N-Legendre and N-slant curves in the unit tangent bundle of surfaces

Fouzi Hathout¹, Murat Bekar^{2,*}, Yusuf Yayli³

¹Dept. of Mathematics, Faculty of Science, Saïda University, Saïda, Algeria ²Dept. of Mathematics-Computer Sciences, Necmettin Erbakan University, Konya, Turkey ³Dept. of Mathematics, Faculty of Science, Ankara University, Tandoğan, Ankara, Turkey Corresponding author: mbekar@konya.edu.tr

Abstract

Let $(T_1\mathbb{M}, g_1)$ be a unit tangent bundle of some surface (\mathbb{M}, g) endowed with the induced Sasaki metric. In this paper, we define two kinds of curves called N-legendre and N-slant curves in which the inner product of its normal vector and Reeb vector is, respectively, equal to zero and to non-zero constant in $(T_1\mathbb{M}, g_1)$. Some several important characterizations of these curves are also obtained.

Keywords: N-legendre; N-slant; Sasaki metric; sectional curvature; unit tangent bundle.

AMS Subject Classication: 53B30, 53C50.

1. Introduction

In classical differential geometry of curves, a slant curve is a class of curves such that the angle between the curve's tangent vector field and the Reeb vector field ξ is constant of a given contact metric manifold (M, g, ϕ, ξ, η) . This class of curves is studied by many authors (Călin & Crasmareanu, 2013; Cho *et al.*, 2006; Fukunaga & Takahashi, 2015; Janssens & Vanhecke, 1981; Zhong & Lei, 2013).

As an extension, in contact metric manifold (M, g, ϕ, ξ, η) , we define two new kinds of curves called N-legendre and its generalization N-slant curves, which are the classes of curves whose normal vectors and Reeb vectors ξ make an angle $\pi/2$ and a constant angle different from $\pi/2$, respectively.

In Sasaki (1962), Sasaki studied the geometry of the tangent bundle TM endowed with the Sasaki metric g_s of a Riemannian manifold (M, g) and he showed that there exists an almost complex structure J compatible with g_s in TM. The unit tangent T_1M is a hypersurface of TM. In Tashiro (1963), Tashiro constructed an almost contact metric structure $(g_1^s, \phi', \xi', \eta')$ on T_1M which is endowed with the induced Sasaki metric g_s .

In Cho *et al.* (2006), it is proved that in Sasakian 3-manifold M, a curve γ will be slant if and only if the ratio

$$\frac{\tau \pm 1}{\kappa} \tag{1}$$

is a non-zero constant. Here, τ and κ are the torsion and curvature of γ , respectively.

In Zhong & Lei (2013), the slant curves in a unit tangent bundle $(T_1\mathbb{M}, g_1, \phi, \xi, \eta)$ of some surface \mathbb{M} are studied only when the curves are geodesic. How about of a nongeodesic case?

In this paper, we study the non-geodesic case by defining two new kinds of curves called N-legendre and N-slant curves in any contact metric manifold. We obtain some results in $(T_1\mathbb{M}, g_1, \phi, \xi, \eta)$ and give some examples in \mathbb{S}^2 , \mathbb{R}^2 and "non-constant sectional curvature of a surface".

2. Preliminaries

Let (M, g) be a *n*-dimensional Riemannian manifold and ∇ be the Levi-Civita connection of *g*. The tangent bundle TM over *M* consists of all pairs p = (x, u), where *x* is a point of *M* and *u* is a vector from the tangent space T_xM . We denote the natural projection of *TM* to *M* by $\pi(p) = \pi(x, u) = x$.

The tangent space T_pTM of TM at p splits into the horizontal and vertical subspaces H_p and V_p with respect to ∇ as

$$T_pTM = H_p \oplus V_p.$$

For a vector field X on M, the horizontal lift of X to a point p in TM is the unique vector $X^h \in H_p$ given by

$$\pi^*(X^h) = X$$

The vertical lift of X to p is the unique vector $X^v \in V_p$ such that

$$X^v(df) = X(f)$$

for all smooth functions f on M.

The map

$$X \to X^h$$

is an isomorphism between the vector spaces $T_x M$ and $H_{(x,u)}$. Similarly, the map

$$X \to X^v$$

is an isomorphism between T_xM and $V_{(p,u)}$. Each tangent vector $\tilde{X} \in T_{(p,u)}(TM)$ can be written in the form

$$\tilde{X} = X^h + Y^v$$

where $X, Y \in \mathcal{X}(M)$ are uniquely determined vectors.

