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Abstract

In this paper, we present a Galerkin-like approach to numerically solve continuous population models for single and
interacting species. After taking inner product of a set of monomials with a vector obtained from the problem under
consideration, the problem is transformed to a nonlinear system of algebraic equations. The solution of this system
gives the coefficients of the approximate solutions. Additionally, the technique of residual correction, which aims to
increase the accuracy of the approximate solution by estimating its error, is discussed in some detail. The method and
the residual correction technique areillustrated with two examples. The results are also compared with numerous

existing methods from the literature.
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1. Introduction

The utilization of differential equations in order to model
biological and ecological phenomena has a fairly long
history. One of the oldest, simplest and the most famous
examples is the so called logistic equation first proposed
by Verhulst (1845), (1847) in order to model the
population growth of a certain species with respect to
time. This equation is given by
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under the initial condition x(0) =x, and in the interval
0<¢<T. Here x=x(¢) is the ratio of the population at

time ¢ to the maximum sustainable population and r is
the rate of maximum population growth. This equation is
separable and of first order with exact solution
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rediscovered in 1911 by McKendrick & Kesava Pai
(1911) for the growth of bacteria. Several years later, it
was made popular by the work of Pearl & Reed (1922)
on the population growth of the United States of America
since 1790. Lastly, Lotka derived the equation again in
his book

(Lotka, 1925), which was the first one written on
mathematical biology.

Population models where two animal species are in a
predator-prey relation are present in the environment
have also attracted the attention of scientists beginning
from 1910s. The first such model was proposed by Lotka
(1910) in relation to autocatalytic chemical reactions.
Lotka then extended his work to organic systems (Lotka,
1920) and finally used his model to analyze predator-
prey relations in his book (Lotka, 1925). The same model
was discovered independently by Volterra (1927), who
made a statistical analysis of the fish catches in the
Adriatic sea circa 1926. The outcome of these studies is
what is called the Lotka-Volterra equations given by
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with the initial conditions p(0)=1,,4(0)=4,. Here
p(t) and ¢(t) respectively represent the prey and
predator populations at time ¢ according to some scale,
and a,b,c,d are real parameters describing the
interaction of the two species. These real parameters vary
according to which species are in consideration. This
constant coefficient nonlinear model, also known as
predator-prey equations or Lotka-Volterra equations, is



the basis of many predator-prey models that have been
developed since then. A derivation of this system can be
found in Volterra & Brelot (1931) and Hirsch & Smale
(1974).

The problem of finding approximate solutions of the
system (2) has so far attracted the attention of many
researchers; as a result, many numerical methods present
in the literature have been applied to this system. Among
such methods we can count Adomian decomposition
method (Pamuk, 2005), homotopy perturbation method
(Pamuk & Pamuk, 2010), Bessel collocation method
(Yiizbasi, 2012a) and a nonstandard scheme (Mickens,
2003) similar to the finite difference method. Lotka-
Volterra equations, where several predator species are
competing for a common source of food have also been
investigated by several authors. Such studies include
approximate solutions using Adomian decomposition
method (Olek, 1994), wvariational iteration method
(Batiha et al., 2007) and a modified version of He’s
homotopy perturbation method (Chowdhury & Rahman,
2012). For several other uses of some of these methods,
the interested reader may refer to Jamshidi & Ganji
(2010); Bayat et al. (2012); Bayat et al. (2015); He
(2007); Wu (2011); Xu & Zhang (2009). In addition,
some authors have investigated the analytical and
dynamical aspects of Lotka-Volterra systems. The reader
who is interested in such studies can see Gander (1994);
Grozdanovski & Shepherd (2008); Murty & Rao (1987);
Kim & Choo (2015).

The main interest of this study is to adopt a Galerkin-
like approach in order to numerically solve the Lotka-
Volterra predator-prey model given by Equation (2). In
order to measure the accuracy of the method, we will
also apply it to the logistic model given by Equation (1).
The proposed scheme was also used by Tiirkyillmazoglu
(2014) in order to solve high-order Fredholm integro-
differential equations.

The outline of the paper is as follows: In Section 2,
we give an outline of the method. In Section 3, a
technique to improve solutions is discussed. Section 4
contains two examples and their approximate solutions as
well as comparison with other methods. Finally, Section
5 draws some conclusions as to the effectiveness of the
scheme outlined in this paper.

2. Method of solution

In this section, we outline the procedure we will use to
find approximate solutions of models (1) and (2). The
method basically comprises determining an integer N
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and taking inner product of an expression obtained from
the equations with the elements of the set of monomials

{1,t,£>,...,t"}. This then gives rise to a set of nonlinear

algebraic equations in the coefficients of the approximate
solution polynomials. Although the procedure is
essentially the same for models (1) and (2), for the sake
of clarity we will describe them separately. All the
calculations will be expressed in terms of matrices,
which makes computer implementation somewhat easier.
As expressed earlier, this method was wused in
Tiirky1lmazoglu (2014), where the problem in question
was solving a class of Fredholm integral equations.

2.1 Solution method for single species model
To begin with, we assume that the unique solution x(¢)

of Equation (1) can be expressed as a polynomial of
degree N, namely

N
x, ()= at =T, (1) A,
k=0
where

T

T,()=[1 ¢t ¢ M, A=[a, a a, a,]".

