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Abstract

In this paper, we present some theorems on pointwise convergence and the rate of pointwise convergence 
for the family of nonlinear bivariate singular integral operators of the following form: 

where f  is a real valued and integrable function on a bounded arbitrary closed, semi-closed or open 
region , ,D a b c d= ×  in 2  or 2D =  and Λ  is the set of non-negative indices with accumulation 
point .
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1. Introduction

One of the main concerns of the approximation 
theory is to approximate the functions by using the 
functions having comparatively better properties. 
Some properties, which make the functions well-
behaved, may be continuity, differentiability and 
integrability. Typically, those properties indicate 
polynomial functions. However, in some cases, 
for instance, the original function is integrable, 
using integral type operators is more appropriate 
than using polynomial type operators. Indeed, 
the non-integrability of the polynomials on the 
whole Euclidean space is a strong example for 
these kind of situations. Therefore, the integral 
type operators have been one of the main tools 
for the researchers of approximation theory, 

representation theory and singular integral 
theory. 

Some studies, which have come to the fore in 
literature, can be summarized as follows:

Taberski (1962) studied the pointwise 
approximation of periodic and integrable 
functions by handling a two parameter family of 
convolution type singular integral operators of 
the form:

         
           

(1)

where  is an arbitrary closed, semi-closed 
or open interval in , 0:Kλ

+→  denotes a 
family of periodic kernels satisfying the suitable 
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conditions and Λ  is a given set of non-negative 
numbers with accumulation point . The operator 
of equation (1) has great importance in the areas 
of generalized Fourier series, orthogonal series, 
theory of differential equations and harmonic 
analysis. 

Following Taberski’s (1962) line, Gadjiev 
(1968) proved the pointwise convergence 
of operators of equation (1) at a generalized 
Lebesgue point and established the convergence 
order. Rydzewska (1973) extended these results 
by obtaining pointwise approximation theorems 
for the functions  at a μ-generalized 
Lebesgue point. Further, Karsli & Ibikli (2007) 
considered the indicated operator in more general 
function spaces.

Taberski (1964), who gave rise to this theory, 
analyzed the convergence of bivariate singular 
integral operators depending on three parameters 
of the form:

   
              

(2)

where  is an arbitrary closed, 
semi-closed or open region, 2

0:Kλ
+→  

stands for a family of kernels comprising 
appropriate properties and  is a given set 
of non-negative numbers with accumulation 
point . Later on, Rydzewska (1974) and Siudut 
(1988) improved the results of Taberski (1964) 
by changing the domain of integration. Recently, 
Uysal et al. ( 2015) and Yilmaz et al. (2014) 
studied the operators of equation (2) under the 
assumption of the kernel has a radial character. 
Also, Karsli (2015) and Yilmaz et al. (2017)* 
presented some pointwise convergence results 
on the approximation by convolution type double 
singular integral operators in different settings.

*  This reference appeared after the paper was accepted for 
publication.

Musielak (1983) made a great contribution to 
the theory by presenting the problem concerning 
convergence of the nonlinear integral operators 
of the form:

          
[ ]( ; ) ( , ( )) ,  , ,  ,

b

w w
a

T f s K x s f x dx s a b w= − ∈ ∈ Λ∫              

(3)

and by assuming that the kernel wK  was Lipschitz 
with respect to second variable. After this famous 
paper, Swiderski & Washnicki (2000) studied 
the operators of equation (3) in some function 
spaces. Later on, Musielak (2000)  studied some 
specific properties of the two dimensional integral 
operators analogous to operators of equation 
(3) in different function spaces. Also, Uysal 
(2016)** presented some weighted approximation 
results for two dimensional nonlinear singular 
integral operators. For deep and comprehensive 
analysis of several types of nonlinear integral 
operators and sampling type operators, which 
are considered in, for example, modular function 
spaces, the monograph (Bardaro et al., 2003) is 
recommended by the authors.

