New characterizations of k-normal and k-EP matrices

ZhiMei Fu¹, KeZheng Zuo^{2,*}, Yang Chen³ Dept. of Mathematics Hubei Normal University, China *Corresponding author: xiangzuo28@163.com

Abstract

In this paper, some new characterizations of k-normal and k-EP matrices are obtained using the core-EP decomposition. We obtain several equivalent conditions for a matrix A to be k-normal and k-EP in terms of certain generalized inverses.

Keywords: Core-EP decomposition; generalized inverses; *k*-core EP matrices; *k*-EP matrices; *k*-normal matrices.

1. Introduction

The concepts of the classes of k-normal matrices and k-EP matrices were introduced by Malik *et al.* in (Malik *et al.*, 2016) where the authors studied characterizations and properties of both k-normal and k-EP matrices using the Hartwing-Spindelböck decomposition. More properties of these two types of matrices have been given in (Ferreyra *et al.*, 2018; Wang *et al.*, 2019). Inspired by the previous work, the intention of this paper is to discuss both classes and their further properties and characterizations using some generalized inverses.

The classical Moore-Penrose inverse(Penrose *et al.*, 1955) and Drazin inverse(Drazin *et al.*, 1958) were defined in the fifties and have been thoroughly studied since then. On the other hand, some generalized inverses such as core inverse(Baksalary *et al.*, 2010), core EP inverse(?), DMP inverse(Malik *et al.*, 2014), WG inverse(Wang *et al.*, 2018), etc., were introduced in the last decade. Nowadays, they attract the attention of many researchers.

Let $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ complex matrices and \mathbb{Z}^+ denotes the set of all positive integers. The symbols $\mathcal{R}(A)$, $\mathcal{N}(A)$, A^* , r(A) and I_n will denote the range space, null space, conjugate transpose, rank of $A \in \mathbb{C}^{m \times n}$ and the identity matrix of order n. Ind(A) means the index of $A \in \mathbb{C}^{n \times n}$. Let $\mathbb{C}_k^{n \times n}$ be the set consisting of $n \times n$ complex matrices with index k.

For convenience, throughout the paper we will use the following notations: \mathbb{C}_n^{k-N} , $\mathbb{C}_n^{k,\bigcirc}$ and \mathbb{C}_n^{k-EP} will denote the subsets of $\mathbb{C}^{n\times n}$ consisting of k-normal, k-core EP and k-EP matrices, respectively, i.e.,

$$\mathbb{C}_n^{k-\mathbf{N}} = \{ A \mid A \in \mathbb{C}^{n \times n}, A^k A^* = A^* A^k \};$$

$$\mathbb{C}_{n}^{k,\textcircled{\textcircled{}}} = \{A \mid A \in \mathbb{C}_{k}^{n \times n}, A^{k}A^{\textcircled{\textcircled{}}} = A^{\textcircled{}}A^{k}\} \\ = \{A \mid A \in \mathbb{C}_{k}^{n \times n}, A^{k} \in \mathbb{C}_{n}^{\text{EP}}\};$$

$$\mathbb{C}_n^{k-\mathrm{EP}} = \{ A \mid A \in \mathbb{C}_k^{n \times n}, A^k A^\dagger = A^\dagger A^k \}.$$

The structure of this article is as follows: In the Section 2, we discuss several sufficient and necessary conditions for the class of *k*-normal matrices in terms of generalized inverses. The Section 3 is devoted to the characterizations of the sets $\mathbb{C}_n^{k, \bigoplus}$ and $\mathbb{C}_n^{k-\text{EP}}$.

2. Properties of the k-normal matrices

In this section, we will consider the class of k-normal matrices in terms of some generalized inverses.

In the following lemma, we will present the core-EP decomposition, which was given by Wang in (Wang *et al.*, 2016).

