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Abstract
The Kummer distribution is a probability distribution, whose density is given by
f(x) =Cx* (1 +6x) e P*, x>0,
where @, 3,8 > 0,y € R, and C is a normalizing constant. In this paper, the distributions of random variable X?,
p > 0, where X has the Kummer distribution, are considered with the conditions being IFR/DFR, some properties of
moments depending on the parameters and the moment-(in) determinacy. In the case of moment-indeterminacy,

exemplary Stieltjes classes are constructed.

Keywords: Failure rate; Kummer distribution; moment-(in) determinacy; Stieltjes class.

MCS 2010: 60E05, 44A60.

1. Introduction

A parametric family of distributions, known as Kummer
distributions, was first introduced by Armero & Bayarri
(1997) to perform a statistical analysis of M/M /o
queuing systems. They proposed the following
definition.

Definition 1. A random variable X is said to have
Kummer distribution with parameters a, 5, y, § if its
probability density equals:

f(xla,B,v,6)
_ {Cx“‘l(l +6x) Ve Bx, x>0 (1)
0, x<0

where @,3,6 >0, y€R,and C =C(a,pB,7,6) is a
normalizing constant.
Notice that the constant C in (1) can be obtained from

ct = J. x*1 (14 6x) Ve P¥dx
0

= 0 ‘T()U(a,a —y+1,8/6)
where U(a,b,z) is the Kummer’s function of the
second kind defined by:

1 o0
— —zt ya—1 b—-a-1
U(a,b,z)—r(a)ﬁ) e?t 1+ dt,
Re(a) > 0,Re(z) > 0.

See Abramowitz & Stegun (1972) formula 13.2.5. The
involvement of Kummer’s function in the density lent
the name to the distribution. When 6 =1, the
distribution can be viewed as scale-standard, and
without loss of generality only § = 1 will be studied
here, although all the results can be easily extended to
any & > 0. The notation X ~ Kum(a, §,y) means that

fx(x):= f(x]|a, B,7)

= Cx*'1+x)7e F*, x>0 )
where
C=C(a,p,y) = (fowx“_l 1+ x)_}’e_ﬁ"dx)_1
is a normalizing constant.

When y = 0, the density in (1) is that of the classical
Gamma(a, 8)-distribution. Therefore, the focus of the
current work will be on y # 0. Generalization with
y # 0 widens the class of distributions and provides
additional possibilities for its usage in theoretical
research as well as in practical applications. The
importance of the Kummer distribution for probability
theory has been demonstrated in Koudou & Vallois
(2012), where this distribution is shown to play a major
role in the investigation of the Matsumoto-Yor type
independence property. To be specific, the Kummer
distribution provides solution to some characterization
problems. Among other results, the following elegant
relation has been obtained: If independent random
variables X and Y have Kum(a,y —a,f) and
Gamma(y — a,f) distributions, respectively, then
X +Y follows Kum(e,a —y,f) distribution. Their
results were extended to random matrices in Koudou
(2012).

On the other hand, the Kummer distribution in the form
(1) naturally emerges in the study of the queuing
systems with infinite service channels, in which both
inter-arrival and service times are exponential. The
reader is referred to Armero & Bayarri (1997). As the
queuing theory has a wide range of applications in
engineering and service industries, such studies make



room for further interest in the Kummer distribution
and serve as additional motivation to examine its
various properties. Furthermore, in the case @ < 1 and
y <0,

when /=y > \/E ++/1 — a, the density decreases from
+00, reaches the minimum (anti-mode), then increases to
the maximum (mode), and finally decreases to zero as
x — +oo. For example, when an energetic particle stream
is injected into the plasma, such “bimodal” distributions
reflect the
well-known in the plasma physics.
Krall & Trivelpiece (1973), Sect 9.4.
In the sequel, we consider an extended family of
distributions related to Kum(a, ,y). To be specific,
given X ~ Kum(e, ,y), we consider the distributions of
the powers XP,p > 0, whose densities can be derived
using the well-known formula

d
fxr (x) = fx (1P) == (x1/P),

The powers of random variables being involved in the

bump-in-tail  instability =~ phenomenon

Chen (1984) and

x > 0.

