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Abstract

In this paper, we consider the k− Horadam hybrid numbers and investigate some of their properties. We
also give some applications related to the k− Horadam hybrid numbers in matrices.
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1. Introduction

Let k be any positive real number and h(k) and g(k) are scaler value polynomials. For m ≥ 0 and
h2(k) + 4g(k) > 0 the generalized k− Horadam sequence {Hk,m}m∈N is described by

Hk,m+2 = h(k)Hk,m+1 + g(k)Hk,m (1)

with initial conditions Hk,0 = w, Hk,1 = z.
The solutions of the equation y2 − h(k)y − g(k) = 0 associated with the recurrence relation (1) are

λ =
h(k) +

√
h2(k) + 4g(k)

2
and

γ =
h(k)−

√
h2(k) + 4g(k)

2
. (2)

Note that:

λ+ γ = h(k), λ− γ =
√

h2(k) + 4g(k), λγ = −g(k). (3)

So the Binet formula for the k− Horadam sequence is given by

Hk,m =
Nλm −Kγm

λ− γ
, (4)

where N = z − wγ, K = z − wλ.

k− Horadam sequence is a generalization of some sequences such as the Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, k− Fibonacci and k− Lucas sequences. These sequences have applications in algebra,
number theory and geometry. Hence, these sequences have been studied by a number of researchers; see
for examples: (Horadam, 1965; Koshy, 2001; Koshy, 2018; Kilic, 2019a; Kilic, 2019b; Kilic, 2019c;
Akkus & Kizilaslan, 2019; Yazlik & Taskara, 2012).
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Remark 1.1. Some particular cases of (1) are ;
• If h(k) = k, g(k) = 1, w = 0 and z = 1 then we get the k− Fibonacci sequence;

Fk,m+2 = kFk,m+1 + Fk,m, Fk,0 = 0, Fk,1 = 1.

• If h(k) = k, g(k) = 1, w = 2 and z = k then we have the k− Lucas sequence;

Lk,m+2 = kLk,m+1 + Lk,m, Lk,0 = 2 Lk,1 = k.

• If h(k) = 2, g(k) = k, w = 0 and z = 1 then we obtain the k− Pell sequence;

Pk,m+2 = 2Pk,m+1 + kPk,m, Pk,0 = 0 Pk,1 = 1.

• If h(k) = p, g(k) = q, then we find the Horadam sequence;

Hm+2 = pHm+1 + qHm, H0 = w H1 = z.

• If h(k) = 1, g(k) = 1, w = 0 and z = 1 then we get the Fibonacci sequence;

Fm+2 = Fm+1 + Fm, F0 = 0 F1 = 1.

• If h(k) = 2, g(k) = 1, w = 1 and z = 1 then we have the Pell-Lucas sequence;

PLm+2 = 2PLm+1 + PLm, PL0 = 1 PL1 = 1.

The set T, defined below, represents the set of hybrid numbers;

T = {t1 + t2i+ t3ε+ t4h|t1, t2, t3, t4 ∈ R; i2 = −1, ε2 = 0,h2 = 1, ih = −hi = ε+ i}. (5)

Addition and subtraction of hybrid numbers are done by adding and subtracting corresponding terms.
The product of any two hybrid numbers, using the expression (5), can be defined as in Szynal-Liana
(2018) (see Table 1).

The conjugate of a hybrid number P = t1 + t2i+ t3ε+ t4h is defined by

P = t1 − t2i− t3ε− t4h. (6)

The nth Horadam hybrid numbers h̃Hn is described as

h̃Hn = Hn + iHn+1 + εHn+2 +Hn+3h. (7)

where Hn is the nth Horadam number and i, ε,h denote hybrid units.

Hybrid numbers and hybrid polynomials have been studied by several researchers; (Szynal-Liana, 2018) 
introduced Horadam hybrid numbers and found some results about them. In 2019, Szynal-Liana & 
Włoch, studied Fibonacci and Lucas hybrinomials. The authors (Liana et al., 2019) introduced Pell 
hybrid numbers and investigated some of their properties. Kizilates ( 2020) studied the q− Fibonacci 
hybrid numbers. Kilic, ( 2019a) considered split k− Jacobsthal and k− Jacobsthal Lucas quaternions 
and obtained some properties of them. Also, Kilic studied Horadam octonions and dual Horadam 
octonions (Kilic, 2019b, 2019c).

