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Abstract

In multiple linear regression analysis, the variance inflation factor is a well-known collinearity measure.
It is defined as the function of the coefficient of determination between the explanatory variables, and it
is based on the maximum likelihood estimator of the regression coefficients. Nevertheless, in addition
to outliers, leverage observations can have significant impact on the coefficient of determination, and
thereby the variance inflation factor. This study presents an improved robust variance inflation factor
estimator that is not affected by these observations. Simulation studies and a real data analysis indicate
that the modified robust variance inflation factor estimator performs better than the traditional one.
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1. Introduction

The multiple linear regression model is used to make inferences about a response variable using explana-
tory variables, and it is defined as Y = Xβ + ϵ. The maximum likelihood (ML) estimator of β, which is
known as the best linear unbiased estimator, is expressed as

β̂ML =
(
X ′X

)−1
X ′Y,

The variance inflation factor (V IFML = 1/ 1−R2
ML

(Graybill, 1961). In the presence of collinearity problem, the well-know ridge regression estimators 
are proposed (Hoerl & Kennard, 1970). There are many studies in the literature that focus on ridge 
regression (Dorugade, 2014). Moreover, studies have suggested the use of robust and ridge-type ro-
bust estimators if there are outliers, or both collinearity and outliers, in the regression data (Aftab & 
Chand, 2018; Alshqaq, 2021; Maronna, 2011; Silvapulle, 1991). The presence of both outliers and one 
or more leverage observations in the data may have an impact on the severity of collinearity. Here, these 
collinearity-influencing l everage o bservations a re c ategorized i nto t wo g roups a ccording t o h ow they 
affect collinearity. The first group consists of collinearity-masking leverage o bservations. These obser-
vations may lead to the misconception that there is no collinearity in the data. For the second group of 
observations, called collinearity-inducing leverage observations, the outcome is just the opposite. They 

( )) is a measure used to make inferences about
collinearity. If its value is larger than 10, there is severe collinearity in the data (Gujrati, 2004). R2

ML is
the largest coefficient of determination between Xj , j = 1, ...k, and the rest of the explanatory variables.
If extreme observations are present in the data, these points would impact β̂ML and ȳ, which means the
resulting residuals (yi − ŷ) might be larger than they are in reality. This leads to the employment of
robust determination coefficient to diagnose collinearity by using

R2
r = 1−

∑n
i=1wi (yi − ŷi)

2∑n
i=1wi (yi − ȳw)

2 ,

1

may lead to a misinterpretation of collinearity in the data.
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where r denotes a robust estimator and ȳw =
∑n

i=1wiyi
/∑n

i=1wi. The weights, wi, and predictions,
ŷi, are produced by applying a robust regression estimator (Renaud & Victoria-Feser, 2010). However,
this estimator performs well in parameter estimations only in the presence of outliers in the X or Y
direction. The calculated value of the robust V IF

(
V IFr = 1/(1−R2

r)
)

based on R2
r with collinearity-

inducing leverage observations, also called good leverage points, leads to the perception that collinearity
exists. Note that, here, R2

r denotes the largest robust coefficient of determination established by a robust
regression estimator between Xj and the remaining explanatory variables. Since collinearity-inducing
leverage observations have an impact on this estimator, it is important to build an R2

r that is strong despite
the presence of these points.

This study aims to improve the R2
r and V IFr, which are referred to as the new R2

r

(
newR2

r

)
and

new V IFr (newV IFr) based on the newR2
r . The severity of collinearity is determined more accurately

with the newV IFr, which is also not impacted by collinearity-inducing leverage observations. This
makes it easier to determine the best estimator for the regression analysis. In Section 2, robust estimators
are mentioned to construct new underlined estimators. The suggested approach is introduced in Section
3. The results, using a real data set, are presented in Section 4. Furthermore, this section provides
simulation details that allow for comparisons of the estimators utilized. These findings demonstrate that
the newV IFr based on the newR2

r provides better results compared to the V IFr. The paper ends with
conclusion in Section 5.

2. Robust LMS, LTS, and S estimators

There are various robust estimators for estimating the parameters in multiple linear regression models.
In this study, the most common robust estimators the least median of squares (β̂LMS), least trimmed
square (β̂LTS) (Rousseeuw & Leroy, 1987), and S (β̂S) (Rousseeuw & Yohai, 1984) are employed to
determine the performance of the improved estimator newV IFr.

These estimators are calculated from

β̂ℓ =
(
X ′Wℓ−1X

)−1
X ′Wℓ−1Y,

where Wℓ−1 defines the diagonal weight matrix with elements w (ri) and the ri denotes the residuals,
i = 1, ..., n (Rousseeuw & Leroy, 1987). Note that for β̂LMS and β̂LTS , wi = 1 when observation
i ∈ tth sub-sample. Otherwise, wi = 0. The weights for the S estimator should be established in each
iteration by employing Tukey’s bi-weight function (Maronna et al., 2006; Rousseeuw & Yohai, 1984).