Lemma 2.1 (Wang et al., 2016)(core-EP decomposition) Let $A \in \mathbb{C}_k^{n \times n}$. Then A can be represented as

$$A = U \begin{bmatrix} T & S \\ 0 & N \end{bmatrix} U^*, \tag{1}$$

where $T \in \mathbb{C}^{t \times t}$ is nonsingular and $t = r(T) = r(A^k)$, N is nilpotent with index k, and $U \in \mathbb{C}^{n \times n}$ is unitary.

Moreover, the representation of A given by (1) is unique (Wang et al., 2016, Theorem 2.4). Furthermore, in that case the core-EP inverse of A is given by

$$A^{\textcircled{T}} = U \begin{bmatrix} T^{-1} & 0\\ 0 & 0 \end{bmatrix} U^*.$$
 (2)

Next we will introduce the following notations, that will be used throughout this paper. Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1). Then

$$\Delta = [TT^* + S(I_{n-t} - N^{\dagger}N)S^*]^{-1};$$
$$\widetilde{T} = \sum_{j=0}^{k-1} T^j S N^{k-1-j};$$
$$T_q = \sum_{j=0}^{q-1} T^j S N^{q-1-j} (q \in \mathbb{Z}^+).$$

Lemma 2.2 Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then (Ferreyra et al., 2018; Wang et al., 2018):

$$A^{\dagger} = U \begin{bmatrix} T^* \triangle & -T^* \triangle SN^{\dagger} \\ (I_{n-t} - N^{\dagger}N)S^* \triangle & N^{\dagger} - (I_{n-t} - N^{\dagger}N)S^* \triangle SN^{\dagger} \end{bmatrix} U^*;$$
(3)

$$A^{D} = U \begin{bmatrix} T^{-1} & (T^{k+1})^{-1} \widetilde{T} \\ 0 & 0 \end{bmatrix} U^{*};$$
(4)

$$A^{D,\dagger} = U \begin{bmatrix} T^{-1} & (T^{k+1})^{-1} \widetilde{T} N N^{\dagger} \\ 0 & 0 \end{bmatrix} U^*;$$
(5)

$$A^{\dagger,D} = U \begin{bmatrix} T^* \triangle & T^* \triangle T^{-k} \widetilde{T} \\ (I_{n-t} - N^{\dagger} N) S^* \triangle & (I_{n-t} - N^{\dagger} N) S^* \triangle T^{-k} \widetilde{T} \end{bmatrix} U^*;$$
(6)

$$A^{\textcircled{W}} = U \begin{bmatrix} T^{-1} & T^{-2}S \\ 0 & 0 \end{bmatrix} U^*.$$
⁽⁷⁾

According to (1) and (3), we have

$$AA^{\dagger} = U \begin{bmatrix} I_t & 0\\ 0 & NN^{\dagger} \end{bmatrix} U^*, \tag{8}$$

$$A^{\dagger}A = U \begin{bmatrix} T^* \triangle T & T^* \triangle S(I_{n-t} - N^{\dagger}N) \\ (I_{n-t} - N^{\dagger}N)S^* \triangle T & N^{\dagger}N + (I_{n-t} - N^{\dagger}N)S^* \triangle S(I_{n-t} - N^{\dagger}N) \end{bmatrix} U^*.$$
(9)

Lemma 2.3 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1). Then $A \in \mathbb{C}_n^{k-N}$ if and only if $T^kT^* = T^*T^k$ and S = 0. *Proof.* Using (1), we have

$$A^{k} = U \begin{bmatrix} T^{k} & \widetilde{T} \\ 0 & 0 \end{bmatrix} U^{*}.$$
 (10)

Now it is easy to check that $A \in \mathbb{C}_n^{k-N}$ if and only if $T^kT^* = T^*T^k$ and S = 0.

Lemma 2.4 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^+$. Then $T_q = 0$ if and only if S = 0. In particular, $\widetilde{T} = 0$ if and only if S = 0.

Proof. The proof is similar to (Wang et al., 2019), Theorem 2.3.

Lemma 2.5 (Sylvester *et al.*, 1884) Let $A \in \mathbb{C}^{p \times p}$ and $B \in \mathbb{C}^{q \times q}$ have no common eigenvalues. Then AY - YB = 0 has a unique solution Y = 0, where $Y \in \mathbb{C}^{p \times q}$.

