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Abstract

The aim of this work is application of Bernstein polynomials (BPs) for solving multi-order multi-dimensional fractional 
optimal control problem (MOMDFOCP). Firstly, by the Bernstein basis, we introduce operational matrices for Riemann-
Liouville fractional integral and product in the arbitrary interval [a,b]. Then, via these matrices, we reduce the problem 
to the optimization problem. For solving this problem, we apply Lagrangian multipliers method. So, we can obtain 
approximate solution for MOMDFOCP. Results of some examples show that the obtained solutions are very accurate 
and in good agreement with exact solutions.
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1. Introduction

Recently, researchers in various fields of science are 
interested in using the fractional order differential 
equations for better interpretations of their results by 
incorporating more information in their models, for 
examples in biology, economics, polymer rheology, 
chemistry, mechanics, aerodynamics, control theory, 
regular variation in thermodynamics, biophysics, 
signal and image processing etc (Hilfer, 2000; Kilbas, 
et al., 2006; Garg & Manohar, 2013; Ghany & Hyder, 
2014). One of these models is fractional optimal control 
problem (FOCP). Indeed, optimal control problem for 
dynamic system with derivative of fractional order is 
called fractional optimal control problem. FOCP is very 
interesting for researchers and they have done many works 
in recent years, (Lotfi et al., 2011; Agrawal, 2004; Agrawal 
& Baleanu, 2007; Baleanu et al., 2009). In most of these 
papers, the authors worked on FOCP with one state, one 
control function and one order for fractional derivative. 
But in this paper, we deal FOCP with several states, 
control functions and multi-order for fractional derivatives 
that call multi-order multi-dimensional fractional optimal 
control problem (MOMDFOCP). Indeed, this problem 
covers the previous problems in the field of FOCP. So, 
solving MOMDFOCP will be very important. Earlier, we 
used Bernstein operational matrices of Caputo derivative, 
Riemann-Liouville fractional integral and product in 

interval [0,1] for solving fractional quadratic Riccati 
differential equations (Baleanu et al., 2013), multi-order 
fractional differential equations (Rostamy et al., 2013 and 
2014), nonlinear system of fractional differential equations 
(Alipour & Baleanu, 2013), Abel’s integral equation 
(Alipour & Rostamy, 2011) and   time varying fractional 
optimal control problems (Alipour & Rostamy, 2013). 
Now, in this work, we introduce Bernstein operational 
matrices of Riemann-Liouville fractional integral and 
product in the arbitrary interval [a,b] then apply them for 
solving MOMDFOCP.  

In this work, we consider the multi-order multi-dimensional 
fractional optimal control problem as follows:

       
(1)

subject to the system of dynamic constrains

                   

            (2)

and system of inequality constrains

( ), ( ), ( ) 0, 1, , , ,rh t X t U t r l a t b≤ = < ≤…         
       (3)

and the initial condition

( ) ,aX a X=                                                                  (4)
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where  and  
are  state  and  control  functions,   respectively.  Also,

, ,

 and 

[ ], : , ,n k
rf h a b +×ℜ → ℜ  [ ] 2: , n k

ig a b +×ℜ → ℜ  are 
polynomial functions.

We organize the rest of this paper as follows: In Section 
2, we present basic definitions and properties in fractional 
calculus. In Section 3, we introduce BPs and apply them 
to approximate functions. Also, some useful Lemmas and 
Corollaries of BPs are proposed in this section. We get 
the operational matrix for Riemann-Liouville fractional 
integral by BPs in Section 4. In Section 5, we use BPs for 
solving MOMDFOCPs. In section 6, some examples are 
applied to show applicability and accuracy of the proposed 
method. Conclusions of our works are in final section.   

2. Basic definitions and properties in fractional 
calculus

In this section, we remark some basic definitions and 
properties of the fractional calculus.