For each system of local coordinates $(x_1, x_2, ..., x_n)$ in M, one defines, in the standard way, the system of local coordinates $(x_1, x_2, ..., x_n, u_1, u_2, ..., u_n)$ in TM. Let

$$X = X^i \frac{\partial}{\partial x_i}$$

be a local vector field on M. The vertical and the horizontal lifts of X are defined, respectively, by

$$\begin{split} X^v &= X^i \frac{\partial}{\partial u_i} \ , \\ X^h &= X^i \frac{\partial}{\partial x_i} - X^i u^j \Gamma^k_{ij} \frac{\partial}{\partial u_k} . \end{split}$$

The canonical vertical vector field $\mathcal{U} = u^v$ on TMdoes not depend of the choice of local coordinates and it is defined globally on TM. We define a Sasaki metric g^S on a tangent bundle TM of Riemannian manifold (M, g) by

$$\begin{cases} i) \ g_p^s(X^h, Y^h) = g_p^s(X^v, Y^v) = g_x(X, Y) \\ ii) \ g_p^s(X^h, Y^v) = 0 \end{cases}$$

for all vector fields X and Y on M and for all $p = (x, u) \in TM$. For more detail Hathout & Dida (2006) and Sasaki (1962).

The vertical and the horizontal lifts induce on TM an almost complex structure J, which is compatible with g^S ,

that is, respectively,

$$JX^v = -X^h, \ JX^h = X^v$$

3. Unit tangent bundle

The unit tangent bundle of a Riemannian manifold (M, g) is the (2n - 1)-dimensional hypersurface

$$T_1M = \{ p = (x, u) \in TM : g_x(u, u) = 1 \}$$

where the canonical vertical vector field $\mathcal{U} = u^{v}$ is normal to $T_{1}M$.

Definition 1. The tangential lift of a vector field X on M is a vector field X^t tangent to T_1M defined by

$$X^t = X^v - g(X^v, \mathcal{U})\mathcal{U}.$$

The induced Riemannian metric g_1^S on T_1M is uniquely determined by

$$\begin{cases} i) g_1^s(X^h, Y^h) = g^s(X^h, Y^h) \\ ii) g_1^s(X^h, Y^t) = 0 \\ iii) g_1^s(X^t, Y^t) = g^s(X^v, Y^v) \\ -g^s(X^v, \mathcal{U})g^s(Y^v, \mathcal{U}) \end{cases}$$
(2)

where X and Y are vector fields on (M, g).

Any vector $\tilde{X} \in T_{(x,u)}(T_1M)$ decomposes in

$$\tilde{X} = X^h + Y^t$$

where $X, Y \in \mathcal{X}(M)$ are uniquely determined vectors. The Lie algebra of C^{∞} vector fields on T_1M is the set

$$\mathcal{X}(TM) = \left\{ X^h + Y^t : X, Y \in \mathcal{X}(M) \right\}.$$

In Tashiro (1963), it is proved that there is a contact structure $(g_1^s, \phi', \xi', \eta')$ in T_1M . And in Blair *et al.* (2002) it is given that at any point (x, u) we have

$$\begin{aligned} \xi' &= u^h, \, \eta'(\tilde{X}) = g_1^s(\tilde{X}, \xi') \\ \phi'(\tilde{X}, \tilde{Y}) &= g_1^s(\tilde{X}, \phi'\tilde{Y}) = 2d\eta'(\tilde{X}, \tilde{Y}) \\ \phi'(X^h) &= X^t, \, \, \phi'(X^t) = -X^h + \eta'(X^h)\xi' \end{aligned}$$
(3)

where $X \in \mathcal{X}(M)$ and $\tilde{X}, \tilde{Y} \in \mathcal{X}(TM)$.