Box-Cox transformation are commonly used in the
statistical practice Box & Cox (1964). Bearing in mind
the importance of the powers of random variables, the
powers of Kummer distribution will also be under
scrutiny in the current work. At this stage, the definition
below is introduced.
Definition 2. A random variable X is said to have
p -Kummer distribution (p > 0) with parameters «,
p >0,y €R, and is written X ~ Kum,(a, B,y), if its
probability density equals
fo(0):= fy(xla, B.y)
-y

a 1 1
= Cpr_1 (1 + x5) e P x >0, 3)

where C, = C,(a, B,y) = [pI'(@)U(a,a —y + 1,B8)] "

is a normalizing constant.

The preceding discussion implies that X ~ Kum(e, §,y)
ifand only if X? ~ Kum, (@, 8,¥). Clearly, when y = 0,
the distribution Kum,(a,B,y)
generalized Gamma distribution. The family of such

coincides with a
generalized Gamma distributions is a rich and important
one, since it contains such well-known distributions as
exponential, Gamma, Weibull, and others. Stoyanov &
Tolmatz (2004), formula (1) and Stoyanov (2013),
Section 11.4.

It should be mentioned here that probability densities
associated with various generalizations of I'-function,
including Kummer’s confluent hypergeometric function,
have been researched during the last decade in different
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ligths. The reader is referred to the works Al-Saqabi ef al.
(2003), Al-Zamel (2001), Fereira & Salinas (2010),
Joarder & Omar (2013), Nagar & Gupta (2002) and
Saxena et al. (2007), together with the references therein
to follow the progress in the area. This paper is aimed to
contribute to the ongoing research by exhibiting new
results related to the Kummer distribution.
On a note of history, the Kummer distribution was studied
by Ng & Kotz (1995). They considered two classes of
Kummer  distributions:  Kummer-Gamma,  which
coincides with the one given by Definition 1, and
Kummer-Beta which generalizes the classical Beta
distribution. Not only did they analyze those distributions,
they also outlined a series of problems, some of which -
relations between the moments of the Gamma and
Kummer distributions, and the behavior of the failure rate
- are addressed here. It should be pointed out that, in Ng &
Kotz (1995), the density function of the Kummer-Gamma
distribution is written in a slightly different form than in
(2), namely
f(x) = Cx*1(1 + 6x)Ye F*,
In this paper, we employ the notation of Armero &
Bayarri (1997) and write the density in the form (2) using

x> 0.

the name ‘Kummer distribution’. Additional information
on this can also be found in Johnson et al. (1995).

This work establishes new results related to the Kummer
and p-Kummer distributions. First, the failure rate of the
distribution Kum,, (@, B,y) depending on the parameters
is examined. The similarities and distinctions with the
classical case y =0, p =1 are put forth. Further, for
X ~ Kumy,(a, B,y), the monotonocity of the moments
my, = E[X*] with respect to y is shown. Finally, the
moment-determinacy and moment-indeterminacy for the
distribution Kum,(a,8,y) are investigated and, in the
event of moment-indeterminacy, illustrative Stieltjes
classes are set up.

Before we start, let us recall some necessary notations and
definitions introduced in Stoyanov (2004). Consider a
probability distribution P for which moments of all
orders are finite. If the moment problem for P possesses a
then P s
moment-determinate or M-determinate; otherwise, it is

unique  solution, referred to as
referred to as moment-indeterminate or M-indeterminate.
There are quite a number of conditions to investigate
M-determinacy and M-indeterminacy. The most widely
used are the Cramér, Carleman, and Krein conditions.
See, for example, Stoyanov (2013), Section 11. Even
though, these results establish

M-(in)determinacy, they do not provide any practical tool

allow wus to
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to construct different distributions with the same moments
in the case of M-indeterminacy. Once a distribution is
absolutely continuous, the problem can be handled by
means of Stieltjes classes. The term ‘Stieltjes class’ has
been proposed by Stoyanov (2013) and reflects the
contributions of Stieltjes to the moment problem.

Definition 3. Let f be a probability density having finite
moments of all orders, and h be an integrable function on
(—o,0) such that vraisup|h(x)| = 1. If, forall n € N,

fx" h(x)f(x)dx =0,
R

then h is called a perturbation of f. Equivalently, one
can also say that the product hf has its all moments
vanishing.

Definition 4.
perturbation h, the set

§=5(f,h) : ={w:(x): w:(x) = f(X)[1 + eh(x)],
x € R, ee[—1,1]},

Given a probability density f and its
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is said to be a Stieltjes class for density f based on
perturbation h.

