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Abstract

The significant similarity between the hidden target and the background makes it difficult to find
camouflaged people, such as warriors in warfare, or even camouflaged objects in natural environments.
Hence, it is hard to ascertain these concealed targets. To address this issue, a novel deep neural network is
proposed in this paper that produces an estimated mask within the hidden target for an input image. Our
approach consists of two phases: hidden target segmentation and hidden target identification. For the
first phase, we propose the Multilevel Attention Network (MA-Net), which generates the camouflaged
target mask based on a Multi-Attention Module (MAM) that helps distinguish the hidden people from the
background. Later on, the concealed target will be highlighted in the second phase. Experimental results
on the camouflaged people dataset demonstrate that our proposed method can achieve state-of-the-art
performance for hidden target detection.

Keywords: Concealed people; hidden target; neural network; target identification; target
segmentation

1. Introduction

Computer vision applications have been well explored in the literature. In particular, many notable
object detection methods (He et al., 2017; Redmon et al., 2016) have already been studied by various
researchers.

At times, objects conceal their signatures and generate disguises in their surrounding environment.
The presence of camouflage makes the identification of objects more difficult. Camouflage is the
capacity of the prey to hide from predators by adjusting their pattern, texture, and coloration according to
the background. This phenomenon was adopted by human beings and broadly utilized on the battlefield.
Human vision systems cannot sufficiently recognize a hidden target. Certain animals have distinct
biological capabilities that conceal them in their surroundings. The visual characteristics of a disguised
object (like color/texture) resemble the background, making detecting procedures complicated. Hence, a
camouflaged target cannot be identified by state-of-the-art methods for object detection. Consequently,
the study of hidden target detection in the sector is required.

Owing to the complexity of the issue, less work has been suggested to detect camouflaged people.
Existing studies (Pan et al., 2011; Song & Geng, 2010; Bhajantri & Nagabhushan, 2006; Galun et al.,
2003; Tankus & Yeshurun, 2001) investigated the matter with low-level features. Generally, these methods
use texture, brightness, color, and edge features to distinguish objects from backgrounds. Disguised target
detection is not fully explored; most research is concerned with detecting the foreground region despite
some parts of its texture being similar to that of the background. These techniques rely on hand-crafted
characteristics and are effective in a limited number of situations where images have an essential and
non-uniform backdrop. Additionally, their effectiveness in detecting and segmenting camouflage is poor
when the foreground and background have a high degree of resemblance. Recently, a new camouflaged
people detection has been proposed via a dense deconvolution network (Zheng et al., 2018). The authors
introduced a dense deconvolution network to fuse the extracted features in deep CNN. Then super-pixel
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segmentation was applied in detection optimization. Within this context, using high-level features, we
propose a new hidden target detection and demonstrate through experiments that it outperforms the
state-of-the-art methods.

In summary, we present the following contributions: 1) We adopt an inception module to enhance the
ability to excavate the interior of visual features and focus on feature representation, 2) We design a multi
attention module that can compensate for the loss of perceptual details, emphasize hidden targets, and
better identify small-scale disguised objects, 3) We evaluate our model and compare it with state-of-the-art
methods. Results show that our approach performs favorably over all the others.

This paper proceeds as follows: Section 2 introduces the proposed framework. Section 3 outlines the
experiments. In Section 4, we discuss the study’s limitations. Lastly, we reach conclusions.

2. Proposed method

Hidden target detection is a fundamentally difficult task because the camouflage strategy works by
misleading the observer’s visual perceptual system. A substantial amount of visual perception information
is necessary to remove the uncertainties produced by the substantial inherent similarities between the
target and the background. As seen in the natural environment, predators and prey animals use camouflage
to conceal their location and prevent bringing attention to themselves, making it harder to find them.
Based on this observation, we were inspired to detect the disguised target through an attention mechanism
to bring attentiveness and pay attention to the target. In the first phase, we aim at segmenting the hidden
target where we implement an inception module to enhance the feature representation. Then we introduce
a Multi-Attention Module to improve the detection of the ambiguous hidden target further from the
background and generate finer details. In the second phase, we identify the concealed target based on the
predicted mask.