The output of the method will be the unknown
coefficients a,. The derivative x;v(t) can also be
expressed as the product of matrices as follows: If B is
the (N +1)x(N +1) matrix defined by B,, =i for

i+l

i=12,....,N and Bm. =0 elsewhere, explicitly given

by
o 0 i
0 0 2 0
B=|: : : .
000 .. N
00 0 ... 0]

then we have x, (¢)=T,(/)BA. As for the nonlinear
term 7x°, we proceed by defining a new matrix as
follows: We denote by A  the (2N +1)x(N +1)
matrix with 4, =a, , if j<i<j+N and 4,=0

otherwise. Explicitly, we define A by
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a, 0 0 0
a, a, 0 0
a, q a, 0
A=lay ay, ay, a,
0 ay ay, a,
0 0 ay a,

0 0 0 ay |

Then since x,(#)* is a polynomial of degree 2N
formed by multiplying x,(#) by itself, it is easy to
verify the equality

Xy (l)z =T,y (t)‘&A-

Next step is to substitute the matrix expressions for
xN(t),x;v(t) ande(t)2 into Equation (1). Doing this,
since the polynomial x, is assumed to solve the equation,

we obtain the equality

(T, (t)B - rT, (t) + T, (£)A)A =0, (3)

where we took the common factor A out of brackets.
Next step is applying inner product to the equation with

the elements of the set {I,#,¢°,...,t"}, where the inner

product is defined by
b
<frg>=[ f(x)gx)dx.

Here, f and g are functions from the Hilbert space

I’[0,T]. In order to express the result of this inner

product in a simple matrix form, we give the left-hand
side of Equation (3) a name by introducing the notation

G(t) =T, ()B—rT,(¢) + T, (H)A.

Then, noticing that the entries of A are just unknown
constants, since integration is a linear operation we have
the equality

<t',G(H)A>=<1,G(t)> A

which holds for all i=0,1,...,N.For each i, the

application of this inner product yields a nonlinear

equation in the unknowns a,,a,,...,a, . This nonlinearity

is brought about by the term T, N(Z)A of G(t). Since

there are a total of N +1 such equations, we arrive at a
system of N +1 nonlinear equations, which can be
expressed in terms of matrices as WA = 0, where each

side is a vector of length N +1 and the entries of W are
explicitly given as W, =< tH,G(t)lJ >. Notice that
some of the entries of W are constants while some of
them contain expressions linear in somea,. Since the

approximate solution x,(¢#) of Equation (1) should

satisfy the initial condition x,(0)=x,, we substitute

WA =0 with the vector
equivalent of this initial condition. This vector equivalent

one row of the system

form can be simply expressed as

T,(WA=[1 0 0 0]A =x,.

For the sake of being deterministic, we choose the last
row of Was the row to be replaced and substitute the
above vector for this last row. Consequently, we obtain
the nonlinear system

WA=[0 0

0 x], 4)

where W is the modified form of W, explicitly given by

[ <LG(),> <LG(@),> <L,G(), ., > |
<t,G(1),, > <t,G(1),, > <t,G(t), v, >
W= : : :
<",G@), > <t",G(),, > <" G(1), ,, >
i 1 0 0

Let us once again note that W contains terms which are

linear in some q,; therefore the system (4) is nonlinear.

Solving it yields the unknown constants a,,q,,...,a,,

N
hence the approximate solution x, (¢) = Zaktk .
k=0

2.2 Solution method for predator-prey model

Our method for the model (2) will be more or less the
same as the single species model (1), except that this
are concerned, so a small

time two equations




arrangement will be necessary. To begin with, let p, ()

and ¢,(f) denote the approximate solutions for the prey

and predator populations at time ¢, respectively. As
before, we have

N N
pN(t) = Zpktk and qN(t) = qutk:
k=0 k=0

which can be expressed in terms of matrices as
py(®) =T, ()P and q,(t) =T,(#)Q. This time there
are 2N + 2 unknown constants to be determined, which
are p,,p,,..-,Py and ¢,,4q,,...,q, . Following the same

procedure as in the single species case, we arrive at the
matrix equations

(T, (B -aT,(t)+bT,, (HQ)P =0,

5
(T, (H)B + T, (1) —dT,,()P)Q = 0. ®

Here P and Q are (2N +1)x(N +1) matrices with
P=p_,0,=q._ if j<i<j+N and F,=0,=0

i
otherwise, just as we defined A for the single species
case. Adopting a similiar notation, this time we define

G’(t):=T,(1)B—aT, (1) +bT,, (1)Q,
G'(t):= T, ()B +cT, (t) - dT,, (t)P.

Then, performing the inner products of the expressions in
Equations (5) with the monomials 1,7,...,¢" , we obtain

two nonlinear systems which can be expressed as

W’P = 0,W'Q =0, (6)

where W =<t G’ (1), . > and
i,j sJ

W =< £, G’ (¢), ; > Then, as before we feed the initial
conditions p(0)=4,,9(0) =1, to the system 6. This
amounts to replacing the last rows of W” and W? with
the row [1 O

the zero vectors on the right-hand side of system (6) with

0] and replacing the last entry of

Zp and iq, respectively. These substitutions then give

rise to the following two systems:
WP =[0 0 4,1.W'Q=[0

(M

0 41
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Here each system is a nonlinear system of N +1
equations in 2N + 2 unknowns. This comes from the

fact that W’ has entries containing some ¢, and W’

has entries containing some p, . Therefore, on the whole

there are 2N +2 nonlinear equations in 2N +2
unknowns. Although the systems (7) are thus perfectly

sufficient for the purpose of determining the unknown
coefficients p, and ¢, for i=0,1,...,N, one might

desire to express these two systems in the form of a
single system of equations just like the system (4). For
that purpose we will define three new matrices by means
of concatenating the already defined ones. First is the
new (2N +2)x(2N +2) coefficient matrix formed by

using the separate coefficient matrices W’ and W' as
follows:

Wﬂq . W" 0(N+1)X(N+1)
1o w! |

(N+D)x(N+1)

where 0y, )y stands for the (N +1)x(N+1)

square matrix with all entries equal to zero. Second
matrix is just the length-2N +2 vector of unknowns
given explicitly as

U=[P Q]=[p, » ~ Py 4 ¢ ~ 4.