Hence, we know that there is a contact metric structure denoted by $(g_1, \phi_1, \xi_1, \eta_1)$ in T_1M such that

$$\eta_1 = \frac{1}{2}\eta', \ \xi_1 = \frac{1}{2}\xi', \ \phi_1 = \phi', \ \ g_1 = \frac{1}{4}g_1^s$$
 (4)

The Levi-Civita connection ∇_1 of (T_1M, g_1) is described completely by

$$\begin{cases} i) \nabla_{1 \ X^{h}} Y^{h} = \left(\nabla_{1 \ X^{h}}^{s} Y^{h} \right)^{\top} = (\nabla_{X} Y)^{h} - \frac{1}{2} (R(X, Y)u)^{t} \\ ii) \nabla_{1 \ X^{h}} Y^{t} = \left(\nabla_{1 \ X^{h}}^{s} Y^{t} \right)^{\top} = (\nabla_{X} Y)^{t} + \frac{1}{2} (R(u, Y)X)^{h} \\ iii) \nabla_{1 \ X^{t}} Y^{h} = \left(\nabla_{1 \ X^{t}}^{s} Y^{h} \right)^{\top} = \frac{1}{2} (R(u, X)Y)^{h} \\ iv) \nabla_{1 \ X^{t}} Y^{t} = \left(\nabla_{1 \ X^{t}}^{s} Y^{t} \right)^{\top} = -g(Y, u)X^{t}. \end{cases}$$
(5)

For more information see Blair (2002) and Zhong & Lei (2013).

4. N-Legendre and N-slant curves

In this section, we suppose that (\mathbb{M}, g) is a surface with sectional curvature $\mathbb{K}, \gamma : I \subset \mathbb{R} \to \mathbb{M}$ is a curve and $\tilde{\gamma}(t) = (\gamma(t), X(t))$ is also a curve in almost contact metric structure $(T_1\mathbb{M}, g_1, \phi, \xi, \eta)$ given in Equation (4).

Definition 2. (Zhong & Lei, 2013). The curve γ is a slant curve in (M, g, ϕ, ξ, η) if the angle between the tangent vector field T of γ and ξ is constant.

Now, we define two new kinds of curves called N-legendre and N-slant curves by the following definition.

Definition 3. Let γ be a curve in an almost contact metric structure manifold (M, g, ϕ, ξ, η) . The curve γ is called a N-legendre (resp. N-slant) curve if the angle between the normal vector field N of γ and ξ is $\pi/2$ (resp. $[0, \pi] - {\pi/2}$), i.e.

$$< N, \xi >= 0$$
 (resp. $< N, \xi >= c$)

where c is a non-zero constant.

Assume that the curve $\tilde{\gamma}(t)$ is parameterized by the arc-length with Frenet frame apparatus $(\tilde{T}, \tilde{N}, \tilde{B}, \tilde{\kappa}, \tilde{\tau})$. Then,

$$\begin{cases} \tilde{T}(t) = \frac{d\gamma^{i}}{dt} \partial_{x^{i}} + \frac{dX^{i}}{dt} \partial_{u^{i}} \\ = \frac{d\gamma^{i}}{dt} (\partial_{x^{i}})^{h} (\gamma(t)) \\ + \left(\frac{dX^{i}}{dt} + \frac{d\gamma^{i}}{dt} X^{k} \Gamma^{i}_{jk}\right) \partial_{u^{i}} (\gamma(t)) \\ = (E^{h} + (\nabla_{E} X)^{v}) (\gamma(t)) \end{cases}$$
(6)

where $E = \gamma'(t)$.

Let θ be the angle between \tilde{T} and ξ . Using Equations (2) and (4), we get

$$g_1(\tilde{T},\xi) = \cos\theta = \frac{1}{2}g(E,X).$$
 (7)

Differentiating both side of the Equation (7) with respect to s, and using Equations (3),(4),(5) and (6), we have

$$\begin{aligned} \frac{d}{ds}g_1(\tilde{T},\xi) &= g_1(\nabla_1_{\tilde{T}(t)}\tilde{T},\xi) + g_1(\tilde{T},\nabla_1_{\tilde{T}(t)}\xi) \\ &= \tilde{\kappa}g_1(\tilde{N},\xi) + g_1(\tilde{T}(t),(2\nabla_E X) \\ &+ R(u,\nabla_E X)u)^h + (R(E,u)u)^t) \\ &= \tilde{\kappa}g_1(\tilde{N},\xi) + 8g(E,\nabla_E X) - 8R(E,X,X,\nabla_E X) \\ &= -\theta'\sin\theta \end{aligned}$$

and

$$g_1(\tilde{N},\xi) = \frac{8}{\tilde{\kappa}} \left(R(E, X, X, \nabla_E X) -g(E, \nabla_E X) \right) - \frac{\theta' \sin \theta}{\tilde{\kappa}}$$
(8)

where $\xi(t) = 2X^h$ and R is the curvature tensor of M.