In this section, we explain our proposed approach for hidden target detection. As shown in Figure 1,
our method involves two steps: hidden target segmentation and hidden target extraction.

Fig. 1. Our overall framework for hidden target detection.

2.1 Hidden target segmentation
As shown in Figure 2, we propose the MA-Net model for hidden target segmentation. First, we

extract features in a bottom-up way from the input images based on the ResNet (He et al., 2016) backbone
network. Then features are enhanced based on an inception module with multi-scale receptive fields.
Furthermore, we fuse generated feature maps with multilevel semantic information in a top-down way.
Finally, we employ the MAM for every level, and we combine the findings of the predictions from all
layers for an outcome.
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Fig. 2. The architecture of our proposed MA-Net Network.

2.1.1 CNN feature extraction and enhancement
To extract features from multiple levels, we employ ResNet (He et al., 2016) as the backbone because

of its fast convergence compared to VGG (Simonyan & Zisserman, 2015). ResNet-101 consists of 101
convolutional layers with five convolutional blocks, an average pooling layer, and one fully connected
layer. We made some changes to it in order to adapt it to our camouflage target prediction task. First, the
fully connected layers, which are built explicitly for classification tasks, are removed. The number of
parameters is also considerably reduced as a result of this. Second, because the final feature map size
of the original ResNet is 32 times less than the input, if we directly upsample on it, the results will be
too coarse. To overcome this, in levels 4 and 5, we utilize dilated convolution (Chen et al., 2016) which
allows us to keep the same receptive field without lowering the size of the feature map or adding any
additional parameters. As a result, the feature map size at these two levels is only eight times less than the
input. The extracted features from different levels are fed into an inception module to enhance feature
representation by extracting multi-scale receptive field features. As shown in Figure 3, the designed

Fig. 3. Our inception module.

module consists of 4 branches with a 1 × 1 convolution at the beginning to reduce the number of channels.
The outputted features from three branches go through 1 × y dilated convolution and then through y × 1
dilated convolution with a rate equal to 3. Here, y= 3, 5, and 7. In order to localize small and irregular
objects, a deformable convolution (Dai et al., 2017) layer is added at the end of each branch. The features
from all branches will be concatenated, go through 1 × 1 convolution, and have a residual connection with
input features for faster optimization. To encode more contextual information, we densely connect the
features in a top-down way. High-level feature maps are reused multiple times to add more contextual
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information to low levels.

2.1.2 Feature refinement and prediction
As in the natural environment, animals utilize camouflage to not draw attention to themselves; thereby,

it is difficult to find them. Based on this fact, we constructed a MAM to better detect the disguised
target from the background and create more delicate features to draw attention to this hidden target.
Our suggested MAM highlights essential features in the image by disregarding less critical information.
As illustrated in Figure 4, initially, a Pyramid Pooling Module (Zhao et al., 2017) is applied to the
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Fig. 4. Multi Attention Module.

input feature, and the output feature is used as an input feature for the MAM. This latter consists of
three attention blocks: the Transformation attention block, the Channel Attention Block, and the Spatial
Attention Block. The first block attempts to represent feature transformations by using deformable
convolution (Dai et al., 2017). It can improve the network’s attention to foreground areas. The feature map
is processed by a 3 × 3 deformable convolutional layer, followed by a normalization layer, ReLu, and a
second 3 × 3 deformed convolutional layer. The channel attention block highlights the camouflaged target
and reduces the inaccuracies caused by duplicated channel features. The feature map is re-allocated using
two 1 × 1 convolutions and a global pooling operation. This global attention map explicitly makes the
positions of the hidden objects known on feature maps. The spatial attention block attempts to investigate
where to concentrate on a feature map more. The spatial attention module is used as a complement to the
channel attention module to produce efficient features. Finally, the refined features from all the blocks are
concatenated into a final attention map.