Third matrix is the right-hand side of the new system,
formed by concatenating the right-hand sides of the
systems (7) in the same manner:

F=[0 - 0 A4 0

P

0 41

After these preparations
system of 2N +2 equations in the 2N + 2 unknowns

the aforementioned single
is given by

W"U =F.

the
Pos P>+ Pys90,9,----q, and hence the approximate

Solving  this  system yields unknowns

N N
solutions p, (?) = Zpkl‘k and ¢, (?) = qutk .

k=0 k=0
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3. Error estimation and residual correction

In this section, we outline a method known as residual
correction, the purpose of which is to obtain better
solutions using the existing ones. This technique is based
on the observation that substitution of an approximate
solution in the equation gives rise to a new equation,
similar to the original one in structure, in the error of that
particular approximate solution. Then, the same method
of solution is used to solve the new equation, thus
yielding an estimation of the error function. Residual
correction has been employed in connection with many
numerical methods and many different kinds of
equations. An example of how it is utilized in the case of
other kinds of equations, e.g. Riccati type differential

equation systems, can be found in (Yiizbasi, 2012b).

Although the idea behind the technique of residual
correction is essentially the same for the single species
model (1) and the predator-prey model (2), we treat the
two cases separately for the sake of completeness.

3.1 The case of single species model
Now, we consider the logistic model given by Equation
(1) with its exact solution x(¢) and its approximate

N
solution x, (¢) = Zaktk obtained by the method of the

k=0
previous section. We then consider the error of this
solution given by e, (f) = x(#) — x,,(¢) . Note that we can
x(1)
x(t) = x,(t)+e, (). On the other hand, since x(¢) is

express in terms of e,(f) and x,(f) as

the exact solution, it satisfies the logistic equation. This

gives us the following:

x'(t)—rx(t)+ rxz(t) = (x;V (t)+ eVN(l)) —r(x,(t)+e, (1)
+r(x, (1) + eN(t))2

= e'N(t) —re,(t)+re, (1) + 2rx, (t)e, () + R, (1) =0.
3

This is a first order nonlinear equation in the unknown

function e, with nonhomogeneous term

R, (1) = x'N(t) —rx, (1) + rxN(t)z.

This nonhomogeneous term is called the residual of the

approximate solution x, (¢). In general, the residual of a

function f related to a certain equation is simply the
resulting function after substituting f in that particular
equation. The residual of the exact solution of any

equation is thus zero.

Next step in the technique of residual correction is
just to apply the method of Section 2 to Equation (8).
Since Equation (8) is not the same as the logistic
Equation (1), a short explanation is in order. The
difference the additional

2rx, (t)e, (¢) and R, (t). Before following the footsteps

comes from terms

of the method of Section 2, we take the nonhomogeneous
term R, (¢) to the right-hand side and write Equation (8)

as

e, (t)—re,(t)+re, (1)’ +2rx, (e, (t) =—R,(t) (9)
with the initial condition
e, (0) = x(0)—x,(1)=0—-0=0.

We then pick a positive integer M and decide to

approximate the solution e, () to this equation with the

M
M-th degree polynomial e,,, (t) = ZeN’ktk . Next, in the

k=0
style of Section 2, we write Equation (9) in terms of
matrices. The matrix equivalent of e, (¢) is T, (?)E,
where E is a column matrix of M +1 entries with i-th

entry equal to the unknown e, ;. In this case, we are

left with

(T, (OB =T, () +7T,, (DE+2/T,,,, (DA)E =
_RN (t)v (10)

where E is a

E =e

i UN.—j

(M +1)x(M +1) matrix with
: if j<i<j+M and EU =0 otherwise.
Notice that this time B is a (M +1)x(M +1) matrix
and A is a (N+M+1)x(M+1) matrix with

A =a. .

ij i-j

if j<i<j+N and 4;,=0 otherwise.

Notice also that the entries of A are known this time

since we have already computed x, (¢) . Defining

G(t):=T,()B—rT, (¢)+ T, ()E+2rT,,, (/)P



and taking inner product of Equation (10) with the set
{1,t,t2,...,tM} yields the nonlinear system WE =R,
where W is a (M+1)x(M+1) matrix with
W, =< ZH,G(t)u > and R is a column matrix of
length-M+1 with R, =< ti",—RN (¢) >. Since we would
like the approximate solution e,, (f) for e, (?) to
satisfy the initial condition e, (0) =0 as well, we feed

the matrix equivalent, which is T, (0)E=0,to the
system WE =R. To this end, replacing the last rows
W and the last entry of R with T, (0) and O,

respectively, yields the final (nonlinear) system
WE =R.

Solving  this we acquire the coefficients

€y 05€y1o-+-»€y,, and hence the approximation ey, (¢)

to the error function e, (7).

A useful remark about residual correction is now in
order. The function e,,, (f) that we have found as the
approximate solution to Equation (9) is our estimation to
the exact error function e, (¢) = x(¢)—x,(?). We will
use this estimation to set up a new approximate solution
x,,, (1), which is hopefully, compared to x, (¢), a better
approximation to the exact solution x(¢) of the logistic
Equation (1). Since x(¢) = x, () +e,(t) and e,,, (?) is
our estimation for e, (¢), this new approximate solution

is just

X, () =x,()+e,, ().
The approximate solution x,,, (f) thus obtained is called

the corrected solution. The accuracy of this corrected
solution is directly related to the accuracy of our

estimation e, (¢) for the error function e, (¢). Namely,

we have

X (t) - X(t) = (XN(t) + € (t)) - (XN(t) + e}v(t))
(11)
=e,, (1)-e,(1).