Let (T, N) be a Frenet frame on γ . The unit vector X can be expressed using Equation (7) by

$$X = \frac{2}{r}\cos\theta \ T + 2\beta N \tag{9}$$

where r = g(E, E) and β is C^{∞} function given from

$$\frac{4}{r^2}\cos^2\theta + 4\beta^2 = 1$$

by

$$\beta = \pm \frac{1}{r} \sqrt{\left(\frac{r}{2}\right)^2 - \cos^2 \theta}.$$
 (10)

The differentiation of the Equation (9) with respect to s gives

$$\nabla_E X = 2\left(\frac{\cos\theta}{r}\right)' T + 2\kappa\cos\theta \ N + 2\beta' N - 2r\beta\kappa T$$

= $2\left(\left(\frac{\cos\theta}{r}\right)' - r\beta\kappa\right) T + 2(\kappa\cos\theta + \beta')N.$ (11)

The vectors X and $\nabla_E X$ are orthogonal (i.e $g(X, \nabla_E X) = 0$). Using Equations (11) and (7), the vector E can be given by

$$E = 2\cos\theta \ X + \frac{2r}{\|\nabla_E X\|} \left((\frac{\cos\theta}{r})' - r\beta\kappa \right) \nabla_E X.$$
 (12)

Substituting Equations (11), (10) and (12) into Equation (8) and taking an account that

$$\begin{split} R(E, X, X, \nabla_E X) &= 2r \left((\frac{\cos \theta}{r})' - r\beta \kappa \right) \frac{R(\nabla_E X, X, X, \nabla_E X)}{\|\nabla_E X\|} \\ &= 2r \left((\frac{\cos \theta}{r})' - r\beta \kappa \right) \mathbb{K}(s), \end{split}$$

where $\mathbb{K}(s)$ is the sectional curvature of \mathbb{M} , we get

$$g_1(\tilde{N},\xi) = 16r \frac{(1-\mathbb{K}(s))}{\tilde{\kappa}} \left((\frac{\cos\theta}{r})' \\ \pm r\kappa \sqrt{(\frac{r}{2})^2 - \cos^2\theta} \right) - \frac{\theta'\sin\theta}{\tilde{\kappa}}.$$
 (13)

5. Main results

Proposition 4. In the unit tangent bundle of a unit sphere \mathbb{S}^2 , all legendre and slant curves are \tilde{N} -legendre curves.

Proof. Let $\tilde{\gamma}(t) = (\gamma(t), X(t))$ be a legendre or slant curve in $T_1 \mathbb{S}^2$ parameterized by the arc-length. In \mathbb{S}^2 , the sectional curvature \mathbb{K} is equal to 1, and using the Equation (13) we get

$$g_1(\tilde{N},\xi) = 0.$$

From Definition (3), $\tilde{\gamma}$ is a \tilde{N} -legendre curve in $T_1 \mathbb{S}^1$. Thus, the proof is completed.

Theorem 5. Let $\tilde{\gamma}$ be a non-slant curve in $T_1 \mathbb{S}^2$, then $\tilde{\gamma}$ is \tilde{N} -slant curve if the angle θ satisfies

$$\theta = \arccos c \int \tilde{\kappa}$$

where c is a non-zero constant.

Proof. Let $\tilde{\gamma}(t) = (\gamma(t), X(t))$ be a non-slant curve in $T_1 \mathbb{S}^2$ parameterized by the arc length. Taking account that $\mathbb{K} = 1$, and using Definition (3) and Equation (13), we have

$$g_1(\tilde{N},\xi) = -\frac{\theta'\sin\theta}{\tilde{\kappa}} = c$$
 constant

and

$$(\cos\theta)' = -c\tilde{\kappa}.$$

The resolution of a last ODE gives

$$\theta = \arccos c \int \tilde{\kappa}$$

and thus the proof is completed.

Proposition 6. Let $\tilde{\gamma} = (\gamma, X)$ be a slant curve in $T_1\mathbb{M}$ and γ be a curve of velocity 2, where \mathbb{M} is a non-unit sphere (i.e. $\mathbb{M} \neq \mathbb{S}^2$). If the torsion $\tilde{\tau}$ of the curve $\tilde{\gamma}$ is equal to \mathbb{K} , then $\tilde{\gamma}$ is \tilde{N} -legendre (resp. \tilde{N} -slant) curve if and only if γ is a geodesic (resp. has a non-zero constant curvature κ).