Theorem 2.6 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^+$. Then the following conditions are equivalent:

- (a) $A \in \mathbb{C}_n^{k-N}$;
- (b) $A^{k+1}A^{\dagger}A^{*} = A^{*}A^{k+1}A^{\dagger};$
- (c) $A^*A^{\dagger}A^{k+1} = A^{\dagger}A^{k+1}A^*;$
- (d) $A^*A^{k+q} = A^k A^* A^q$;
- $(e) A^{k+q}A^* = A^q A^* A^k.$

Proof. That (a) implies all other items (b), (c), (d) and (e) follow directly by Lemma 2.3.

 $(b) \Rightarrow (a)$. It follows from (1), (3) and (10) that $T^kT^* = T^*T^k$ and S = 0. Hence by Lemma 2.3, we have that (a) holds.

 $(c) \Rightarrow (a)$. By taking the conjugate transpose of $A^*A^{\dagger}A^{k+1} = A^{\dagger}A^{k+1}A^*$ and applying item (b) we get that $A \in \mathbb{C}_n^{k-N}$.

 $(d) \Rightarrow (a)$. Since $A^*A^{k+q} = A^k A^* A^q$, it follows from (1) and (10) that $T^k T^* = T^* T^k$ and S = 0. Hence by Lemma 2.3, we have that (a) holds.

 $(e) \Rightarrow (a)$. By taking the conjugate transpose of $A^{k+q}A^* = A^q A^* A^k$ and applying point $(d) \Rightarrow (a)$, we can deduce $A \in \mathbb{C}_n^{k-N}$.

Next we will present 10 conditions involving A^* , X, A and their powers to assure that $A \in \mathbb{C}_n^{k-N}$, where $X \in \{A^{\textcircled{D}}, A^D, A^{D,\dagger}, A^{\dagger,D}, A^{\textcircled{W}}\}$.

Theorem 2.7 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $X \in \{A^{\textcircled{D}}, A^D, A^{D,\dagger}, A^{\dagger,D}, A^{\textcircled{W}}\}$. The following assertions are equivalent:

- (a) $A \in \mathbb{C}_n^{k-N}$;
- (b) $A(A^*)^k X = (A^*)^k;$
- (c) $X(A^*)^k A = (A^*)^k$;
- (d) $(A^*)^k A X = A(A^*)^k X;$
- (e) $(A^*)^k X A = A(A^*)^k X;$
- (f) $A^*A^kX = A^kA^*X;$
- (g) $A^*A^{k+1}X = XA^{k+1}A^*;$
- (h) $A^*A^{k+1}X = A^{k+1}XA^*;$

- (*i*) $A^*XA^{k+1} = XA^{k+1}A^*$;
- (j) $A^*XA^{k+1} = A^{k+1}XA^*;$
- (k) $A^*AX^{k+1} = AX^{k+1}A^*$.

Proof. From (2), (4), (5), (6) and (7), that (a) implies all items (b) - (k) can be directly verified by Lemma 2.3.

On the converse, we have to prove that each of conditions (b) - (k) implies that $T^kT^* = T^*T^k$ and S = 0.

 $(b) \Rightarrow (a)$. Assume that $A(A^*)^k A^{\dagger,D} = (A^*)^k$. From (6) and (10), we obtain that

(i)
$$(T(T^k)^* + ST^*)T^* \triangle = (T^k)^*;$$

- (ii) $(T(T^k)^* + S\widetilde{T}^*)T^* \triangle T^{-k}\widetilde{T} = 0;$
- (iii) $N\widetilde{T}^*T^* \triangle = \widetilde{T}^*;$
- (iv) $N\widetilde{T}^*T^* \triangle T^{-k}\widetilde{T} = 0.$

From (iii) we have that $H\widetilde{T} - \widetilde{T}N^* = 0$, where $H = (\triangle^*T)^{-1}$. Notice that H is invertible and N^* is nilpotent, hence H and N^* have no common eigenvalues. By Lemma 2.5, we get that $\widetilde{T} = 0$, which implies S = 0. Now we obtain $T^kT^* = T^*T^k$ by (i). The other cases follow similarly.