Therefore, the error in x,,, (¢) is simply the same as the

error in e, (), which is natural since knowing the error
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function exactly means knowing the exact solution. This
situtation shows the importance of the technique of
residual correction. The numerical examples that will be
presented in the subsequent section will give an idea as
to its effectiveness. In what follows, the actual error of

x,, (t) given in Equation (I11) will be denoted by
E,,@).

3.2 The case of predator-prey model

In the same fashion as we did for the single species
model, we now start by considering the error functions of
the solutions belonging to the Lotka-Volterra equations
given by (2). Let the error function corresponding to the

prey population be e, (¢) = p(¢) - p,(¢) and the error
function corresponding to the predator population be
e, v(1)=q(t)—q,(?). Since p(t) and g(¢) are the
solutions, simplifications their

substitution into (2) will give rise to the following two
equations

exact after some

e, (1) —ae, (1) +Db(e, \()e, (1)

(12)
+qy(De, v (D) + py(De, (D) + Ry (1) =0,

e;,N () +de, (1) —c(e, y()e, y(?)

(13)
+qy (e, y (1) + py(De, y (1)) + Ry (1) =0

with the initial conditions e, , (0) = e, (0) =0. Here

Ry (1) = pyy (1) —apy () + bpy (1)q,, (1), R} (1)
=qy (D) +cq, (1) —dpy(D)q, (1)
are the residual functions of approximate prey population
p(0)

respectively. Choosing a positive integer M, let e, (?)

and approximate predator population g(¢),

and e, (¢) denote the approximate solutions to

Equations (12) and (13) given by

M
e, ()= ZeP,N’ktk =T, (t)E
k=0

and

M
€, ()= Zeq,N,ktk = TM (t)Eqa
k=0
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e are unknown

e and e e

where e .

PNO2 T qN02"

constants to be determined. Then, the matrix expressions
of Equations (12) and (13) become
(T, (OB —daT, () +bT,, (VE! + T, , ()Q)E’
+bT,,,, ()PE? = —R%(2),
(T, ()B+dT, (1)~ T, (HE” =T, (1)P)E

T, (NQE” =R (1).

This time, E” and E’ are (2M +1)x (M +1) matrices

. ~p _ ~q _ . . . .
with Ef =e . . and E =e . . if j<i<j+M

and fﬂg =I~EZ. =0 otherwise, whereas Q and P are
(N+M+1)x(M +1) with entries as defined earlier.

Proceeding as we did earlier, as a preparation to taking
inner product we introduce some new notation as
follows:

G’'(1):=T,(t)B—aT, () +bT,, (1)E' +bT, , ()Q,
G”(t):=bT,, ()P,
G'(t):=T,()B+dT, (t)-cT,, (H)E’ — T, (1P,
G’ (t):=—T,,,, (1)Q.

Then, taking inner product of both equations with the set

{1, tyoony tM} yields the two systems

W”E’ + WE’ =R’
and
WY E?! + WPE” = R?

where the coefficient matrices W are

(M +1)x(M +1) with W' =<G"(1),,,¢/" > and
W;: =< G""(Z)l,k,l‘j*1 > fori =1,2. Likewise, the right-
hand sides of the two systems are determined by
R’ =<-Rj(t),t"" > and R’ =<-Rj(1),/’" > for
j=L12,...,M +1. Then, there still remain to feed the
initial conditions e, ,, (0)=0 and e ,, (0)=0 to the

systems. For that purpose, we replace the last rows of

W' W2 W and W with T, (0), thus forming

the matrices W”', W?2, W' and W**, and replacing
the first entries of R” and R? with 0, thus forming R”

and R’. After these operations we are left with the

following two modified systems:

(1) W'E” + W”E’ =R”, (2) WE’ + W”’E’ = R".
(14)

Each of these two systems consists of M +1 nonlinear

equations in the unknown coefficients e, . and e,

N.i
for i =0,1,...,M.Solving systems (14), we obtain these
2M +2 coefficients and hence the estimated error

functions e, ,, (1) and e ,, (7). Finally, using these
estimations of the actual error functions e, () and
e y(f), we obtain the new approximate solutions

pNM(t) = pN (t) + ep,NM(t) and

Gy () =gy () +e,,, () for the prey population p(¢)
and the predator population ¢(z). Next section will give

an idea on how much accuracy is provided by the
residual correction technique applied to the predator-prey

model (2).

4. Numerical examples

In this section we consider two examples, one a single
species model and the other a predator-prey model. To
each of these examples we find a number of approximate
solutions using the method of Section 2 and compare the
results with a few methods from the literature. In
addition, we apply residual correction to these numerical

solutions and thus investigate how much improvement is

provided by this technique in each case.