2.2 Hidden target identification
In order to make the extracted camouflaged objects more accurate, we use the Dense CRF (Krähenbühl

& Koltun, 2011) method to refine the camouflaged target contours. A conditional random field (CRF) is a
probabilistic graph modeled by a Gibbs distribution as follows:

P (X| Q) =
1

Z (Q)
exp (−E (X| Q)) (1)

where Q is the global observation (image), Z (Q) is the normalization factor, and E(X) denotes the Gibbs
energy. In Dense CRF, the energy function is defined as:

E (X) = i
∑

ψu (xi) + i < j
∑

ψp(xi, xj) (2)

where xi and xj denote the vertices of CRF, ψu is the unary potential, and ψp is the pairwise potential.
The unary potential is calculated based on the predicted segmentation map while the pairwise potential
ψp (xi) is given by:

ψp (xi, xj) = µ (xi, xj)m
∑

w(m)k(m)(fi, fj) (3)

where µ (xi, xj) = 1 if xi 6= xj and equal to 0 otherwise. fi and fj are feature vectors. Specifically, the
kernel k is defined as:

w1 exp

(
−|pi − pj |2

2σ2α
− |qi − qj |

2

2σ2β

)
+ w2 exp (−

|pi − pj |2

2σ2γ
) (4)
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where pi, indicate the pixel’s location, qi, qj the pixel’s spectral features. σα, σβ , and σγ are three key
hyper-parameters controlling the degree of connectivity and similarity.
After the camouflaged map is refined, the connected components are decided to identify each object in
the image. The corresponding bounding box for each connected component is then computed. Figure 5
demonstrates the final target detection results of our proposed approach.

Fig. 5. Some examples of target detection results of our proposed approach. Image (row 1), GT (row 2),
labeled image from our segmentation mask (row 3), and final detection (row 4).

3. Experiments

3.1 Dataset
To evaluate our method, we used the camouflaged people dataset (Zheng et al., 2018). It contains

1000 images of size 480 × 854, including camouflaged people with ten different kinds of camouflage
patterns like Arid Fleck, Desert, and different scenes like woodlands and snowfields. From the dataset,

Fig. 6. A few examples from the Camouflaged People Dataset with corresponding ground truth labels.

80% of images are randomly selected for training, and the remaining 20% are used for testing. We apply
data augmentation to the selected training images. Mirror reflection and rotation techniques were used.

3.2 Implementation Details
Our model is implemented based on the Caffe framework (Jia et al., 2014), using GPU Nvidia GTX

1080. A stochastic gradient descent optimization (SGD) algorithm was used for training with a momentum
value of 0.9 and a weight decay of 0.0005. We set the base learning rate to 1e-10 with a mini-batch size of
one. After 20K iterations, we stopped the training.

3.3 Evaluation Metrics
In our experiments, we use the following evaluation metrics: Mean Absolute Error (MAE) (Perazzi

et al., 2012) , F-Measure (Achanta et al., 2009), E-measure (Fan et al., 2018) and Structure Measure
(S-Measure) (Fan et al., 2017), which are explained below.
MAE: is a metric to directly calculate the average absolute error between the prediction maps S and the
corresponding ground truth maps G. The formula is as follows:

MAE =
1

H ×W
Wx = 1

∑
Hy = 1

∑
|S (x, y)−G(x, y)| (5)
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where W and H are the width and height of the input image. In general, a lower MAE indicates a better
result.
F-measure: is defined as the weighted harmonic mean of recall and precision metrics, with an anon
negative weight of β. The F-measure is defined as:

Fβ =

(
1 + β2

)
Precision×Recall

β2Precision+Recall
(6)

where we set β2 to a fixed value of 0.3 as suggested in (Achanta et al., 2009) to emphasize precision over
recall. Note that, unlike MAE, a higher Fβ indicates a better performance.
E-measure: is a perceptual-inspired criterion and is defined as:

E =
1

H ×W
Wx = 1

∑
Hy = 1

∑
φFM (x, y) (7)

in which φFM is an enhanced alignment matrix. The greater the E Score, the better the performance.
S-measure: is to measure the structural similarity between the predicted map and the ground-truth map.

Sα = (1− α)So + αSr (8)

in which Sr indicates the region-aware structural similarity and So denotes the object-aware structural
similarity. As suggested in (Fan et al., 2017) , we set α = 0.5 . Note that the higher the S-measure score,
the better the model performs. The significantly larger the S-score, the better the model is.