3. An improved robust VIF

The R2
r is not affected by the presence of collinearity-masking leverage observations. However, it does

not yield good results when there are leverage observations that induce collinearity because it is robust
only against outliers. In addition, leverage observations that are considered to be good and regular in the
direction of X(−j) (the design matrix X excluding the jth explanatory variable) can induce collinearity.
Thus, a V IFr that is dependent on R2

r would be adversely affected by these observations as well. In order
to overcome this negative effect, it is recommended that the collinearity-inducing leverage observations
be removed from the X(−j) direction before the R2

r is calculated. For this purpose, the V IFr is improved
and called the new V IFr (newV IFr) (Ekiz, 2021). The detailed description of the algorithm is as
follows:

• For each X(−j) compute the robust estimators τ̂
(
X(−j)

)
and Σ̂−1

X(−j)
of the location and scale

parameters, respectively. In this study minimum covariance determinant (MCD) estimators are
employed (Rousseeuw & Driessen, 1999).

• Compute Mahalanobis distances, MD2
i based on τ̂

(
X(−j)

)
and Σ̂−1

X(−j)
(Maronna et al., 2006).

• If MD2
i > χ2

k−1,1−α, xi is determined to be an collinearity-inducing leverage (outlier) obser-
vation. Additionally, this point is referred to as good leverage when regressing Xj on X(−j).
χ2
k−1,1−α is the upper-α quantile of the chi-square distribution. At the end of this step, a total of

m observations are identified as collinearity-inducing leverage.

An improved robust variance inflation factor: Reducing the negative effects of good leverage points

2



• Considering that there are collinearity-inducing leverage points during the application of the re-
gression of Xj on X(−j), subtract m observations from the data. Both R2

r and V IFr are then
computed by constructing the regression analysis with a clean n−m observation.

• Report the estimates from n−m observations as newR2
r and newV IFr.

When the computed newV IFr is larger than 10, there is severe collinearity in the data.

4. Application

In this section, the improved measure, newV IFr, is compared with the V IFr by applying Body fat data,
(Kutner et al., 2004), which consists of collinearity-masking leverage observations. There are three ex-
planatory variables, each of which has 20 observations: Tricep skin thickness (X1), thigh circumference
(X2), and midarm circumference (X3).

Let newV IFr (r = LMS,LTS, S) be the new robust measure, and let V IFML denote the V IF
computed using the ML estimator. The values of V IFr based on LMS, LTS, and S estimators are
calculated as 250.2497, 688.5522, and 792.8248, respectively. The values of newV IFr based on the
same estimators are calculated as 825.7449, 790.7602, and 793.9697, respectively. Here, α = 0.05. All
of these values are much higher than V IFML which is 36.4631. This is the evidence of the presence
of more severe collinearity. Hence, in the case of collinearity-masking leverage in the data, the use of
V IFr and newV IFr estimates will be useful to diagnose the severity of collinearity for the appropriate
regression model.

The newV IFr would not be affected from the collinearity-inducing leverage observations existing
in the data, in contrast to V IFr. To illustrate this point of view a detailed simulation study is carried out
in Section 4.1. The results both in the application and the simulation study are obtained by using Matlab.

4.1 Simulation study

In this simulation, the datasets are generated so that they are contaminated with leverage observations
that effect collinearity. An evaluation of the performance of the V IFr and newV IFr estimators with
contaminated data is conducted by comparing their Monte Carlo (MC) means with the uVIF computed
from the uncontaminated portion of the data. When the MC mean of the estimator is close to the
uVIF, it can be said that the estimator is not affected by contaminated data (Ekiz, 2021). Note that
uV IF = 1/

(
1− CXj ,X(−j)

CX(−j),X(−j)
C ′
Xj ,X(−j)

)
, where C denotes the correlation matrix of the dis-

tribution of the uncontaminated part of the data (Mardia et al., 1979). The datasets are simulated from
the contaminated normal distribution, where the number of explanatory variables is set to 3 (k = 3). The
joint probability distribution of (X1, X2, X3) is defined as F = (1− λ)G+λH , where G ∼ Nk(µ,Σ),
H ∼ Nk(θ,Σ), and Σ = C. The mixture parameter, λ ∈ [0, 1], provides λ ≪ 1 (Maronna et al., 2006).
Additionally, µX = (µX1 , µX2 , µX3) and θX = (θX1 , θX2 , θX3) are used as the location parameters of
G and H , respectively. To simulate an n sized dataset consisting of only high-leverage points (mask-
ing or inducing) with a proportion of λ, the leverage observations are generated from Nk (θ,Σ) and
the non-leverage observations are generated from Nk (µ,Σ). In this way, the set of design parameters
µX1 , µX2 , µX3 , θX1 , θX2 , θX3 can be utilized to manipulate the level and type of contamination.