Definition 2.1. (Caputo, 1967) The Riemann-Liouville 
fractional integral operator of order  for function 

( )f t , is defined as

 

                                                               (5)

and for , the fractional derivative 
of )(tf  in the Caputo sense is defined as

 

    
(6)

Now, we can propose the following properties for  
 and  (Luchko & Gorneflo, 

1998; Miller & Ross, 1993; Oldham & Spanier, 1974):

                           (7)

                                                  (8)

   
(9)

                                   (10)                                                                                          

3. Bernstein polynomials and approximations

The Bernstein polynomials (BPs) of degree m on the 
interval [a, b] are defined as follows (Kreyszig, 1978):

,
( ) ( )( ) , 0,1, , .

( )

i m i

i m m

m t a b tB t i m
i b a

−⎛ ⎞ − −= =⎜ ⎟ −⎝ ⎠
     (11)                                                                         

Since, set  form a basis in 
the polynomials space of degree m on the interval [a, b], so 
we can write the following express for every polynomial 
of degree m:

,
0

( ) ( ).
m

i i m
i

P t c B t
=

= ∑                                                  (12)

Lemma 3.1. Let 
2( ) 1, ( ), ( ) , , ( )

Tm
mT t t a t a t a⎡ ⎤= − − −⎣ ⎦…  and

0, 1, 2, ,( ) ( ) , ( ) , ( ) , , ( ) ,
T

m m m m m mt B t B t B t B t⎡ ⎤Φ = ⎣ ⎦…  then 

( ) ( ),m mt A T tΦ =                                               
       (13)

where  and

1, 1

( 1) ,
( )
0 ,

, 0,1, , .

j i

j
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a i j ib a
i j

i j m

−

+ +

⎧ −⎛ ⎞⎛ ⎞− ≤⎪ ⎜ ⎟⎜ ⎟= −−⎨ ⎝ ⎠⎝ ⎠
⎪ >⎩

= …

Proof. From expansion of ( )m ib t −− , we can get

 

,
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So, it is clear that we can write ( ) ( )m mt A T tΦ = .
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Corollary 3.2. We can approximate a function ( )y t  as 
follows

                               (14)

where  such 

that matrix dual  and

                                                             (15)

Definition 3.3. We denote the operational matrix of product 
for vector c based on basis ( )m tΦ   by Ĉ  and define as:

                                  (16)

To get Ĉ , we can follow the steps below.

By (13) we obtain

Then, we can apply the approximation 
, 

 where 

So, we get

Finally, by the above results, we can write

and therefore Ĉ  is obtained.

Corollary 3.4. Let , , then 
We can approximate the functions  and  as 
follows:

                                            (17)

Proof. Refer to Rostamy et al. (2014).

4. Bernstein operational matrix of Riemann-Liouville 
fractional integral

Now, we want to get the operational matrix for the 
Riemann-Liouville fractional integral by BPs. We can 
write:

where D and Tm,α are as follows:
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Now, we need to approximate  
with respect to BPs by using (14). Therefore, we have

,

where  

So, we can write

Finally, we obtain

                                            (18)

We denote the Bernstein operational matrix of 
Riemann-Liouville fractional integral of order α by Fα.

5. Bps for solving MOMDFOCP

For converting the inequality constrains (3) into the 
equality constrains we can use unknown functions 

( ) ( 1, , )rw t r l= …  as follows :

  
           (19)

By (14), we can apply the following approximations:

                    (20)

                              (21)

                                 (22)

From (9), (10), (18) and (20) we have

             (23)

and

 

                     

   (24)

where 
1

[1,1, ,1]T
m

m+

Λ = … . Also, from Corollary 3.4  and 

(22) we have

                                            (25)  

where Ŵr is the operational matrix of product for vector 
Wr . Therefore, the problem (1)-(4) is reduced as follows:

     

(26) 

                                                                                                                                                        
subject to the system of dynamic constrains

   

(27)

 (28)

where 
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and ,0m mI  are identity matrix and zero vector from order 
1m + , respectively.   

Now, by (14) we approximate all of the known functions 
in the problem (26)-(28) and , by using Corollaries 3.4 we 
get the following approximations:

                              

  (29)

                    (30)

 and

  (31)                                                                                                                                               
                          

where 

.