3.4 Ablation Study
To investigate the impact of the different modules in our method, we conducted an ablation study.

The experiment selects ResNet-101 as the baseline (B). Then we add the Inception Module (IM),
Transformation Attention Module (TAM), Chanel Attention Module (CAM), and Spatial Attention
Module (SAM) into the network in turn. As shown in Table 1, with the addition of modules, the test
performance gradually improves. All these modules boost the model performance. When these modules
are combined, we can get the best results. It demonstrates that all components are necessary for the
proposed framework.

Table 1. Component analysis. Note that a lower MAE and higher F, S, and E correspond to better results.

Settings MAE F E S

B 0.01 0.847 0.954 0.922

B + IM 0.008 0.853 0.967 0.930

B + IM + TAM 0.006 0.854 0.969 0.933

B + IM + TAM + CAM 0.005 0.856 0.972 0.934

B+ IM + TAM + CAM + SAM 0.004 0.859 0.974 0.937

3.5 Baseline Models
We select deep learning baseline models according to different categories such as edge, FCN, and

high-resolution-based techniques. The chosen models are as follows:
- HDFN (Zhang et al., 2019) utilizes a densely hierarchical feature fusion network that predicts the most
critical area and segments the associated objects.
- AFNet (Feng et al., 2019) predicts salient objects with entire structures and exquisite boundaries.
- HRSOD (Zeng et al., 2019) leverages global semantic information and local high-resolution details to
detect salient objects accurately in high-resolution images.
- SFCN (Zhang et al., 2018) uses asymmetrical FCN to learn complementary visual features under the
guidance of lossless feature reflection.
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- Amulet (Zhang et al., 2017) aggregates multi-level features into multiple resolutions.
- UCF (Zhang et al., 2017) uses an encoder-decoder architecture to produce finer-resolution predictions.
It learns uncertainty through a reformulated dropout in the decoder and avoids artifacts using a hybrid
up-sampling scheme.

3.6 Comparison
We compared our model to DDCN (Zheng et al., 2018), a technique for detecting camouflaged people,

as well as to other state-of-the-art deep learning detection approaches, including Amulet (Zhang et al.,
2017), UCF (Zhang et al., 2017), SFCN (Zhang et al., 2018), HDFN (Zhang et al., 2019), HRSOD (Zeng
et al., 2019) and AFNet (Feng et al., 2019). Table 2 shows the comparison results of all methods on the
four evaluation metrics. Obviously, our method outperforms competing approaches with a large margin
across all the evaluation metrics, which demonstrates the superiority of the proposed model. Compared
with the state-of-the-art method DDCN, our method improves F-measure and E-measure by 3.9% and
3.2%, respectively. Also, our model significantly lowers the MAE scores. This indicates that our model is
more convinced of the predicted target regions and provides more accurate mask maps. S-measure, the
most recent evaluation measure, has been used to emphasize the deficiencies of traditional evaluation
metrics. When mask maps are evaluated, conventional metrics use pixels, which provide inadequate
overall structural information. In the present study, our model still maintains the outstanding S-measure
performance with an improvement of 6.5%. All quantitative results show that our model yields improved
performance.

Table 2. Quantitative results on camouflaged people dataset. The best two scores are shown in red and
blue colors, respectively.

Model F MAE E S

Amulet 0.349 0.081 0.587 0.630

UCF 0.254 0.168 0.497 0.589

SFCN 0.303 0.130 0.528 0.617

HDFN 0.313 0.140 0.534 0.618

HRSOD 0.489 0.018 0.741 0.690

AFNet 0.451 0.020 0.715 0.728

DDCN 0.820 0.007 0.942 0.872

Ours 0.859 0.004 0.974 0.937

In order to more intuitively illustrate the advantages of the proposed method, we visualize the
prediction results of our network with DDCN in different scenarios. As shown in Figure 7, we observe
that the proposed method highlights the hidden target completer and is more precise compared to DDCN.
It excels in dealing with various challenging scenarios, different scales, and postures of people (rows 1
and 3), small objects (row3), occlusion (rows 2 and 4), and also accurately locating hidden targets (rows
5 and 6). From this comparison, the segmentation maps produced by our method are sharper and more
accurate. Our model consistently outperforms DDCN. This can also illustrate the effectiveness of the
proposed approach.