 $(c) \Rightarrow (a).$ Let $\widetilde{X} \in \{A^{\textcircled{1}}, A^D, A^{D,\dagger}, A^{\textcircled{0}}\}$. From $\widetilde{X}(A^*)^k A = (A^*)^k$, using (2), (4), (5), (7) and (10), it can be easily verified that $T^*T^k = T^*T^k$ and S = 0. If $A^{\dagger,D}(A^*)^k A = (A^*)^k$, then it follows from (6), (10) and Lemma 2.4 that $T^*T^k = T^*T^k$ and S = 0.

 $(d) \Rightarrow (a)$ and $(e) \Rightarrow (a)$. These proofs are similar to the proof of the part $(b) \Rightarrow (a)$.

 $(f) \Rightarrow (a)$. By (2), (4), (5), (6), (7) and (10), it follows from $A^*A^kX = A^kA^*X$ that $T^*T^k = T^*T^k$ and S = 0.

 $(g) \Rightarrow (a).$ Let $\widetilde{X} \in \{A^{\textcircled{1}}, A^D, A^{D,\dagger}, A^{\textcircled{1}}\}$. If $A^*A^{k+1}\widetilde{X} = \widetilde{X}A^{k+1}A^*$, then we get $T^*T^k = T^*T^k$ and S = 0 by (2), (4), (5), (7) and (10). In the case when $A^*A^{k+1}A^{\dagger,D} = A^{\dagger,D}A^{k+1}A^*$, the proof is similar to that for $(b) \Rightarrow (a)$.

 $(h) \Rightarrow (a).$ If $A^*A^{k+1}X = A^{k+1}XA^*$, then it follows from (2), (4), (5), (6), (7) and (10) that $T^*T^k = T^*T^k$ and S = 0.

 $(i) \Rightarrow (a), (j) \Rightarrow (a)$ and $(k) \Rightarrow (a)$. These are all similar to the proof of $(g) \Rightarrow (a)$.

3. More properties of the *k*-core EP and *k*-EP matrices

In the section, we discuss the necessary and sufficient conditions to satisfy a matrix A such that $A \in \mathbb{C}_n^{k, \textcircled{T}}$ and $A \in \mathbb{C}_n^{k-\text{EP}}$ using some generalized inverses.

Lemma 3.1 (Ferreyra *et al.*, 2018) Let $A \in \mathbb{C}_{k}^{n \times n}$ be given by (1). Then $A \in \mathbb{C}_{n}^{k, \textcircled{T}}$ if and only if $\widetilde{T} = 0$.

We recall that the class of k-core EP matrices are defined by satisfying $A^k A^{\bigoplus} = A^{\bigoplus} A^k$ (Ferreyra *et al.*, 2018), which is equivalent with $A^k (A^k)^{\dagger} = (A^k)^{\dagger} A^k (in \ short, \ A^k \in \mathbb{C}_n^{EP})$. Next, we will give a new sufficient and necessary condition for A such that $A \in \mathbb{C}_n^{k,\bigoplus}$.

Theorem 3.2 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^+$. Then $A \in \mathbb{C}_n^{k, \textcircled{\uparrow}}$ if and only if $A^q(A^k)^{\dagger} = (A^k)^{\dagger} A^q$.

Proof. It follows from (Ferreyra et al., 2018) that

$$(A^{k})^{\dagger} = U \begin{bmatrix} (T^{k})^{*}(T^{k}(T^{k})^{*} + \widetilde{T}\widetilde{T}^{*})^{-1} & 0\\ \widetilde{T}^{*}(T^{k}(T^{k})^{*} + \widetilde{T}\widetilde{T}^{*})^{-1} & 0 \end{bmatrix} U^{*}.$$
(11)

From $A^q(A^k)^{\dagger} = (A^k)^{\dagger} A^q$ and $(T^k)^* (T^k(T^k)^* + \widetilde{T}\widetilde{T}^*)^{-1}$ is invertible, we obtain $\widetilde{T} = 0$, we now have $A \in \mathbb{C}_n^{k, \textcircled{T}}$ by Lemma 3.1.