Now, we introduce the k−Horadam hybrid numbers and investigate some of their properties. We 
also give some applications related to the k− Horadam hybrid numbers in matrices.
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2. k− Horadam hybrid numbers

For m > 0, the k− Horadam hybrid numbers are defined by

h̃Hk,m = Hk,m + iHk,m+1 + εHk,m+2 +Hk,m+3h (8)

where Hk,m is the mth k− Horadam number and i, ε,h are hybrid units.

Theorem 2.1. Let s ≥ 2 be an integer. Then

h̃Hk,s = h(k)h̃Hk,s−1 + g(k)h̃Hk,s−2 (9)

with h̃Hk,0 = w+ iz+ε[h(k)z+g(k)w]+h[h2(k)z+h(k)g(k)w+g(k)z] and h̃Hk,1 = z+ i[h(k)z+
g(k)w] + ε[h2(k)z + h(k)g(k)w + g(k)z] + h[h3(k)z + h2(k)g(k)w + 2h(k)g(k)z + g2(k)w].

Proof. If s = 2 then, we get

h(k)h̃Hk,1 + g(k)h̃Hk,0

= h(k){z + i[h(k)z + g(k)w] + ε[h2(k)z + h(k)g(k)w + g(k)z] + h[h3(k)z + h2(k)g(k)w

+ 2h(k)g(k)z + g2(k)w]}+ g(k){w + iz + ε[h(k)z + g(k)w] + h[h2(k)z + h(k)g(k)w

+ g(k)z]}
= h(k)z + g(k)w + i[h2(k)z + h(k)g(k)w + g(k)z] + ε[h3(k)z + h2(k)g(k)w + 2h(k)g(k)z

+ g2(k)w] + h[h4(k)z + h3(k)g(k)w + 3h2(k)g(k)z + 2h(k)g2(k)w + g2(k)z]

= Hk,2 + iHk,3 + εHk,4 + hHk,5

= h̃Hk,2.

If s ≥ 3 then using (1), we obtain

h̃Hk,s

= Hk,s + iHk,s+1 + εHk,s+2 + hHk,s+3

= h(k)Hk,s−1 + g(k)Hk,s−2 + i[h(k)Hk,s + g(k)Hk,s−1] + ε[h(k)Hk,s+1 + g(k)Hk,s]

+ h[h(k)Hk,s+2 + g(k)Hk,s+1]

= h(k)[Hk,s−1 + iHk,s + εHk,s+1 + hHk,s+2] + g(k)[Hk,s−2 + iHk,s−1 + εHk,s + hHk,s+1]

= h(k)h̃Hk,s−1 + g(k)h̃Hk,s−2

which completes the proof.

Theorem 2.2. (Binet Formula) For m ≥ 0, the Binet formula for k−Horadam hybrid numbers is

h̃Hk,m =
Nλmλ̂−Kγmγ̂

λ− γ
(10)

where N = z − wγ, K = z − wλ, λ̂ = 1 + iλ+ ελ2 + hλ3 and γ̂ = 1 + iγ + εγ2 + hγ3.

Proof. Using (8) and (4), we can write the following expression

h̃Hk,m

= Hk,m + iHk,m+1 + εHk,m+2 + hHk,m+3

= [
Nλm −Kγm

λ− γ
] + i[

Nλm+1 −Kγm+1

λ− γ
] + ε[

Nλm+2 −Kγm+2

λ− γ
] + h[

Nλm+3 −Kγm+3

λ− γ
]

=
Nλm

λ− γ
[1 + iλ+ ελ2 + hλ3]− Kγm

λ− γ
[1 + iγ + εγ2 + hγ3]

=
Nλmλ̂−Kγmγ̂

λ− γ
.
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Remark 2.3. For h(k) = k, g(k) = 1, w = 0 and z = 1, we obtain λ = k+
√
k2+4
2 , γ = k−

√
k2+4
2 ,

N = 1, K = 1 and the Binet formula for the k− Fibonacci hybrid number FHk,m has the form

FHk,m

=
1√

k2 + 4

{(
k +

√
k2 + 4

2

)m[
1 + (

k +
√
k2 + 4

2
)i+ (

k +
√
k2 + 4

2
)2ε+ (

k +
√
k2 + 4

2
)3h

]
−

(
k −

√
k2 + 4

2

)m[
1 + (

k −
√
k2 + 4

2
)i+ (

k −
√
k2 + 4

2
)2ε+ (

k −
√
k2 + 4

2
)3h

]}
.