The convergence of various operators were 
studied at different types of Lebesgue points: a 
family of singular integral operators in different 
settings (Karsli, 2006; Bardaro et al., 2008; 
Bardaro et al., 2011; Vinti & Zampogni, 2011), a 
family of nonlinear m-singular integral operators 
(Karsli, 2014), a family of nonlinear Mellin type 
convolution operators (Bardaro & Mantellini, 
2006; Bardaro et al., 2013). 

The main concern of this paper is to investigate 
the pointwise convergence of nonlinear bivariate 
singular integral operators at a generalized 
Lebesgue point of the function 1( ),f L D∈  where  

1( )L D  consisting of the functions such that norm 

**  This reference appeared after the paper was accepted for 
publication.
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of f , , has a finite value and the 

rate of pointwise convergence of these operators 
in the following form:

                    (4)

where , ,D a b c d= ×  is an arbitrary bounded 
closed, semi-closed or open region in 2  
or 2D =  and Λ  is the set of non-negative 
indices with accumulation point λ0. Here, 

2:Kλ × →  is a family of kernels which 
are integrable on 2 .

The rest of the paper is structured as follows: In 
Preliminaries, we introduce the main definitions. 
In the next section, we give two theorems and 
establish the pointwise convergence of the 
operators of equation (4) and we estimate the rate 
of the pointwise convergence. The paper ends 
with a conclusion, which contains brief notes 
describing the contributions.

2. Preliminaries

Now, we give main definitions and remarks which 
are used in this manuscript. 

The following definitions give the definitions 
of a generalized Lebesgue point of the 
function ( )1f L D∈  for , ,D a b c d= ×  is an 
arbitrary bounded closed, semi-closed or open 
region in 2  and 2D = , respectively.

Definition 2.1. Assume that the function 
2( , ) :t s →  is absolutely continuous in the 

sense of Carathéodory on [ ] [ ]0, 0,b a d c− × −  
increasing with respect to t  on [ ]0,b a−  and 
increasing with respect to s  on [ ]0,d c− . Let 

 whenever 0ts = . A point ( )0 0,x y D∈  

is called a generalized Lebesgue point of the 
function ( )1f L D∈  if

where 0 h b a< < −  and 0 k d c< < − .

Definition 2.2. Let  be an arbitrary positive real 
number. Assume that the function 2( , ) :t s →  
is absolutely continuous in the sense of 
Carathéodory on  and increasing 
with respect to each variable seperately on 

. Let  whenever 0ts = .

 A point ( ) 2
0 0,x y ∈  is called a  generalized 

Lebesgue point of the function ( )2
1f L∈  if

where 10 ,h k δ< < .

For a deep analysis of the concept Carathéodory 
type absolute continuity, we refer to see Sremr 
(2010). Also, for some analogous and equivalent 
definitions, we refer the reader to see Rydzewska 
(1974). Note that the classical definition of 
Lebesgue point of ( )1f L D∈  is obtained by 
taking μ( , ) .t s ts=

Example 2.1. Let ( )2
1f L∈  be given by

  

1,                                 if 0,
1( , ) ,   otherwise.

(1 )(1 )

ts
f t s

t s t s

=⎧
⎪= ⎨
⎪ + +⎩

Using definition of μ − generalized Lebesgue 
point and taking μ 4( , ) ,tst s tse=  we see that 
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origin is a μμ − generalized Lebesgue point of 
( )2

1f L∈ . For one dimensional analogue of 
the above function, we refer the reader to see 
Almali (2016).

Example 2.2. Let ( )2
1h L∈  be given by

( ) ,         if ( , ) [0,1] [0,1],
( , )

0,                otherwise.

t stse t s
h t s

− +⎧ ∈ ×
= ⎨

⎩

If we take μ
1 1( 1) ( 1)
4 4( , ) ,t s t s

+ +
=  then the origin is 

a μμ − generalized Lebesgue point of ( )2
1 .h L∈  

On the other hand, if we take α 1
4

= , then the 

origin is also a generalized Lebesgue point. 

Now, we present the class of kernels which will 
be used in the main theorems. In the construction 
stage of the following class, Rydzewska (1974); 
Siudut (1988); Bardaro et al. (2003) and Karsli 
(2006) are used as main reference works.