It can be readily seen that S is an infinite family of
probability densities all having the same moments as f.
Using different perturbation functions h, one may
construct various Stieltjes classes related to a given
density f. During the last decade, the Stieltjes classes
have attracted the attention of many researchers, who have
proposed a variety of methods to produce such classes
(Kleiber, 2013; Ostrovska & Stoyanov, 2005; Pakes, 2007;
Stoyanov & Tolmatz, 2005). Towards the end, this paper
deals with the moment-determinacy for Kum,(a, 8,v),
and present the Stieltjes classes in the situation of
moment-indeterminacy when p > 2.

2. Failure rate

Let X be a random variable with density f and
distribution function F. The failure rate - or the hazard
function - of F is defined by:

fx) 5)
1-F)

The distribution is increasing failure rate (IFR) if H(x)
is increasing in x, and decreasing failure rate (DFR) if

H(x) =

H(x) is decreasing in x.

In this section, the restrictions on the parameters
stipulating that the failure rate of Kumy(a,f,y) is
increasing/decreasing are established. The next theorems
provide the conditions for the Kummer distribution,
whose density is defined by (3), to be IFR/DFR for all
x> 0.

Theorem 1.  Assume that the distribution is not

exponential; that is a =1 and y =0 cannot occur
simultaneously. The Kummer distribution is:

(Q) IFR for all x > 0 if and only if both a« =1 and
y<a-—1;

(ii) DFR for all x > 0 if and only if both 0 < a < 1
and y =z a — 1.

Proof. Let X ~ Kum(a, §8,y). Then, one can write:

x* e X1+ x)77

Hx) = [T tate=Bt(1+ ) vdt ©
whence
1 AN AN
— _ -B(t—x)
H(x) fx (x) (1 +x> e M dt
[°'e) t a—1 t -y
— _ - -B
_fo <1+x) (1+1+x) e~Ptdt. (7)
Set
t\* 1 t \7
v =(1+7) (1+5)
and obtain
VoL tV(x)
Vo= TxG A0+ +x+0
[(@a—1—py)x>+2(a—-1)+
)]

tla—1—-y))x+(a— 1A +10)]

(i) Obviously, the sign of V'(x) depends solely on the
expression in the brackets and the latter is positive on the
whole interval (0,+4o0) if and only if @ > 1 and also
y<a—1 so that both hold
simultaneously. Consequently, in this case, 1/H(x) is

equalities do not
decreasing, implying that H(x) is monotone increasing
for all x > 0.
(ii) Clearly, under the stated conditions regarding « and
¥, the derivative V'(x) is positive and, correspondingly,
the distribution is DFR forall x > 0. []
In the case y =0, the results on the failure rate of
I'(a, B) -distribution are recovered. After more careful
examination of (8), the next statement can be easily
reached.
Theorem 2. (i) If y > a — 1, then there exists a point
Xy depending on the parameters such that the Kummer
distribution is IFR on (0,x,) and DFR on (xg, ®).
(ii) If y < a — 1, then there exists a point x, depending
on the parameters such that the Kummer distribution is
DFR on (0,xy) and IFR on (xg, ).

It is worth pointing out that as x — oo, H(x) approaches
the failure rate of the exponential distribution with



parameter 5. Namely,
Corollary 3. For all values of a,,v, one has:
lim H (x) = B.
X+
Proof. This statement follows from (7) after passing to
limit as x — o, which can be justified by the Lebesgue
Dominated Convergence Theorem.

The last statement demonstrates that the graph of the
failure rate of Kummer distribution can not have the
bathtub shape.

Having p # 1, the modification of the proof of the
Theorem 1 can be used. It should be emphasized that the
asymptotic behavior of the failure rate for Kum,(a, §,v)
with p # 1 depends solely on p, rather than «, f and
y. More precisely, the statement below is valid:

Theorem 4. Let X ~ Kumy(a,B,y) and 1+p > 0.
Then,

(i) when p>1, Kumy,(a,B,y) is DFR for x large
enoughand all « >0, § >0,y €R.

(i) when 0 <p <1, Kumy(a, B,y) is IFR for x large
enough and all « > 0,8 >0,y € R.