Remark 2.4. For h(k) = k, g(k) = 1, w = 2 and z = k, we obtain λ = k+
√
k2+4
2 , γ = k−

√
k2+4
2 ,

N =
√
k2 + 4, K = −

√
k2 + 4 and the Binet formula for the k− Lucas hybrid number LHk,m has the

form

LHk,m

=

(
k +

√
k2 + 4

2

)m[
1 + (

k +
√
k2 + 4

2
)i+ (

k +
√
k2 + 4

2
)2ε+ (

k +
√
k2 + 4

2
)3h

]
+

(
k −

√
k2 + 4

2

)m[
1 + (

k −
√
k2 + 4

2
)i+ (

k −
√
k2 + 4

2
)2ε+ (

k −
√
k2 + 4

2
)3h

]
.

Lemma 2.5. Let m ≥ 1 be an integer. Then

h̃Hk,mh̃Hk,m =
1

h2(k) + 4g(k)

{
N2λ2m[1 + λ2 − 2λ3 − λ6]− 2NK(−g(k))m[1− g(k)

+ g(k)h(k) + g3(k)] +K2γ2m[1 + γ2 − 2γ3 − γ6]

}
.

Proof. From (10), we have

h̃Hk,mh̃Hk,m =

[
Nλmλ̂−Kγmγ̂

λ− γ

][
Nλmλ̂−Kγmγ̂

λ− γ

]
By Eq. (3) and some elementary calculations we have

h̃Hk,mh̃Hk,m =
1

h2(k) + 4g(k)

{
N2λ2m[1 + λ2 − 2λ3 − λ6]− 2NK(−g(k))m[1− g(k)

+ g(k)h(k) + g3(k)] +K2γ2m[1 + γ2 − 2γ3 − γ6]

}
.

Theorem 2.6. The generating function for the k− Horadam hybrid number sequence {h̃Hk,m} is

∞∑
m=0

h̃Hk,mtm =
h̃Hk,0 + t[h̃Hk,1 − h(k)h̃Hk,0]

1− h(k)t− g(k)t2
. (11)

Proof. Let A(t) =
∞∑

m=0
h̃Hk,mtm . Then

A(t) = h̃Hk,0 + h̃Hk,1t+ h̃Hk,2t
2 + ... (12)

Multiply (12) on both sides by −h(k)t and then −g(k)t2 we have

−h(k)tA(t) = −h(k)th̃Hk,0 − h(k)t2h̃Hk,1 − h(k)t3h̃Hk,2 − ... (13)
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−g(k)t2A(t) = −g(k)t2h̃Hk,0 − g(k)t3h̃Hk,1 − g(k)t4h̃Hk,2 − ... (14)

By adding (12), (13) and (14), we have

A(t) =
h̃Hk,0 + t[h̃Hk,1 − h(k)h̃Hk,0]

1− h(k)t− g(k)t2
.

Theorem 2.7. Let m ≥ 1 be an integer. Then
m∑
l=1

h̃Hk,l =
1

1− h(k)− g(k)
[h̃Hk,1 + g(k)h̃Hk,0 − h̃Hk,m+1 − g(k)h̃Hk,m].

Proof. By using the Binet formula of the k− Horadam hybrid numbers, we find that
m∑
l=1

h̃Hk,l =

m∑
l=1

Nλlλ̂−Kγlγ̂

λ− γ

=
Nλ̂

λ− γ

[λ− λm+1

1− λ

]
− Kγ̂

λ− γ

[γ − γm+1

1− γ

]

By Eqs. (3), (10) and some elementary calculation, we obtain
m∑
l=1

h̃Hk,l =
1

1− h(k)− g(k)
[h̃Hk,1 + g(k)h̃Hk,0 − h̃Hk,m+1 − g(k)h̃Hk,m].

The results in following theorem can be obtained by Theorem 2.2, Eq.(3) and convenient routine
operations.

Theorem 2.8. For m ≥ 1, the following identities hold:

(i)
m∑
i=1

h̃Hk,2i =
h̃Hk,2−g2(k)h̃Hk,0−h̃Hk,2m+2+g2(k)h̃Hk,2m

1−h2(k)−2g(k)+g2(k)
,

(ii)
m∑
i=1

h̃Hk,2i+1 =
h̃Hk,3−g2(k)h̃Hk,1−h̃Hk,2m+3+g2(k)h̃Hk,2m+1

1−h2(k)−2g(k)+g2(k)
.