Now, by multiplying ( )T
m tΦ  in right hand of (30) and 

(31), then integration in interval [a, b] and by noting that 
matrix Q is invertible, we reach an optimization problem 
as follows:

                    (32)

subject to the system of algebraic equations

       (33)                                                                         

  (34)

We apply the Lagrange method for solving this 
optimization problem. Therefore, we introduce Lagrange 
function as:

                 (35)

where  and  call the Lagrange 
multipliers. Now, by considering the necessary conditions 
for the extremum we can get the following systems of 
algebraic equations 

                                                                     (36)                                                                                                             

                                     (37)                                                                                               

                                     (38)                                                                                          

                                                                     (39)                                                                                                                   

                                           (40)                                                                                  

By solving system (36)-(40), we obtain  
and . So, from (23) and (21) we get the approximations 
of the state functions  and the control functions  
respectively.

6. Numerical simulations

To demonstrate the applicability and to validate the 
numerical scheme, we apply the present method for the 
following examples.

Example 6.1

We consider the following multi-order two-dimensional 
FOCP 
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subject to

We can see the approximate solutions of the state and 
the control functions for  and  in 
Figures 1-3. These Figures show that for fixed , as 

 approaches to 1, the approximate solutions approach 
to the solutions for . Moreover, in Table 1, 
we report the obtained results for cost function J by the 
present method and compare with the other methods for 

. 

Fig. 1. Plot of  for ,  and  in Example 6.1

Fig. 2. Plot of  for ,  and  in Example 6.1

Fig. 3. Plot of  for ,  and  in Example 6.1

Table 1. Obtained results of J for  in Example 6.1

Method J
Classical Chebyshev (Vlassenbroak, 1998)

m = 13, k = 28 0.171850

Fourier-based (Yen & Nagurka, 1991)
k = 9 0.17013

 Spectral Chebyshev (Jaddu, 2002)
k = 7 0.170785

Hybrid functions (Marzban & Razzaghi, 2003)
 w = 15, M = 4, N = 4 0.17013640

Haar functions (Marzban & Razzaghi, 2010)
k = 128, w = 100 0.170103

Chebyshev Finite Difference (Maleki, 2011)
N = 10 0.170875

Present Method
m = 8 0.169030

Example 6.2

Consider the following problem 

subject to 

This problem has exact solution  for  
(Elnager, 1993). In Figure 4, we can observe the 
approximate solution of the state function by present 
method for . In Table 2, we tabled the 
approximations of cost function J by present method with 
compare by Elnager (1993) for .  
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Fig. 4. Plot of  for  and  in Example 6.2

Table 2. The approximations of cost function J for α = 1 in Example 6.2.

Method J
Rationalized Haar Functions (Elnager, 1993)

K = 8 0.30696

Present method
m = 5 0.30685

Example 6.3

Consider the two-dimensional FOCP as follows 

subject to the system dynamics

with initial conditions

This problem for α = 1 have the exact solution (Datta 
& Mohan, 1995)

where 

      

We plot the obtained results of the state and the control 
variables by our method for m = 5 and  in 
Figures 5-7. These Figures show the approximate solutions 
for both the state and the control functions approach to the 
analytical solutions for α = 1 when α approaches to 1, 
as expected. Also, we report the absolute errors for our 
method with α = 1 and m = 5, 7 for different value t in 
Tables 3-5. So, we show the results will be more accurate 
as m be increased.

Fig. 5. Plot of  for m = 5 and  in Example 6.3

Fig. 6. Plot of  for m = 5 and  in Example 6.3

Fig. 7. Plot of  for m = 5 and  in Example 6.3
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Table 3. Absolute error of x1 (t) for α = 1 and different values t in 
Example 6.3.

t  m = 5  m = 7
0.3 0.00018419 2.15677×10-6

0.6 0.0000873692 1.10226×10-6

0.9 0.0000982275 8.13366×10-7

1.2 0.000244898 2.25033×10-8

1.5 0.000123368 3.34895×10-6

Table 4. Absolute error of x2 (t) for α = 1 and different values t in 
Example 6.3.