Conversely, if $A \in \mathbb{C}_n^{k, \textcircled{\uparrow}}$, it is simple to show that $A^q (A^k)^{\dagger} = (A^k)^{\dagger} A^q$ by Lemma 3.1.

Next we will consider different characterizations of $A \in \mathbb{C}_n^{k, \textcircled{}}$ using several generalized inverses.

Theorem 3.3 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $X \in \{A^{\textcircled{D}}, A^D, A^{D,\dagger}, A^{\dagger,D}, A^{\textcircled{W}}\}$. The following are equivalent:

- (a) $A \in \mathbb{C}_n^{k, \textcircled{1}};$
- (b) $(A^*)^k X A = (A^*)^k;$

(c)
$$AX(A^*)^k = (A^*)^k$$
;

- (d) $(A^*)^k AX = AX(A^*)^k;$
- (e) $(A^*)^k X A = X A (A^*)^k;$
- (f) $(A^*)^k AX = XA(A^*)^k;$
- (g) $(A^*)^k X A = A X (A^*)^k$.

Proof. The proofs of $(a) \Leftrightarrow (b)$ and $(a) \Leftrightarrow (c)$ follow directly by (2), (4), (5), (6) and (7). $(a) \Rightarrow (d)$. If $A \in \mathbb{C}_n^{k, \bigoplus}$, it is not difficult to verify that $(A^*)^k AX = AX(A^*)^k$ by Lemma 3.1. $(d) \Rightarrow (a)$. By (2), (4), (5), (6), (7) and Lemma 3.1, we can deduce that $A \in \mathbb{C}_n^{k, \bigoplus}$. The proofs of $(a) \Rightarrow (e)$, $(a) \Rightarrow (f)$ and $(a) \Rightarrow (g)$ are similar to the proof of $(a) \Rightarrow (d)$. The proofs of $(e) \Rightarrow (a)$, $(f) \Rightarrow (g)$ and $(g) \Rightarrow (a)$ are similar to the proof of $(d) \Rightarrow (a)$.

In (Ferreyra *et al.*, 2018), the authors presented some equivalent conditions for $A^k A^{\dagger} = A^{\dagger} A^k$. Inspired by this work, we will present several new characterizations of the class of *k*-EP matrices.

Lemma 3.4 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $p \ge k$. The following are equivalent:

- (a) $A \in \mathbb{C}_n^{k-EP}$;
- (b) (Ferreyra et al., 2018) $S = SN^{\dagger}N$ and $\tilde{T} = \tilde{T}NN^{\dagger}$;
- (c) $A^{p+1}A^{\dagger} = A^{\dagger}A^{p+1}$.

Proof. The proof follows directly by (1), (3) and (10).

Theorem 3.5 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $p, q \ge k$. The following are equivalent:

- (a) $A \in \mathbb{C}_n^{k-EP}$;
- (b) $AA^{\dagger}(A^{*})^{p} = (A^{*})^{p}A^{\dagger}A;$
- (c) $A^{p+1}A^{\dagger} = A^{p}$ and $A^{\dagger}A^{q+1} = A^{q}$;
- (d) $A^{p+1}A^{\dagger} + A^{\dagger}A^{q+1} = A^p + A^q.$

Proof. $(a) \Rightarrow (b)$. It follows from Lemma 3.4 that $A^{p+1}A^{\dagger} = A^{\dagger}A^{p+1}$, then by taking the conjugate transpose of $A^{p+1}A^{\dagger} = A^{\dagger}A^{p+1}$, we obtain $AA^{\dagger}(A^*)^p = (A^*)^p A^{\dagger}A$.