Example 1: Let us consider the following logistic
equation studied in Pamuk (2005); Pamuk & Pamuk
(2010); Yiizbasi (2012a):

g=x—x2,x(0) =2.

dt

This is Equation (1) with » =1 and x, =2. The exact

solution is x(¢) =

2-e
numerically solve it using our method. Our purpose is to

obtain x,(¢) =a, +at+a,t’ +at by determining the

coefficients «,,a,,a, and a,. We begin with writing

02712

Equation (15) in matrix form. To this end, we have

b
I

Thus, the matrix expression 3 for Equation (15) becomes

w

0
0
0

-t

Let us take N =3 and

[ R =

S O N O

2 3
a,—l+at+a,t” +ait

T

1+(a, - Dt +at’ +a,t +ayt’

2t+(a, — ) +at +at' +at’

3¢ +(a, - ) +at' +a,t’ +ayt’

Taking inner product of this equation with the set

{l,t,tz,t3} yields the following nonlinear equations in

a,,a,,a,,d,:
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()’ —a,++a,a, a + 2;12 2“;% —alzaz a522
N 3:3 a(;‘a3 2a,a, a23a3 +a_32 0
5 7
) _&+a_g 4, 2a,a, a_lz 5a, aya, 2aa,
2 2 6 3 4 12 2 5
a_22 lla, 2aa, aa, Z22a,a, a; o
6 6 5 3 7 8
. P 3a, 2
(3) _a°+a° ﬂ+%+a_1+&+ a,a, a4,

33 12 2 5 10 5 3

2 2
a 13a, aa, 2aa, aa, a
+ 3+ 0 3+ 1 3+ 2 3+ _

+5 = =0.
7 30 3 7 4 9
@) Yo, b, 4 2aa 4 T4 4, 2aa
4

4 20 5 6 30 3 7

2 2
a, 5a, 2a0a3+aa 2a,a, a; _

1

8 14 7 4 9 10

173

The initial condition x,(0) =2 simply means a, =2, so
we simply replace the last equation with @, = 2. Solving

the remaining three equations under the constraint

a,=2 yields the solution a, =-1.8519683183,
a, =1.7592176788, a, = -0.6819806307 . As a result,

the approximate solution to Equation (15) becomes

x,(1) =2-1.8519683183¢ + 17592176788t — 0.6819806307¢".

This scheme can be implemented for any value of the
parameter N. We applied it to Equation (15) for
N =5,6,8,10 and the results are as follows:

x (1) =2 —1.9866363518¢ +2.7596921681¢" — 2.8848489480¢°
+1.8494306309¢" — 0.5122378725¢,

x, (1) = 2 = 1.9962749995¢ + 2.9095764496¢" — 3.6011827843¢'
+3.3067174321¢" —1.8407187161¢°
+0.4472822911¢°,

x (1) =2 -1.9996012716¢ + 2.9856043501 — 4.1583695620¢'
+5.1879423127¢" — 5.1643541739¢°
+3.6033394438¢° —1.5105852289¢" + 0.2814238033:",

x, (1) =2 —1.9983956978¢ + 2.9465515044¢" — 3.7497963961¢
+3.2040718121¢" — 0.1106999873¢" — 3.1477448760¢°
+2.2159209023¢ +1.3282519525¢" — 2.1932690836¢

+0.7305095435¢".
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In order to measure the accuracy of these solutions, we

consider the absolute actual error functions given by
le, (1) |=]|x(#)—x,(¢)|. Since the exact solution is

available in this case, we can easily obtain the actual
error functions for any N value and compare these
functions with the actual error functions resulting from
the application of other numerical methods. In Table 1,
the absolute actual error functions for Equation (15)
resulting from the Adomian decomposition method
(Pamuk, 2005), He's Homotopy perturbation method
(Pamuk & Pamuk, 2010), Bessel collocation method
(Yiizbasi, 2012a) and the present method are compared
for various choices of the parameter N and for several
values of time ¢. The interested reader can find the
details of these methods in Adomian (1988); He (1999);
Yiizbagst (2012a). As for the results of the comparison, it
is seen that the errors resulting from the present method
is smaller than the errors of the other methods obtained
with the same value of the parameter N . In addition, the
present scheme has the advantage that its absolute error

functions behave rather smoothly in the interval [0,1]; as
can be seen from Table 1, | e, (¢) | values do not exhibit

dramatic changes for the test values chosen from this
interval. Another important observation we can make is

that increasing N does not necessarily mean reduced

errors, as | e, ()| > | e/(t)| forall ¢ values.

We also try to improve the already obtained solutions
x,(#) and x,(¢) by the technique of residual correction
described in Section 3.1. For this purpose we choose
M =5,6,8 for N=3 and M =7,8,9 for N =6. The
process simply consists of calculating the estimated error
function e, (¢#) for each choice of (N,M) pairs and
then setting up the solution

new approximate

x,, (t)=x,()+e,, (¢). For instance, for N =3 and

M =5 we obtain the estimated error function e, (f) as

follows:

e, (t) = —0.1346680335¢ +1.0004744894¢" — 2.2028683174¢’

+1.8494306311¢" —0.5122378726¢".

Therefore, since x,(f) was calculated earlier, the

corresponding corrected solution becomes

X5 (1) = x,(0) + ey (0)
=2-1.9866363518¢ +2.75969216811* — 2.8848489482¢°

+1.8494306311¢* — 0.5122378726¢°.

The other corrected solutions can be calculated in a
similar manner. In order to understand how much better

these corrected solutions are in comparison to the
previously obtained solutions x, (), it will be useful to

compare the error functions, in the manner that was

described at the end of Section 3.1. Namely, since

E,, () is the actual error of the corrected solution

x,,, (), comparing it to the actual error e, (¢) of x, ()
will reveal the effectiveness of residual correction. In

Figure 1, the absolute actual error functions |e,(f)| and

| e,(?) | of the approximate solutions x,(¢) and x,(f) are
compared with the absolute actual error functions
|E,, (t)| corresponding to their three improvements. It

is seen that both for N =3 and N =6, residual

correction significantly reduces the absolute error values.