Theorem 2.9. The exponential generating function for the k− Horadam hybrid number h̃Hk,l is

∞∑
l=0

h̃Hk,l
tl

l!
=

Nλ̂eλt −Kγ̂eγt

λ− γ
.

Proof. By considering Theorem (2.2) we have
∞∑
l=0

h̃Hk,l
tl

l!
=

Nλ̂

λ− γ

∞∑
l=0

λltl

l!
− Kγ̂

λ− γ

∞∑
l=0

γltl

l!

=
Nλ̂eλt −Kγ̂eγt

λ− γ
.

Corollary 2.10. The Poisson generating functions for the k− Horadam hybrid numbers are
∞∑
i=0

h̃Hit
ie−t

i!
=

Nλ̂eλt −Kγ̂eγt

et(λ− γ)
.
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Proof. By Theorem 2.2, we have

∞∑
i=0

h̃Hit
ie−t

i!
=

∞∑
i=0

(
Nλiλ̂−Kγiγ̂

λ− γ
)
tie−t

i!

=
Nλ̂

λ− γ
e−t

∞∑
i=0

λiti

i!
− Kγ̂

λ− γ
e−t

∞∑
i=0

γiti

i!

=
Nλ̂eλt −Kγ̂eγt

et(λ− γ)
.

Theorem 2.11. For q > p ≥ 0, we have

m∑
l=0

h̃Hk,pl+q =
(−g(k))p[h̃Hk,mp+q − h̃Hk,q−p]

(−g(k))p − λp − γp + 1
+

−h̃Hk,mp+p+q + h̃Hk,q

(−g(k))p − λp − γp + 1
.

Proof. From Theorem 2.2, we have

m∑
l=0

h̃Hk,pl+q = h̃Hk,q + h̃Hk,q+p + ...+ h̃Hk,q+mp

=
Nλqλ̂−Kγqγ̂

λ− γ
+

Nλp+qλ̂−Kγp+qγ̂

λ− γ
+ ...+

Nλmp+qλ̂−Kγmp+qγ̂

λ− γ

=
1

λ− γ

{
Nλ̂λq[λmp+pγp − λmp+p − γp + 1]

λpγp − λp − γp + 1
− Kγ̂γq[γmp+pλp − γmp+p − λp + 1]

λpγp − λp − γp + 1

}
=

1

(−g(k))p − λp − γp + 1

{
[
Nλ̂λmp+p+qγp −Kγ̂γmp+p+qλp

λ− γ
]− [

Nλ̂λmp+p+q −Kγ̂γmp+p+q

λ− γ
]

− [
Nλ̂λqγp −Kγ̂γqλp

λ− γ
] + [

Nλ̂λq −Kγ̂γq

λ− γ
]

}
=

(−g(k))p[h̃Hk,mp+q − h̃Hk,q−p]

(−g(k))p − λp − γp + 1
+

−h̃Hk,mp+p+q + h̃Hk,q

(−g(k))p − λp − γp + 1
.

Theorem 2.12. (Catalan Identity) For m, r ∈ Z+ such that m ≥ r. Then

h̃Hk,m+rh̃Hk,m−r − (h̃Hk,m)2 =
NK(−g(k))m

h2(k) + 4g(k)

{
λ̂γ̂[1− λr

γr
] + γ̂λ̂[1− γr

λr
]

}
. (15)

Proof. By using Theorem 2.2, we obtain;

h̃Hk,m+rh̃Hk,m−r − (h̃Hk,m)2

= [
Nλm+rλ̂−Kγm+rγ̂

λ− γ
][
Nλm−rλ̂−Kγm−rγ̂

λ− γ
]− [

Nλmλ̂−Kγmγ̂

λ− γ
]2

=
NK

(λ− γ)2
[λ̂γ̂(λmγm − λr+mγm−r) + γ̂λ̂(λmγm − λm−rγm+r)].

After some elementary calculations, we obtain

h̃Hk,m+rh̃Hk,m−r − (h̃Hk,m)2 =
NK(−g(k))m

h2(k) + 4g(k)

{
λ̂γ̂[1− λr

γr
] + γ̂λ̂[1− γr

λr
]

}
.
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For r = 1 in the Catalan identity, we get the Cassini identity for k− Horadam hybrid numbers in the
next Theorem.