Proof. Let $\tilde{\gamma} = (\gamma, X)$ be a slant curve in $T_1\mathbb{M}$ and γ be a curve of velocity 2, where \mathbb{M} is a non-unit sphere (i.e. $\mathbb{M} \neq \mathbb{S}^2$). If we suppose that $\tilde{\tau} = \mathbb{K}$ and using Equations (1) and (13), we get

$$g_1(\tilde{N},\xi) = 32 \frac{(1-\tilde{\tau})}{\tilde{\kappa}} (\pm 2\kappa)$$
$$= \overline{c}\kappa,$$

where \bar{c} is a non-zero constant. Thus, the curve $\tilde{\gamma}$ is \tilde{N} -legendre (resp. \tilde{N} -slant) curve if and only if $\kappa = 0$ (resp. nonzero constant). This completes the proof.

Example 7. Let \mathbb{S}_p^2 be a unit sphere of diameter p. All slant and \tilde{N} -slant curves $\tilde{\gamma}$ in $T_1 \mathbb{S}_p^2$ of Frenet frame apparatus $(\tilde{T}, \tilde{N}, \tilde{B}, \tilde{\kappa}, 1/p^2)$ are curves of projection curves γ , the circle in \mathbb{S}_p^2 .

Theorem 8. Let $\tilde{\gamma} = (\gamma, X)$ be a slant curve in $T_1 \mathbb{M}$ and γ be a curve of velocity 2, where \mathbb{M} is a non-unit sphere (i.e. $\mathbb{M} \neq \mathbb{S}^2$). The curve $\tilde{\gamma}$ is \tilde{N} -slant curve if and only if the ratio

$$\frac{(1-\mathbb{K})\kappa}{\tilde{\kappa}}$$

is a non-zero constant.

Proof. Let $\tilde{\gamma}(t) = (\gamma(t), X(t))$ be a slant curve in $T_1\mathbb{M}$ parameterized by the arc-length and suppose that the curve γ has velocity 2. From Equation (13), we have

$$g_1(\tilde{N},\xi) = \pm 16r \frac{(1-\mathbb{K})}{\tilde{\kappa}} \kappa$$
$$= \pm (32(1-\mathbb{K})) \frac{\kappa}{\tilde{\kappa}}$$
$$= c \frac{(1-\mathbb{K})\kappa}{\tilde{\kappa}},$$

where c is a non-zero constant. Then, using Definition (3), we can say that $\tilde{\gamma}$ is a \tilde{N} -slant curve if and only if the ratio

$$\frac{(1-\mathbb{K})\kappa}{\tilde{\kappa}}$$

is a non-zero constant which completes the proof.

Example 9. Under the condition of the Thm. 8, in $T_1\mathbb{R}^2$ all slant curves $\tilde{\gamma}$ with a geodesic curve projection γ are \tilde{N} -legendre curves. If γ is not geodesic then $\tilde{\gamma}$ is \tilde{N} -slant curve if and only if the ratio

$$\frac{\kappa}{\tilde{\kappa}}$$

is a non-zero constant.

Theorem 10. Let $\tilde{\gamma} = (\gamma, X)$ be a non-slant curve in $T_1\mathbb{M}$ and γ be a curve of velocity 2, where \mathbb{M} is a non-unit sphere (i.e. $\mathbb{M} \neq \mathbb{S}^2$). If the angle θ is linear, then

1. The curve $\tilde{\gamma}$ is \tilde{N} -legendre curve if and only if

$$(\mathbb{K}{-}1)(a\pm\kappa)=a/16$$

for constant $a = \theta'/4$.

2. The curve is \tilde{N} -slant curve if and only if

$$\theta = \arcsin\left(\frac{c\tilde{\kappa}}{16(\mathbb{K}(s)-1)(a_1 \pm 4\kappa) - a_1}\right)$$

where $a_1 = \theta'$ and c are non-zero constants.