4. Discussion

It is noteworthy that disguised target detection is more complicated than salient object detection. The
goal of salient object predictors is to identify and segment prominent features in images. To segment
salient objects, we just need to focus on detecting such remarkable and discriminative areas. On the other
hand, hidden targets fuse too much with their surroundings. It becomes even more difficult to discriminate
between them from the background. The boundaries of the concealed target are therefore challenging to
detect.
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Fig. 7. Qualitative visual comparison of segmentation masks of our proposed model and DDCN.

There are two significant limitations in this study that could be addressed in future research. First, 
the study focused on evaluating the model on a single dataset. This is because the problem of hidden 
target detection is not well explored in the literature. The lack of diverse datasets remains the main issue. 
Thus, to promote advancements in hidden target detection and its evaluation, we aim to build a new, more 
challenging dataset for future work. Second, through the experimental evaluation and visual observation 
of the segmentation results, we found that not all the mask results of the images are satisfactory, and the 
segmentation results of some scenes are still deficient. Therefore, in future work, we plan to enhance the 
network for better detection.

5. Conclusion

In this paper, we have proposed a novel hidden target detection network that segments and effectively 
identifies the concealed target for accurate detection. Our model first extracts and enhances the features via 
enlarging receptive fields with different kernels. Then the multi-attention module is used to differentiate 
the disguised target from the background even more. Finally, based on the predicted mask result, the 
hidden target is identified. Experiments on the camouflaged people dataset demonstrate that our model is 
an effective detection model and outperforms state-of-the-art methods both qualitatively and quantitatively.
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Perazzi, F., Krähenbühl, P., Pritch, Y. & Hornung, A. (2012). Saliency filters: Contrast based filtering 
for salient region detection. IEEE conference on computer vision and pattern recognition, 733–740.

Redmon, J., Divvala, S., Girshick R. & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time 
Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recogni-
tion. International Conference on Learning Representations.

Song, L. & Geng, W. (2010). A New Camouflage Texture Evaluation Method Based on WSSIM and 
Nature Image Features. In Proc. International Conference on Multimedia Technology, 1-4.

Tankus, A. & Yeshurun, Y. (2001). Convexity-Based Visual Camouflage Breaking. Computer Vision 
and Image Understanding, 82(3),208-237.

Zeng, Y., Zhang, P., Zhang, J., Lin, Z. & Lu, H. (2019). Towards High-Resolution Salient Object 
Detection. IEEE International Conference Computer Vision, 7234–7243.

Zhang, P., Liu, W.,Lei, Y. & Lu, H. (2019). Hyperfusion-Net: Hyper-densely reflective feature fusion 
for salient object detection. Pattern Recognition, 521-533.

Zhang, P., Liu, W., Lu, H. & Shen, C. (2018). Salient object detection by lossless feature reflection. 
International Joint Conference on Artificial Intelligence, 1–8.

Zhang, P., Wang, D., Lu, H., Wang, H. & Ruan, X. (2017). Amulet: Aggregating Multi-Level 
Convolutional Features for Salient Object Detection. IEEE International Conference on Computer Vision.

Zhang, P., Wang, D., Lu, H., Wang, H. & Yin, B. (2017). Learning Uncertain Convolutional Features 
for Accurate Saliency Detection. IEEE International Conference on Computer Vision.

Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J.(2017). Pyramid scene parsing network. IEEE Conference 
on Computer Vision and Pattern Recognition, 2881–2890.

Zheng, Y., Zhang, X., Wang, F., Cao, T. & Sun, M. (2018). Detection of People with Camouflage 
Pattern Via Dense Deconvolution Network. IEEE Signal Processing Letters, 14(8), 29-33.

Rabeb Hendaoui, Vasif Nabiyev

9

Submitted:  19/07/2021 
Revised:  03/09/2021 
Accepted:   12/10/2021 
DOI:  10.48129/kjs.15249 