t  m = 5  m = 7
0.3 0.0000618499 1.65842×10-6

0.6 0.0000350435 6.71922×10-7

0.9 0.0000188201 4.14416×10-7

1.2 0.0000659208 2.44523×10-7

1.5 0.00002995 2.78407×10-6

Table 5. Absolute error of u(t) for α = 1 and different values t in 
Example 6.3.

t  m = 5  m = 7
0.3 0.000361339 6.96315×10-7

0.6 0.000111793 1.44511×10-7

0.9 0.000321687 7.55399×10-9

1.2 0.000625898 3.04542×10-7

1.5 0.000345349 1.35264×10-6

Example 6.4

We consider the following problem (Pooseh et al., 2014)

subject to the system dynamic

with boundary conditions

For this problem we have the exact solution 

For m = 7, the approximate solutions of the states 
functions and the control functions are plotted in the 
Figures 8 and 9. Similar to previous examples, these 
Figures show that as α approaches to 1, the obtained 
solutions approach to the ones for α = 1 as expected. Also, 

the errors in the norm 

for approximate solutions that have obtained by our 
method are reported in Tables 6 and 7. We can see that by 
increasing m, the results will be more accurate.

Fig. 8. Plot of x (t) for m = 7 and α = 0.8, 0.9, 1 in Example 6.4.

Fig. 9. Plot of u (t) for m = 7 and α = 0.8, 0.9, 1 in Example 6.4.

Table 6.  for different values m and α in Example 6.4.

m α = 1 α = 0.9 α = 0.8
7 2.89933×10-17 7.5999×10-7 1.89168×10-6

9 2.41324×10-17 1.65651×10-7 4.27512×10-7

12 1.03578×10-17 2.89815×10-8 7.7282×10-8

Table 7.  for different values m and α in Example 6.4.

m α = 1 α = 0.9 α = 0.8
7 1.93584×10-16 0.0000120377 0.0000314255
9 3.53488×10-16 4.09026×10-6 0.0000112193
12 8.26356×10-17 1.16833×10-6 3.38702×10-6

Example 6.5

Consider the following multi-order FOCP 
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subject to the system dynamic

with boundary conditions

This problem have the exact solution 

 In Figures 10 and 11, we can 

observe plots of the approximate solutions of the states 
function and the control function for m = 4, α1 = 0.5 and 
α2 = 0.3, 0.4, 0.5. Moreover, in Tables 8 and 9, we can 
see the errors in the norm L2 for the obtained solutions. 
Similar to previous examples, we conclude the results 
will be better as m be increased.

Fig. 10. Plot of x (t) for m = 4, α1 = 0.5 and α2 = 0.3, 0.4, 0.5 in 
Example 6.5.

Fig. 11. Plot of u (t) for m = 4, α1 = 0.5 and α2 = 0.3, 0.4, 0.5 in 
Example 6.5.

Table 8.  for α1 = 0.5 and different values m and α2 in 
Example 6.5.

m  α2 = 0.5  α2 = 0.4 α2 = 0.3

4 0.0000827126 0.0000855434 0.0000807791

8 3.11006×10-7 3.99823×10-7 4.68549×10-7

12 1.36782×10-8 1.93924×10-8 2.51756×10-8

Table 9.  for α1 = 0.5 and different values m and α2 in 
Example 6.5.

m  α2 = 0.5  α2 = 0.4 α2 = 0.3

4 0.000287038 0.000302329 0.000291907

8 1.05323×10-6 1.44989×10-6 1.81476×10-6

12 4.56923×10-8 7.1658×10-8 1.01974×10-7

7. Conclusions

In this paper, we have gotten the Bernstein operational 
matrices of Riemann-Liouville fractional integral and 
product in the arbitrary interval [a,b]. Then by using 
these matrices, we have approximated MOMDFOCP by 
a parametric optimization. By Lagrangian method, we 
reduced the optimization problem to a system of algebraic 
equations that be solved easily. The examples as shown 
in the proposed method simply works and is very much 
applicable. The results show the approximate solutions 
for both the state and the control functions approach to the 
analytical solutions for α = 1 when α approaches to 1 and 
m be fixed. Also, we see the results will be more accurate 
as m be increased.
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