Since the remark we made just before Section 3.2

relates the success of residual correction process to that

of the error estimations e,, (), it can be interesting to
compare the error functions e, (f) to our estimations

e,,, (¢) for these functions. In Table 2, the actual
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Table 1. Absolute error values at some points for Example 1.

t ADM (actual errors) Present method (actual errors) HPM (actual errors)
le; (0| Jes (1) Jes (0) Jes (1) Jes (1) e (1)
0 0 0 0 0 0 0
0.2 0.0077 6.4611E-4 0.0014 3.1731E-4 1.8643E-4 1.5521E-5
04 0.1014 0.0337 0.0071 2.4464E-4 0.0194 0.0064
0.6 0.4341 0.3253 0.0034 5.3748E-5 0.2816 0.2110
0.8 1.1884 1.5830 0.0054 2.3628E-4 1.8270 2.4338
1 2.5587 5.3254 1.3094E-4 4.7008E-8 7.6829 15.991
t Present method (actual errors) BCM (actual errors)
|eé(t)| |es(t)| |e10(t)| |e3(t)| |ee(t)|
0 0 0 0 0 0
0.2 4.5167E-5 2.9698E-6 1.0794E-5 0.0098 1.4442E-4
0.4  6.0264E-5 3.7031E-6 1.8150E-5 0.0086 6.9504E-5
0.6 6.9106E-5 2.8054E-6 1.7900E-5 0.0026 3.9746E-5
0.8 5.6255E-5 1.8500E-6 1.4082E-5 0.0065 1.1093E-4
1 5.7946E-10 6.0696E-11 3.2620E-10 0.0787 0.0022

Table 2. Actual errors and their estimations at some points for some values of the parameters /N and M for Example 1.

I Act. err0r|e3(t)| Est.error|e35(t)| Est.error|e38(t)|

Act. error|e6(t)| Est.error|eé7(t)| Est.error|eég(t)|

0 0 0 0 0 0 0
0.2 0.0014250 0.0017424 0.0014243 4.5166E-5 4.9201E-5 4.7665E-5
0.4 0.0070806 0.0073252 0.0070770 6.0264E-5 6.7237E-5 6.4123E-5
0.6 0.0033512 0.0034050 0.0033516 6.9105E-5 7.3236E-5 7.2861E-5
0.8 0.0053863 0.0056226 0.0053883 5.6255-5 6.0710E-5 5.8792E-5
1 1.3094E-4 1.E3089-4 1.3094E-4 5E-10 1.4E-9 1.4E-9
absolute error functions |e,(f)| and |e/(t)| are Our last comments on Example 1 will be about the

compared with their two improvements. It is seen that as

M gets larger, the estimated error values e,, (f) gets
closer to the actual error e, (). For a fixed N, this

explains why x,, (f) turns out to be a better
approximation to the exact solution x(¢) as we increase

M.

graph of the solution. Figure 2 depicts the exact solution
along with the approximate solutions we have found for
three different values of N . Since the approximate
solutions are close to the exact solution, the graphs of
these four solutions are seen as a single graph. The
population of the animal species exhibits a decrease in
the interval [0,1] although the pace of this decrease is in
decrease itself. This is brought about by the fact that the
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derivative of the population with respect to time, which decreasing with a limiting value limx(z)=1, the
t—o0

. 2 . . . .
is x—x", is negative and decreasing on the interval . . . . )
g g solution function will exhibit a decrease with a

(1,2]. Since the exact solution x(f)= _2 is also  decreasing speed on the whole half real-line 7 € [0, ).
T 2-¢"

Example 2: Secondly, let us consider the system

Actual absolute error
Actual absolute error

(ST p— JE gg 0l - [Egg) —=— [E 00

[ — [Eg 00 - [Eggl —=— [Egq]

0 02 04 06 08 1 0 02 04 06 0.8 1
Time(t) Time(t)

Fig. 1. Comparison of the actual absolute errors of the approximate solutions X, (1), X (l‘ ) and their three improvements for Example 1.

2
— Approximate solution pa(t)
T Approximate solution pa(t)
----x---- Approximate solution ps(t)
18l —— Exact solution p(t)
17k 7

Population
o
T
|

—
w
T
1

131 -

1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
Time(t)

Fig. 2. Graph of the exact and approximate solutions in Example 1.



p
= — (1=

" p(1—q)
dg

=q(p-1) (16)

dr
p(0)=1.3, q(0)=0.6,

where the interval of interest is 0 <¢ <1. We will try to
determine the approximate prey population p,(¢) and
the approximate predator population g, (f) for various

values of N . Let us choose N =3,6,9 for this purpose.
Implementing the method of Section 2.2 yields
p,(£)=1.3+0.5152921081¢ + 0.0240177066¢°

~0.1913425996¢,
q,(£) = 0.6 +0.1740260386¢ + 021070645081

+0.0222944792¢
for N =3,

po(1) =1.3+0.51997321561 — 0.0123927898/>
~0.1166191035¢* — 0.0353749396¢*
~0.0301148315¢° +0.0225265020¢°,

g.(t) = 0.6 +0.1799909007¢ +0.1831379366/*
+0.04641372817 +0.0097060534¢*

—0.0015396911¢° —0.0106851417¢°
for N =6, and

p,(1) =1.3+0.5200767436¢ — 0.0146831992¢*
~0.1031704747¢" —0.0521358765¢" —0.1156822100¢°
+0.3599968478¢" —0.4917152562¢" + 0.3317554219¢'

—0.0864439383¢,

q,(t) = 0.6 +0.1801015370¢ + 0.1801637338¢*
+0.0741284681¢" — 0.1186959070¢" + 0.33679876341°
~0.5428370460¢° + 0.4951584135¢" — 0.2516069868:"