Definition 2.3. ( ) Class A  Let   where Λ  is 
a set of non-negative indices with accumulation 
point λ0 (or λ0 denotes ∞ ). Further, let

2:Kλ × →  be a family of kernels which 
are integrable on 2  and the following conditions 
hold there:

a.  ( , ,0) 0K t sλ =  for 2( , ) ,  .t s λ∈ ∈ Λ

b.  Let :Lλ
2 →  be an integrable function on 

2  such that

holds for every 2( , ) ,t s ∈  for every ,  u v ∈  
and for each fixed .λ ∈ Λ

c. ( )
0

2 2

lim , 0,   >0.
t s

L t s dsdtλλ λ
ξ

ξ
→

≤ +

= ∀∫∫

d.  ( )
2 20

lim sup , 0,   >0.
t s

L t sλλ λ
ξ

ξ
→

≤ +

⎡ ⎤
= ∀⎢ ⎥

⎣ ⎦

e.  

( )
0 0 0 2

( , , ) ( , , )
lim , , 0,   

x y x y
K t x s y u dsdt u uλλ λ→

− − − = ∀ ∈∫∫ .

f .  2
1 ( )

.
L

L Mλ ≤ < ∞

g.  For a given positive real number  such that 
 Lλ  is monotonically increasing on 

 and monotonically decreasing on  
with respect to t  and similarly Lλ  is monotonically 
increasing on  and monotonically 
decreasing on  with respect to ,s  for any  

. Analogously, Lλ  is bimonotonically 
increasing with respect to ( , )t s  on  
and  and similarly Lλ  is 
bimonotonically decreasing with respect to ( , )t s  
on  and  for any 

.

Finally, we need a singularity assumption on 
Lλ . The function Lλ  is singular if it satisfies 
the property ( )

0
0 0lim ,L t sλλ λ→

= ∞  at some points 
( ) 2

0 0, .t s ∈

Example 2.3. The first example of a kernel 
satisfying the above conditions is the linear 
kernel with respect to the third variable, i.e.,

( )( , , ) , ,K t s u L t s uλ λ=

where Lλ  satisfies the conditions (c), (d), (f) and 
(g) of class A . Furthermore, 

( )
0 0 0 2

( , , ) ( , , )
lim , 1.

x y x y
L t x s y dsdtλλ λ→

− − =∫∫
This case leads to well-known singular integral 

operators of convolution type. For details one 
may refer to Taberski (1964), Rydzewsk (1974), 
Siudut (1988),  Swiderski & Washnicki (2000) 
and Yilmaz et al. (2014).  

Example 2.4. Another kernel Kλ  satisfying 
conditions of class A  is the kernel given by
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2 1 1 1 1
2 2 2 2 2

2 1 1 1 1
2 2 2 2

sin , if ( , ) [ , ] [ , ],
( , , )

0,    if ( , ) \ [ , ] [ , ],

u t s
K t s u

t s
λ λ λ λ λ

λ

λ λ λ λ

λ − −

− −

⎧ ∈ ×⎪= ⎨
∈ ×⎪⎩

where λ ∈ Λ =  and 0 .λ = +∞  One dimensional 
analogue of this kernel function can be found in 
Swiderski & Washnicki (2000).

Remark 2.1. If the function 2:g →  is 
bimonotonic on  , then the 
following equality

 
 
holds (Taberski, 1964; Ghorpade & Limaye, 
2010). 

3. Main results

This section starts with the following lemma 
which gives the existence of the operators of 
equation (4). For this kind of existence theorem 
see Karsli (2008).

Lemma 3.1. Assume that Kλ  belongs to class 

A . If 1( )f L D∈ , then ( ) 1; , ( )T f x y L Dλ ∈  and the 
following inequality

( ) ( ) ( ) ( )2
1 11

; ,
L L DL D

T f x y L fλ λ≤

holds for all .λ ∈ Λ

Proof. We will prove the lemma in two cases.