Proof. Writing as in (6), one obtains with the help of (3),
that

x“/p‘le‘ﬁxl/p(l + xl/p)_y

H =
p(x) f: ta/p—l e‘ﬁtl/p(l + tl/p)—]/dt‘ (9)
and hence,
“ INTY 11
1 fw(t)?l Leer) o),
_ e e
Hp(x)  Jy \x 1+ x%
= f pV (xt/P)e~Ptdt
0
where
1 t\™”
V(x) = xP~%(t + “‘(1+ ) .
(x) = xP7(t +x) 1+x
Thence,
Vix) p-a “_1_|_ vt
V) . x o t+x A+0d+t+x)
p—1
~— T as X = Fo, (10)

which shows that, for x large enough, V'(x)(p — 1) > 0
provided that 1#p >0, and V'(x) <0 provided
0 < p < 1. This observation completes the proof.

3. Properties of moments

Since the Kummer distribution is a generalization of
Gamma distribution, it is interesting to compare the
moments of the Gamma (i.e., the case y =0) and
Kummer distributions. This can be done with the help of
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the following statement describing the monotonicity of
moments of Kum,(a, §,y) with respect to parameter y.
This is a generalization of the result given by Ng & Kotz
(1995), who proved it for y being a negative integer and
p=1

Theorem 5. For all p >0 and —o <y; <y, < +m,
one has:

+o0
RSN
0
oo (11)
Zf xkfp(xla;ﬁ:yz)dx; ke No.
0

Proof. Taking y; < y,, consider the double integral

11
0 o0 a _ )
Ip ::f f (xy)g_le B(x 4 >X
0 0
1 1
(1+xP) 71 (1 +yP)772 (x* — y*)dxdy

N,

where Ay:= {(x,y):x =2y =0} and A,:= {(x,y):y =
x = 0}. It can be noticed - by interchanging x and y -
that

11
a . _BlxP+yP
ﬂ :f (xy)P e 7o),
A, Ay
1 1
(1 + xP)772(1 + yP) "1 (y* — x¥)dxdy,

whence
11
o)
Ip:ff (xy)p L T «
A

Y1

(1427) " (1+7)

- (1 + x%)_yz (1 + y%)_hl (xk — y*)dxdy, (13)

(12)

—Y2

Since x = y in A4, and y, = y,, it follows that
(14 x1PYyr2"n > (1 + yt/PYr2n

for all (x,y) € A4, or, equivalently,
1 1
(L+xP) (1 +yP) 772 = (1 +xM/P)2(1 + y/P)™h

for all (x,y) € A;.

This implies that the integrand in (13) is non-negative, and
hence, I,, = 0. By virtue of (12), the latter leads to
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® a 1 1
P = _
j x P e P¥(1 4 xP)Vidx x
0

© g
[+
0

[eo] (04 l 1
0

1 1
e PY’ (1 + yp)2dy

f x@/P=1e=Bx'P (1 4 x1/Py 1y,
0

This can be rewritten in the form:

1 fla By
cp(a,ﬁ.yz)fo o @hr X
kfp(yla!BrYZ)

C @By

1 0
S
Co(@,B,71) Jo
which proves the theorem.

Corollary 6. Let My, k € N, denote the moments of
I'(a,B) -distribution. If X ~Kum(a,f,y) and my =
E[X*], then y(M) —my) =0 forall y € R.

4. M-determinacy of Kum,(a,,y)

It can be observed that, as p increases, the tails of the
This
affects M-determinacy of the distribution and the exact

distribution Kumy(a,,y) become ‘heavier’.
result is stated in the next theorem.

Theorem 7. For 0<p<2, the
Kum, (a, B,y) is moment-determinate, and, for p > 2, it

distribution

is moment-indeterminate.
Proof. (i) Given X ~ Kum,(a,,v), one has:
my, = E[X¥]

=f0°°

= j p sPKYa=1(1 + 5) Ve Psds.
0

k+Z-1 ﬁ% L
p e Bx D
x e (1+x ) dx (14)

When y > 0, equality (14) implies, by virtue of Stirling’s
formula for the gamma function, that,

o0

my Sf p sPk+alo=Bsgg
0

= pB Pk T (pk + a)

pk+a
pp-ric |21 (Pt
pk+a\ e ’

for some a = 0. See, Stoyanov (2000) and Stoyanov
(2013), Section 11, p.101 formula (2b) for details. From
(3), it can be derived that