 $(b) \Rightarrow (c)$. By taking the conjugate transpose of $AA^{\dagger}(A^*)^p = (A^*)^p A^{\dagger}A$, we get that $A^{p+1}A^{\dagger} = A^{\dagger}A^{p+1}$. Then, by Lemma 3.4, we obtain that $A \in \mathbb{C}_n^{k-\text{EP}}$. Furthermore, we can directly check $A^{p+1}A^{\dagger} = A^p$ and $A^{\dagger}A^{q+1} = A^q$ by condition (b) of Lemma 3.4.

 $(c) \Rightarrow (d)$. It is evident.

 $(d) \Rightarrow (a)$. Premultplying and postmultiplying the condition $A^{p+1}A^{\dagger} + A^{\dagger}A^{q+1} = A^p + A^q$ by A, we get $A^{p+2}A^{\dagger} = A^{p+1}$ and $A^{\dagger}A^{q+2} = A^{q+1}$, respectively, which imply $A \in \mathbb{C}_n^{k-\text{EP}}$.

In the next result, we will show certain necessary and sufficient conditions for a matrix A such that $A \in \mathbb{C}_n^{k-\text{EP}}$ using MP and Drazin inverse.

Theorem 3.6 Let $A \in \mathbb{C}_k^{n \times n}$ be given by (1) and $q \in \mathbb{Z}^+$. The following are equivalent:

(a)
$$A \in \mathbb{C}_n^{k-EP}$$
;

(b)
$$A^{q}(A^{D})^{k}A^{\dagger} = A^{\dagger}A^{q}(A^{D})^{k};$$

(c)
$$A^{\dagger}A^{2}(A^{D})^{k}A^{\dagger} = (A^{D})^{k};$$

(d)
$$(A^D)^k A^{\dagger} = A^{\dagger} (A^D)^k$$
.

Proof. (b) \Leftrightarrow (a). By (1) and (4), we get that $A^q (A^D)^k A^{\dagger} = A^{\dagger} A^q (A^D)^k$ is equivalent with $S = SN^{\dagger}N$ and $\widetilde{T} = \widetilde{T}NN^{\dagger}$, i.e., $A \in \mathbb{C}_n^{k-\text{EP}}$.

The proofs of $(c) \Leftrightarrow (a)$ and $(d) \Leftrightarrow (a)$ follow as the proof of the part $(b) \Leftrightarrow (a)$.

4. Funding

This work was supported by the Natural Science Foundation of China under Grants 11961076.

References

Baksalary, O. M., & Treakler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58, 681-697.

Drazin, M. P. (1958). Pseudo-inverses in associative rings and semigroups. American Mathematical Monthly, 65(7), 506-514.

Ferreyra, D. E., Levis, F. E., & Thome, N. (2018). Revisiting the core-EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae, 41, 1-17.

Ferreyra, D. E., Levis, F. E., & Thome, N. (2018). Characterizations of *k*-commutative egualities for some outer generalized inverse. Linear and Multilinear Algebra, 68(1), 177-192.

Malik, S. B., Rueda, L., & Thome, N. (2016). The class of m-EP and m-normal matrices. Linear and Multilinear Algebra, 64(11), 2119-2132.

Malik, S. B., Rueda, L., & Thome, N. (2014). On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation, 226,575-580.

Penrose, R. A. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(03), 406-413.

Sylvester, J. J. (1884). Sur l'equation en matrices px = xq. Comptes Rendus de l'Académie des Sciences de Paris, 99, 67-71.

Wang, H. X. (2016). Core-EP decomposition and its applications. Linear Algebra and its Applications, 508, 289-300.

Wang, H. X., & Chen, J. L. (2018). Weak group inverse. Open Mathematics, 16(1), 1218-1232.

Wang, H. X., & Liu, X. J. (2019). The weak group matrix. Aequationes Mathematicae, 93(6), 1261-1273.

Submitted:06/09/2021Revised:13/09/2021Accepted:19/10/2021DOI:10.48129/kjs.16087