Case I: , ,D a b c d= ×  is an arbitrary bounded 
closed, semi-closed or open region in 2 . Suppose 
that 1( )f L D∈ . To prove ( ) 1; , ( )T f x y L Dλ ∈ , we 
have to show that the following expression

 ( )
1 ( )

( ; , ) , , ( , )
L D

D D

T f x y K t x s y f t s dsdt dydxλ λ= − −∫∫ ∫∫

remains finite. The extension of :f D → , 
which is denoted by g , is as follows:

 
2

( , ), if ( , ) ,
( , )

0, if ( , ) \ .
f t s t s D

g t s
t s D

∈⎧
= ⎨ ∈⎩

Obviously, the following equality:

  

( )

( )

1

2

( )
( ; , ) , , ( , )

, , ( , )

L D
D D

D

T f x y K t x s y f t s dsdt dydx

K t x s y g t s dsdt dydx

λ λ

λ

= − −

= − −

∫∫ ∫∫

∫∫ ∫∫

holds. In view of condition (a)  and (Lipschitz) 
condition (b)  of class A, Fubini’s Theorem e. 
g. Butzer & Nessel (1971) and condition (f)  of 
class A, we have

 

Case II: 2.D =  This follows directly from case 
I; we have the following relations

 

2 2 2
1 1 1( ) ( ) ( )

( ; , ) .
L L L

T f x y L fλ λ≤

Hence the lemma is proved.

The following theorems give the pointwise 
approximation of the operators of equations (4) 
to the function f  at a μ − generalized Lebesgue 
point of 1( )f L D∈  whenever D  is an arbitrary 
bounded region in 2  such that closed, semi-
closed or open and 2 D = , respectively.

Theorem 3.1. Assume that Kλ  belongs to class
A . If ( )0 0,x y D∈  is a μ − generalized Lebesgue 
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point of the function ( )1 ,f L D∈  then

( ) ( )
( ) ( )

0 0 0
0 0, , , ,

lim ; , , 0
x y x y

T f x y f x yλλ λ→
− =

on any set Z  on which the function  
defined by

where , remains 
bounded as ( ), ,x y λ  tends to ( )0 0 0, ,x y λ . 

Here,   
and  denote Riemann-
Stieltjes measure and for any constant 0C > , 

Proof. Suppose that ( )0 0,x y D∈  is 
a μ − generalized Lebesgue point of 
function ( )1 .f L D∈  Let 0 0,x ≤  0 0,y ≤  

 for all  satisfying 
 and  and  

for all  satisfying  and . Set 

Now, from Definition 2.1, for all given  
there exists  such that for all h  and k  
satisfying  the inequality

     (5)

holds. Set . By 
the aid of conditions (b)  and (e)  of class A and 

extension ( , )g t s  of ( , )f t s  in  (Lemma 3.1), 
we get 

( ) ( ) ( )

( )

( ) ( )
2

2

0 0

0 0 0 0

0 0
\

1 2 3

( , , ) , , ,

, , ( , ) ( , )

, ,

.

D

D

I x y f t s f x y L t x s y dsdt

K t x s y f x y dsdt f x y

f x y L t x s y dsdt

I I I

λ

λ

λ

λ ≤ − − −

+ − − −

+ − −

= + +

∫∫

∫∫

∫∫

From conditions (e)  and (c) , 2 0I →  and 3 0I →  

as ( ), ,x y λ  tends to ( )0 0 0, , ,x y λ  respectively. Set  

 Therefore, 

the integral 1I  may be written in the form:

  

By initial assumptions which we have supposed 

at the beginning of the proof and condition 

(d), 11 0I →  as ( ), ,x y λ  tends to ( )0 0 0, , .x y λ  

Obviously, the following equality holds for 12I

In view of the inequality (5) and the new 
function:

 
( ) ( ) ( )

0

0

0 0, , , ,
yt

x s

F t s f u v f x y dvdu= −∫ ∫

for all t  and s  satisfying  and 
 the relation
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                               (6)

is obtained. The following Riemann-Stieltjes 
integral representation for the integral 121I  

holds. Applying bivariate integration by parts to 
the Riemann-Stieltjes integral 121I , (Taberski, 
1964; Jawarneh & Noorani, 2011), we have 