—In f, (x?) B Lx/P

1+ x2 T4z BX7™
Therefore, “_In f, (x?)
—1In X
[ThheD, .
1+ x?

a

as k — oo. Thus, with some constant C; > 0, one obtains
my < C1(eB) Pk (pk + a)Pkta=1/z, (15)
In the case y < 0, it follows from (14) that

1
my =f p sPkta-1e=Bs(1 + 5)Vds
0
+f p sPkra-1e=Fs(1 + 5)Vds
1
1
Sf p27Ve Psds
0

+ f p sPkra-1g=Fs(25)Vds
1

o0

<C+ pZ_Vf e Ps gpk+a-y=14g

0
=C+p27VpY Pk (pk + a —y)

2m <pk ta-— y)pk”_”

pk+a-vy e

~ p2 Y pY-Pk-a

as k — oo. Hence,
my < Cy(ef) P (pk + a — y)Prav=1/2 (16)
for some C, > 0. As a result, inequalities (15) and (16)
yield

ml:l/(Zk) S C3k_p/2, k - OO‘

where C5 is a positive constant. That is, when 0 < p <
2, the series Y=g m,?l/ 2k diverges to o for any y € R.
Using the Carleman condition for the Stieltjes moment

problem (see Stoyanov, 2013, p.100), one may conclude
that the Kum, (a, 8,v) is

moment-determinate, whenever p € (0,2].

(ii) To the moment-indeterminacy  of
Kum, (@, 8,y) with p > 2, we use the Krein condition

distribution

prove

pertinent to the Stieltjes moment problem. This condition
is applicable to absolutely continuous distributions having
support [0,0) and possessing moments of all orders.
Such a distribution is moment-indeterminate if

x < o,

f‘”—lnf(xz)d

1+ x2

a

for all a>0, p > 2. Thus, the distribution

Kum, (@, 8,y) with p > 2 is M-indeterminate.

Dealing with applications of an M-indeterminate
distribution, it is now desirable to exhibit explicitly other
distributions with the same moments of all orders. As it
has already been mentioned, absolutely continuous
distributions make it possible to achieve this goal with the

help of the Stieltjes classes. The next theorem provides



examples of perturbation functions related to density (3)
in the case p > 2.
Theorem 8. Let p > 2 and

h(x) =1+ x%)y exp {—(b - ﬁ)x%} X
sin [b tan (g) x1/P — C;Tn] (17)
where b > [. Then

P
) = 2 (18)

RGO,

can serve as a perturbation function for density (3).
Proof. It has been shown in Ostrovska & Stoyanov (2005)
that, for all k € N,

2 1 i ar
f £ obxP gip [b tan (—) x/P — —] dx =0
0 p p

whenever « >0, b >0, p > 2.
Equivalently,

f ka fy(X)h(x)dx = 0, (19)
0

where h(x) is given by (17). Clearly, as long as b > f3,
function h(x) is bounded on [0, ) whatever y € R is.
As a result, h(x) defined by (18) satisfies all the
conditions of being a perturbation function for f,,.
Remark 1. If y < 0, then one may take b = § and obtain
h(x) in a simpler form:

h(x) =1+ x%)?’ sin [,8 tan (g) x/P — O;TH]

Corollary 5. The set
S:={fp(X)[1+eh(x)]:e € [-1,1]}
is a Stieltjes class for f,.

5. Conclusion

The results of this work provide new properties of the
Kummer distribution and its positive powers. It has
been established that for powers p > 1, the distribution
is decreasing failure rate for all admissible values of the
parameters when x is large enough, while, for0 < p < 1,
the situation is opposite. Since the Kummer distribution
includes as special cases some important probability
distributions used in reliability theory and actuarial
sciences, this result is important for applications. The
case p = 1is more complicated and the relations between
parameters which guarantee the distribution to be
increasing/decreasing failure rate have been provided.
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New results concerning the moment-(in)determinacy
of powers of the Kummer distribution have been obtained.
The following important conclusion has been reached:
For 0 < p < 2 powers of the Kummer distribution are
moment-determinate, whereas for p > 2 they are moment-
indeterminate. In the latter case, the Stieltjes classes have
been written explicitly.

The results of this work are important for applications
in such areas as probability theory, financial mathematics,
reliability theory, actuarial science, and others, due to the
fact that they provide easily checkable conditions for some
properties of the Kummer distribution and its powers.
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