lemma 3.4 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $p \geq k$. The following are equivalent:
(a) $A \in \mathbb{C}_{n}^{k-E P}$;
(b) (Ferreyra et al., 2018) $S=S N^{\dagger} N$ and $\widetilde{T}=\widetilde{T} N N^{\dagger}$;
(c) $A^{p+1} A^{\dagger}=A^{\dagger} A^{p+1}$.

Proof. The proof follows directly by (1), (3) and (10).
Theorem 3.5 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $p, q \geq k$. The following are equivalent:
(a) $A \in \mathbb{C}_{n}^{k-E P}$;
(b) $A A^{\dagger}\left(A^{*}\right)^{p}=\left(A^{*}\right)^{p} A^{\dagger} A$;
(c) $A^{p+1} A^{\dagger}=A^{p}$ and $A^{\dagger} A^{q+1}=A^{q}$;
(d) $A^{p+1} A^{\dagger}+A^{\dagger} A^{q+1}=A^{p}+A^{q}$.

Proof. $\quad(a) \Rightarrow(b)$. It follows from Lemma 3.4 that $A^{p+1} A^{\dagger}=A^{\dagger} A^{p+1}$, then by taking the conjugate transpose of $A^{p+1} A^{\dagger}=A^{\dagger} A^{p+1}$, we obtain $A A^{\dagger}\left(A^{*}\right)^{p}=\left(A^{*}\right)^{p} A^{\dagger} A$.
$(b) \Rightarrow(c)$. By taking the conjugate transpose of $A A^{\dagger}\left(A^{*}\right)^{p}=\left(A^{*}\right)^{p} A^{\dagger} A$, we get that $A^{p+1} A^{\dagger}=$ $A^{\dagger} A^{p+1}$. Then, by Lemma 3.4, we obtain that $A \in \mathbb{C}_{n}^{k-E P}$. Furthermore, we can directly check $A^{p+1} A^{\dagger}=A^{p}$ and $A^{\dagger} A^{q+1}=A^{q}$ by condition (b) of Lemma 3.4.
$(c) \Rightarrow(d)$. It is evident.
$(d) \Rightarrow(a)$. Premultplying and postmultiplying the condition $A^{p+1} A^{\dagger}+A^{\dagger} A^{q+1}=A^{p}+A^{q}$ by A, we get $A^{p+2} A^{\dagger}=A^{p+1}$ and $A^{\dagger} A^{q+2}=A^{q+1}$, respectively, which imply $A \in \mathbb{C}_{n}^{k-\mathrm{EP}}$.

In the next result, we will show certain necessary and sufficient conditions for a matrix A such that $A \in \mathbb{C}_{n}^{k-E P}$ using MP and Drazin inverse.

Theorem 3.6 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^{+}$. The following are equivalent:
(a) $A \in \mathbb{C}_{n}^{k-E P}$;
(b) $A^{q}\left(A^{D}\right)^{k} A^{\dagger}=A^{\dagger} A^{q}\left(A^{D}\right)^{k}$;
(c) $A^{\dagger} A^{2}\left(A^{D}\right)^{k} A^{\dagger}=\left(A^{D}\right)^{k}$;
(d) $\left(A^{D}\right)^{k} A^{\dagger}=A^{\dagger}\left(A^{D}\right)^{k}$.

Proof. $\quad(b) \Leftrightarrow(a)$. By (1) and (4), we get that $A^{q}\left(A^{D}\right)^{k} A^{\dagger}=A^{\dagger} A^{q}\left(A^{D}\right)^{k}$ is equivalent with $S=S N^{\dagger} N$ and $\widetilde{T}=\widetilde{T} N N^{\dagger}$, i.e., $A \in \mathbb{C}_{n}^{k-\mathrm{EP}}$.

The proofs of $(c) \Leftrightarrow(a)$ and $(d) \Leftrightarrow(a)$ follow as the proof of the part $(b) \Leftrightarrow(a)$.

4. Funding

This work was supported by the Natural Science Foundation of China under Grants 11961076.

References

Baksalary, O. M., \& Treakler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58, 681-697.

Drazin, M. P. (1958). Pseudo-inverses in associative rings and semigroups. American Mathematical Monthly, 65(7), 506-514.

Ferreyra, D. E., Levis, F. E., \& Thome, N. (2018). Revisiting the core-EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae, 41, 1-17.

Ferreyra, D. E., Levis, F. E., \& Thome, N. (2018). Characterizations of k-commutative egualities for some outer generalized inverse. Linear and Multilinear Algebra, 68(1), 177-192.

Malik, S. B., Rueda, L., \& Thome, N. (2016). The class of m-EP and m-normal matrices. Linear and Multilinear Algebra, 64(11), 2119-2132.

Malik, S. B., Rueda, L., \& Thome, N. (2014). On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation, 226,575-580.

Penrose, R. A. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(03), 406-413.

Sylvester, J. J. (1884). Sur l'equation en matrices $p x=x q$. Comptes Rendus de l'Académie des Sciences de Paris, 99, 67-71.

Wang, H. X. (2016). Core-EP decomposition and its applications. Linear Algebra and its Applicatians, 508, 289-300.

Wang, H. X., \& Chen, J. L. (2018). Weak group inverse. Open Mathematics, 16(1), 1218-1232.
Wang, H. X., \& Liu, X. J. (2019). The weak group matrix. Aequationes Mathematicae, 93(6), 12611273.

Submitted: 06/09/2021
Revised: 13/09/2021
Accepted: 19/10/2021
DOI: $\quad 10.48129 / \mathrm{kjs} .16087$