+0.0538128009¢’
for N =9. As for the accuracy of these approximate
solutions, we cannot measure it by their error functions
since we do not have the exact solutions this time.
Instead, we can consider the resdiual functions
corresponding to each approximate solution; if the
residual of a particular approximate function at a

particular point is smaller in absolute value than that of
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another solution, then we accept that solution as being
closer to the exact solution at that particular point.
Therefore, it is reasonable to do the thing that we did for
the actual error functions in Example 1 for the residuals
of the approximate solutions in this case. We obtain
those residuals by just substituting the approximate
solutions in the related equation in system (16). For

instance, the residual of p,(¢) is

d,
R =22 p (1)(1= g, (1)
dr

=-0.0047078919 + 0.06815242017 — 0.220042251 1¢*
+0.21827494041° —0.0167497396¢"
—-0.0397816577¢ — 0.0042658836¢°.

The residuals of several approximate solutions obtained
by Adomain decomposition method (Pamuk, 2005),
Homotopy perturbation method (Pamuk & Pamuk,
2005), Bessel collocation method (Yiizbasi, 2012a) and
the present method are compared in Table 3. The results
of the present method clearly outperform those of ADM
and HPM (which are the same since these two methods
give the same approximate solution for N =3 and
N =4) with only a few exceptions. It is also seen from
the table that the present method gives worse results for
N =9 than for N =6, which means that increasing N
does not necessarily yield better solutions. This is also
apparent from Figure 3, where absolute residuals of the
approximate prey and predator populations are given
together for three different N values. In adition, results
of the present method are comparable to those of BCM
for N=3 and N =6. The residuals of the solutions
obtained by ADM and HPM have been calculated using
the approximate solutions given in Pamuk & Pamuk
(2010). These solutions are

py()=1.3+0.52¢-0.013¢* = 0.1122¢,

q,(t) =0.6+0.18¢ +0.183¢* +0.0469¢°
for N =3, and
p,()=13+0.52¢-0.013¢* - 0.1122¢’ —0.0497¢",
q,(t) =0.6+0.18¢+0.183¢* +0.0469¢" +0.0099¢*

for N =4. Note that these approximate solutions have
been found without any restrictions on ¢ ; therefore, they
can be used to approximate the populations of both
species in any time instant #. Our method, on the other
hand, fixes a time interval and computes the approximate
solutions for that time interval. For instance, if one
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desires to approximate the predator and prey populations
in Equation (16) corresponding to some ¢ >1, one
should work the algorithm from the beginning using an
interval which contains that ¢' value. As a result, one will
get different approximate solutions than those we have
obtained.

Just like we did for the case of single species logistic
equation of Example 1, we can try to improve our
approximate solutions by applying residual correction to
them. Following the method described in Section 3.2, we

can find estimations to the error functions e, (#) and

e y(t) and use these estimations to obtain new

approximate solutions to the system (16). For example,
taking N =3 and M =4 one obtains

e, (1) =0.00230302327 — 0.0162542904¢

+0.0295874683¢* —0.0156052449¢"

as the estimated error for the approximate prey

population p,(#), and

Table 3. Residual errors of the approximate solutions of Example 2 obtained by ADM, HPM, BCM and the present method for several values of
the parameter N.

Pr.meth. Rf(t)| Pr.meth. R;’(t)| Pr.meth. |R/ (t)| Pr.meth. |R/(¢) Pr.meth. Rgp(t)| Pr.meth. R;’(t)|
0 0.0047 0.0060 2.6784E5  9.0993E-6  7.6744E-5 1.0154E-4
0.2 0.0018 0.0020 59021E-6  29613E-7  3.3657E-5 2.1011E-5
0.4  4.6228E-4 0.0025 4.1061E-6  1.1935E-6  3.8455E-5 1.0573E-5
0.6 0.0013 0.0016 1.0997E-6  3.9849E-6  3.8341E-5 4.9394E-6
0.8  2.7085E-4 0.0036 1.9543E-7  5.9873E-6  4.8856E-5 1.5034E-6
1 8.7994E-4 0.0098 9.3932E-6  2.6586E-5 1.5824E-4 2.1079E-5
‘ BCM|RI(|  BCM [R!(H| BCM |R!(1)| BCM |RI(1) ADM [RI(r)| ADM |R!(1)|
0 0 0 0 0 0 0
0.2 0.0022 53700E-4  3.1839E-6  5.9124E-7 1.5892E-4 3.1236E-4
0.4 0.0011 41061E-4  2.6961E-6  3.3081E-7 0.0125 0.0023
0.6 0.0015 8.1424E-4  3.6045E-6  5.6621E-8 0.0412 0.0068
0.8 0.0060 0.0049 8.8329E-6  1.5379E-6 0.0942 0.0126
1 0.0210 0.0282 32721E-4  1.8044E-4 0.1741 0.0149
© HPM|R/(n| HPM|R!(H| HPM |R!(1)| HPM |[R{(r) ADM [R/(r)| ADM |R!(r)|
0 0 0 0 0 0 0
0.2 1.5892E-4 3.1236E-4 0.0014 3.1834E-6 0.0014 3.1834E-6
0.4 0.0125 0.0023 0.0116 1.5680E-4 0.0116 1.5680E-4
0.6 0.0412 0.0068 0.0391 0.0014 0.0391 0.0014
0.8 0.0942 0.0126 0.0909 0.0067 0.0909 0.0067
1 0.1741 0.0149 0.0228 0.0228 0.0228 0.0228




RO

04 06
Time(t)

RY®I

Suayip Yiizbasi, Murat Karagayir

— N=3
—— N=6
L L M R N=0
0 02 0.4 06 08 1
Time(t)

22

Fig. 3 Comparison of the absolute residual errors of the approximate prey and predator populations obtained with N = 3,6 and 9 in Example 2.