Proof. Let $\tilde{\gamma}(t) = (\gamma(t), X(t))$ be a non-slant curve in $T_1\mathbb{M}$, where \mathbb{M} is a non-unit sphere, which means that

 $\mathbb{K} \neq 1$. And let be γ a curve with a velocity 2. If the angle θ is linear (i.e. $\theta = a_1t + b$), then the Equation (13) turns into

$$g_1(\tilde{N},\xi) = 16 \frac{(1-\mathbb{K}(s))}{\tilde{\kappa}} \left(-a_1 \sin \theta + \pm 4\kappa \sin \theta \right) - \frac{a_1 \sin \theta}{\tilde{\kappa}}.$$
 (14)

The \tilde{N} -legendre condition of the curve $\tilde{\gamma}$ means that the Equation (14) vanishes. Hence

$$16\frac{(1-\mathbb{K}(s))}{\tilde{\kappa}}(-a_1\sin\theta\pm 4\kappa\sin\theta) = \frac{a_1\sin\theta}{\tilde{\kappa}}$$

and thus

$$(\mathbb{K}-1)(a\pm\kappa) = a/16$$

with $a = a_1/4$. Thus, item 1 in Theorem (10) is proved.

The \tilde{N} -slant condition of the curve $\tilde{\gamma}$ gives

$$g_1(\tilde{N},\xi) = c$$

= $16 \frac{(1 - \mathbb{K}(s))}{\tilde{\kappa}} (-a_1 \sin \theta \pm 4\kappa \sin \theta) - \frac{a_1 \sin \theta}{\tilde{\kappa}},$

where c is a non-zero constant, and thus we get

$$\sin \theta = \frac{c\tilde{\kappa}}{16(1 - \mathbb{K}(s))(-a_1 \pm 4\kappa) - a_1}$$
$$\theta = \arcsin\left(\frac{c\tilde{\kappa}}{16(1 - \mathbb{K}(s))(-a_1 \pm 4\kappa) - a_1}\right).$$

Thus, item 2 in Theorem (10) is proved.

6. Conclusion

One of the important hypersurface of the tangent bundle TM is the unit tangent bundle T_1M which is an almost contact manifold. Zhong *et al.* (2013), studied the slant curves, which are generalizations of the Legendrian curves in T_1M , as curves whose tangent vector make a

constant angle with the Reeb vector field. In this paper, we studied N-Legendre and N-slant curves whose normal vector make a constant angle with the Reeb vector field. Also, some important characterizations about these curves are given in \mathbb{S}^2 , \mathbb{R}^2 , "a surface of sectional curvature of $\mathbb{K} \neq 1$ " and "a linear angle case".

References

Blair, D.E. (2002). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203, Birkhäuser, Boston, Mass, USA.

Călin, C. & Crasmareanu, M. (2013). Slant curves in 3-dimensional normal almost contact geometry. Mediterranean Journal of Mathematics, 10(2):1067-1077.

Cho, J.T., Inoguchi, J.I. & Lee, J.E. (2006). On slant curves in Sasakian 3-manifolds. Bulletin of the Australian Mathematical Society, **74**(3):359-367.

Fukunaga, T. & Takahashi, M. (2015). Evolutes and involutes of frontals in the Euclidean plane. Demonstratio Mathematica, **48**(2):1-20.

Hathout, F. & Dida, H.M. (2006). Diagonal lift in the tangent bundle of order two and its applications. Turkish Journal of Mathematics, **30**(4):373-384.

Janssens, D. & Vanhecke, L. (1981). Almost contact structures and curvature tensors. Kodai Mathematical Journal, 4(1):1-27.

Sasaki, S. (1962). On the differential geometry of tangent bundles of Riemannian manifolds, II. The Tohoku Mathematical Journal, 14(2):146-155.

Tashiro, Y. (1963). On contact structure of hypersurfaces in complex manifolds, I. The Tohoku Mathematical Journal, **15**(1):62-78.

Zhong, H.H. & Lei, S. (2013). Slant curves in the unit tangent bundles of surfaces. Hindawi publishing corporation ISRN geometry, 2013:1-5.

Submitted : 09/09/2015 *Revised* : 01/11/2015 *Accepted* : 12/11/2015

ملخص

لنفرض أن (T1M, g1) هي وحدة حزمة مماس لبعض الأسطح (M, g) مقدمة مع مقياس ساساكي (Sasaki) المُستحث. في البحث الحالي، نحدد نوعين من المنحنيات تسمى منحنيات ان-ليجندر (N-Legendre) و ان-سلانت (N-Slant) كمنحنيات لديها ناتج ضرب داخلي لمتجه طبيعي ومتجه ريب (Reeb) يعادل الثابت الصفري واللاصفري، على التوالي، وتم الحصول على العديد من الخصائص الهامة لهذه المنحنيات.