Using a covariance matrix Σ, with ones on the diagonal, the dataset includes collinearity-masking
leverage. The remaining elements of this matrix are selected as values close to one, providing strong
collinearity between the explanatory variables. In the simulations, a λ proportion of high-leverage ob-
servations, taken from H ∼ Nk (θ,Σ), where θ = (5, 7, 7), are integrated into the dataset as well. The
V IFMLG

and V IFMLF
should be calculated from the observations that are produced from the distribu-

tions G and H, respectively. It can be seen that V IFMLF
is much smaller than V IFMLG

, even for small
values of λ. Therefore, a small number of high-leverage observations may mask a strong collinearity that
depends on the rest of the data. To create a dataset with collinearity-inducing leverage, the elements of
Σ are chosen to be very close to zero. Thus, the value of the corresponding uVIF is small, indicating that
there is no correlation between the explanatory variables. When the λ ratio of the collinearity-inducing
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Fig. 1. Contaminated data with collinearity-masking leverage. The value of uV IF is set at 501.3193
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Fig. 2. Contaminated data with collinearity-inducing leverage. The value of uV IF is set at 1.2121.

leverage observations generated from the H distribution, with the θ = (35, 32, 37), is integrated into
the data, the calculated V IFMLF is much higher than the calculated V IFMLG without the collinearity-
inducing leverage observations. This result indicates that a small number of collinearity-inducing lever-
age observations may increase the severity of collinearity.

The simulation procedure is based on 10000 iterations for all combinations of n = 100 and λ = 
0, 0.01, 0.05, 0.10, 0.20. The MC estimations for the V IFr and newV IFr values obtained in cases 
where the data is contaminated by collinearity-masking and -inducing leverage observations are given in 
the vertical axes of the graphs in Figure 1 and 2. In these graphs, the horizontal axes show the λ. MC 
estimates near uV IF = E (V IFMLG ) are considered to be good performance estimates. Note that E 
shows the expected value, and V IFMLG is the measure of the V IF obtained from the data produced by 
the G distribution, based on the ML estimator.

In the case of collinearity-masking leverage, the outcomes of both V IFS and newV IFS seem to be 
good (see Figure 1(a) and (b), respectively). Moreover, as shown in Figure 1 and 2, in contrast to the 
other estimators, the newV IFS estimator outperforms in both cases, and its calculated values approach 
uV IF .

In the presence of collinearity-inducing leverage observations, it can be seen that the V IFr yields 
very large results than the uV IF . This leads to the misconception of as if there is collinearity, as shown 
in Figure 2(a). However, according the plots in Figure 2(b) the newV IFr provides very reasonable 
results. When n = 50, λ = 0.10, and using the data simulated with collinearity-inducing leverage 
observations, the MC means of V IFS and newV IFS are calculated as 350 and 1.80 . Thus, the bias of 
newV IFS from uV IF = 1.2121 is negligible compared to the value of V IFS .

5. Conclusion
Before starting a regression analysis, it is important to investigate whether there are outliers and/or 
collinearity problems in the data. It is recommended that ridge, robust, and ridge-type robust estima-
tors be used for problems with collinearity, outliers, and both collinearity and outliers, respectively 
(Silvapulle, 1991). Hence, accurately determining the severity of collinearity plays an important role 
in identifying the correct estimator to apply. When the leverage observations (outliers) in the direction of 
jth explanatory variable mask collinearity (collinearity-masking leverage), the results of V IFr 
demonstrate that there is more severe collinearity in the data, compared to results based on V IFML. At 
the same time, similar results are observed from the proposed newV IFr. 
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However, if the data contains collinearity-inducing leverage observations, the V IFr is unable to 
recognize that there is actually no collinearity in the data. The V IFr provides large numerical results, 
as if collinearity exists. In contrast, the values of the newV IFr estimator, improved in this study, are 
small in this situation. Furthermore, when collinearity-masking or -inducing leverage observations are 
present in the data, the newV IFS out-performs the other estimators. For this reason, this measure could 
be used to diagnose collinearity before deciding which estimator to use for parameter estimates.

References
Aftab, N., & Chand, S. (2018). A simulation-based evidence on the improved performance of a new 
modified leverage adjusted heteroskedastic consistent covariance matrix estimator in the linear 
regression model. Kuwait Journal of Science, 45(3).

Alshqaq, S. S. (2021). On the least trimmed squares estimators for JS circular regression model. Kuwait 
Journal of Science, 48(3), 1-13.

Dorugade, A. V. (2014). On comparison of some ridge parameters in ridge regression. Sri Lankan 
Journal of Applied Statistics, 15(1), 31–45.
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