Table 4. Comparison of the residual errors of corrected approximate solutions corresponding to some values of the parameters N and M in

Example 2.

‘R R, ()| [RE(0) R, (1) |RE, (1) |RL ()|
0 0.0024 0.0020 5.3329E-4 2.5069E-4 2.6879E-5 9.0707E-6
0.2 0.0010 9.2266E-4 8.3180E-5 4.0044E-5 5.8891E-6 2.9767E-7
0.4 5.3526E-4 4.5956E-4 1.6642E-4 7.9522E-5 4.0815E-6 1.1848E-6
0.6 7.1710E-4 6.4139E-4 1.6721E-4 8.0307E-5 1.0754E-6 3.9721E-6
0.8 0.0011 0.0010 8.5019E-5 4.1883E-5 2.0282E-7 5.9840E-6
1 0.0029 0.0026 5.2294E-4 2.4034E-4 9.1717E-6 2.6778E-5

Residual Function

Present method IRE(X)\
----- Bessel col. method|RE(x)|
=== Present method |RE7(K)I

—@— Present method IREE(XM

04

05
Time(t)

06 07

08 09 1

Fig. 4. Comparison of the residual errors of approximate prey population pg (t ) obtained by the present method and its two improvements with

Bessel collocation method in Example 2.
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e, 5, (1) =0.0080525260¢ — 0.0474485435¢
+0.0778400345¢° —0.0384465258¢"

as the estimated error for the approximate predator
population ¢,(¢). As explained in Section 3.2, using

these estimations yields
P () = p(D+e, (1)

=1.34+0.5175951313¢ + 0.0077634161¢
—0.1617551312¢° —0.0156052449¢*

as a new approximation for the prey population p,(?),

and

4,,(1) = gq;(t) +e, (1)
= 0.6 —0.0156052449¢ + 0.1632579072¢
+0.1001345138¢° — 0.0384465258¢"

as a new approximation for the predator population
g,(t). For N =3, similarly we have obtained new

approximate solutions taking AM =5,6 and then we

obtained the residual functions Ry, (¢#) and R} (t)

corresponding to these approximate solutions. The values
of these residual functions are shown in Table 4. Values
show a significant improvement in the solutions as we
increase the parameter M.

Residual Function

-
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-
o o e e e e o o e

,,
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Present method |Rg(x)\

o —————

10'9 Ly | Bessel col. methud|Rg(x)|
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r ——@— Present method |R3_ (x|
10'10 1 I 1 1 1 1 |l 58
0 0.1 0.2 0.3 0.4 0.5 06 07 08 09 1
Time(t)

Fig. 5. Comparison of the residual errors of approximate predator population ¢ ( t ) obtained by the present method and its two improvements

with Bessel collocation method in Example 2.
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Time(t)

Fig. 6. Graph of predator and prey populations obtained with N = 6,9 in Example 2.



Since residual correction turns out to be very effective
for the predator-prey model, one can think of utilizing it

to improve the approximate solutions p,(f) and ¢,(?).

Doing so for M =7 and 8, we obtained new

approximate solutions p,(?),q,, (1), p(t) and q(?).
Figures 4 and 5 show that solutions thus obtained tend
out to have smaller residuals as we increase M.
Especially for M =8 the residuals of our corrected
solutions are smaller than those of Bessel collocation
method for most values of ¢ . Thus, residual correction is
a highly effective technique in case of the predator-prey
model, just as it was for the single species model.

Lastly, since determining the solution of any equation
means determining the values of the unknown function
over a set of real numbers, it is natural to investigate the
predator and prey populations subject to the system (16).
Figure 6 depicts the approximate predator and prey
populations for Example 2 obtained by N =6 and
N =9. Since the solutions for these two values are very
close as Table 3 shows, the corresponding solutions
appear as a single function. The figure and the

expressions we had found for p,(f) and p,(f) show

that the prey population starts with the initial value of 1.3
and becomes approximately equal to 1.648 for ¢ =1 after
it increases over the entire interval [0,1]. Likewise, the
predator population starts with the initial value 0.6 and
becomes approximately equal to 1.007 for ¢ =1 after it
increases over the same interval. The difference lies in
the fact that the graph of the prey population is concave
(has negative second derivative) while the graph of the
predator population is convex. Therefore, we can
anticipate that the populations of the two species will be
equal at some time ¢ in the future.

5. Conclusion

In this paper, we outlined a numerical method based on
inner product to solve two population models. The
models we considered were Verhulst's logistic equation
and the predator-prey model of Lotka and Volterra. After
describing the solution method in detail, we also
explained a technique known as residual correction,
which relies on estimating the error function accurately
and is used to obtain better solutions using the already
obtained ones. Then, we applied the method to two
examples, one being a single species model and the other

a predator-prey model. Results of our simulation
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revealed that the scheme of this paper gives better or
comparable solutions with respect to some other methods
in the literature. Numerical results also show that in case
the results obtained by the present method perform
slightly poor, we can rely on residual correction to obtain
solutions which perform fairly well. Furthermore, the
technique of residual correction is computationally as
easy as the method itself, as Section 3.2 shows. When we
put all these facts together, it can be concluded that the
scheme outlined in this paper is an easy-to-implement
method, which can be relied on in order to solve
problems of the type considered in this study with a high
level of accuracy.
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