From inequality (6), we can write

Now, bivariation and single variations are 
given as follows:

and

Since  is absolutely continuous in the 
sense of Carathéodory on , it has 
both mixed second order partial derivatives 
almost everywhere on the indicated rectangle 
and they are equivalent; we refer the reader to 
Sremr (2010). Therefore, taking above variations 
into account and applying bivariate integration 
by parts to the last inequality for 121I , we have

For the similar situations, we refer the reader 
to Taberski (1964) and Rydzewska (1974). The 
rest of the operations are performed quite similar 
to that of Theorem 1 in Uysal et al. (2015). 
Therefore, we skip this part. In view of Remark 
2.1 and condition (g)  the following inequality:

holds. Since  also has both integrable first 
order partial derivatives on  we refer 
the reader to Sremr (2010), we have 

Computing the integrals 122 ,I  123I  and 

124I  with the same idea and combining the 
respective inequalities we obtain the inequality: 

 for 
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Therefore, if the points  are 
sufficiently close to , then we have 

 Hence 12 0I →  as  tends to 
 Note that, if we reverse the initial 

inequalities which we have supposed at the 
beginning of the proof, then we arrive at the same 
conclusion. Thus the proof is completed.

Theorem 3.2. Assume that  belongs to class
A . If ( ) 2

0 0,x y ∈  is a μ − generalized Lebesgue 
point of the function ( )2

1 ,f L∈  then 

on any set Z  on which the function  
which is defined in Theorem 3.1, remains 
bounded as  tends to   
Here, for an arbitrary real number  

 and for any constant 0C > , 
.

Proof. Suppose that ( ) 2
0 0,x y ∈  is a μ −

generalized Lebesgue point of function 
( )2

1f L∈  and the equivalent initial assumptions 
given in Theorem 3.1 hold. From Definition 2.2, 
for all given  there exists  such that for 
all h  and k  satisfying  the inequality:

           

holds. Set  By 
conditions (b)  and (e)  of class A, we get

From condition (e) , 2 0I →  as 
 Therefore, 1I  may be 

written in the form:

where  

Since

    

   

by conditions (d) and (c) 11 0I →  as 
.

The remaning part of the proof is almost the 
same as the proof of Theorem 3.1. 

Thus the proof is completed.

4. Rate of convergence

The next theorem gives the rate of pointwise 
convergence of the operators of equation (4) to 
the function f  at a μ − generalized Lebesgue 
point of 1( )f L D∈  whenever D  is an arbitrary 
bounded region in 2  such that closed, semi-
closed or open or 2.D =

Theorem 4.1. Suppose that the hypothesis of 
Theorem 3.1 (Theorem 3.2) is satisfied. Further, 

 as  for some 
 given in Theorem 3.1 (Theorem 3.2) and 

the following conditions:

( )i   as 
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( )ii   

as 

( )iii   as 

are satisfied. Then, at each μ − generalized 
Lebesgue point of 1( )f L D∈  we have as 

 

Proof. This follows immediately from the 
hypothesis of Theorem 3.1 (Theorem 3.2). 

Example 4.1. Let the kernel function  be given 
as

where  and  Let  

One dimensional analogue of this kernel 
function can be found in Swiderski & Washnicki 
(2000). 

Observe that

 for 

 and 

 for 

Since , condition (a) is satisfied. 
Hence we have

Verifications of the conditions (c)  and (d)  
of class A  follow from definition of 
Moreover,

and  Since  takes constant values 
for any  monotonicity conditions are clearly 
satisfied. Since  singularity 
condition is fulfilled. 

Let   and 
 

Hence, we get

To find the rate of convergence, suppose that 
the following equality

holds. Consequently the following expressions:

 

 

and

are obtained. Since   
we have

By taking  we see that 
 Therefore, we get 

 

Similarly, the following equality:

holds. Therefore, verifications of the hypotheses 
(i) and (ii)  are  completed. We finally have

 as 
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results are presented as Theorem 3.1 and Theorem 3.2. By 
using these theorems, we obtained the rate of pointwise 
convergence and gave an example.   
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