Theorem 2.13. (Cassini Identity) Let m ≥ 1 be an integer. Then

h̃Hk,m+1h̃Hk,m−1 − (h̃Hk,m)2 =
NK(−g(k))m

h2(k) + 4g(k)

{
λ̂γ̂[1− λ

γ
] + γ̂λ̂[1− γ

λ
]

}
.

Theorem 2.14. (d’Ocagne Identity ) For m ∈ Z+ and n ∈ N such that m > n+ 1. Then

h̃Hk,mh̃Hk,n+1 − h̃Hk,m+1h̃Hk,n =
NK(−g(k))n√
h2(k) + 4g(k)

[λm−nλ̂γ̂ − γm−nγ̂λ̂].

Proof. From Theorem 2.2 and Eq.(3), we have

h̃Hk,mh̃Hk,n+1 − h̃Hk,m+1h̃Hk,n

= [
Nλmλ̂−Kγmγ̂

λ− γ
][
Nλn+1λ̂−Kγn+1γ̂

λ− γ
]− [

Nλm+1λ̂−Kγm+1γ̂

λ− γ
][
Nλnλ̂−Kγnγ̂

λ− γ
]

=
NK

(λ− γ)2
{
λ̂γ̂[−λmγn+1 + λm+1γn] + γ̂λ̂[λnγm+1 − λn+1γm]

}
=

NK(−g(k))n√
h2(k) + 4g(k)

[λm−nλ̂γ̂ − γm−nγ̂λ̂].

3. Matrix representations of k-Horadam hybrid numbers

Now, we will give the matrix representation of k− Horadam hybrid numbers. Also we obtain a formula
for k− Horadam hybrid numbers h̃Hk,m, in terms of tridiagonal determinant, by using the same kind of
approach that was used in (Catarino, 2016; Kizilates et al., 2019).

Theorem 3.1. Let u ≥ 0 be an integer. Then[
h̃Hk,u+2 h̃Hk,u+1

h̃Hk,u+1 h̃Hk,u

]
=

[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u
(16)

Proof. We use the induction method to prove this theorem. If u = 0, then the result is obvious. Assume
the expression is satisfied for u ≥ 0[

h̃Hk,u+2 h̃Hk,u+1

h̃Hk,u+1 h̃Hk,u

]
=

[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u
.

We next prove that [
h̃Hk,u+3 h̃Hk,u+2

h̃Hk,u+2 h̃Hk,u+1

]
=

[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u+1

(17)

We consider the right-hand side of (17)[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u+1

=

{[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u}
×

[
h(k) 1
g(k) 0

]
From Eq.(9) and induction hypothesis, we have

Nayil Kilic
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{[
h̃Hk,2 h̃Hk,1

h̃Hk,1 h̃Hk,0

]
×

[
h(k) 1
g(k) 0

]u}
×

[
h(k) 1
g(k) 0

]

=

[
h̃Hk,u+2 h̃Hk,u+1

h̃Hk,u+1 h̃Hk,u

]
×

[
h(k) 1
g(k) 0

]

=

[
h̃Hk,u+3 h̃Hk,u+2

h̃Hk,u+2 h̃Hk,u+1

]
Thus the proof is completed.

Using Theorem 2.1 and Eq. (16), the following remarks can be given;

Remark 3.2. For h(k) = k, g(k) = 1, w = 0 and z = 1 in Eq.(16) and Theorem 2.1 , we have the 
matrix representation of k− Fibonacci hybrid numbers as follows;[

h̃FHk,u+2 h̃FHk,u+1

h̃FHk,u+1 h̃FHk,u

]
=

[
h̃FHk,2 h̃FHk,1

h̃FHk,1 h̃FHk,0

]
×

[
k 1
1 0

]u
Remark 3.3. For h(k) = k, g(k) = 1, w = 2 and z = k in Eq.(16) and Theorem 2.1 , we have the
matrix representation of k− Lucas hybrid numbers as follows;[

h̃LHk,u+2 h̃LHk,u+1

h̃LHk,u+1 h̃LHk,u

]
=

[
h̃LHk,2 h̃LHk,1

h̃LHk,1 h̃LHk,0

]
×

[
k 1
1 0

]u
The nth terms of k− Horadam hybrid number can be easily obtained by calculating the determinant

of the tridiagonal matrix An−1.

Using Eq.(9) the following propositions can be easily proved.

Proposition 3.4. The n× n tridiagonal matrices

An =



a b
c d 1

c d 1
. . . . . . . . .

c d 1
c d


satisfy detAn = h̃Hn+1, where a = h̃Hk,2, b = h̃Hk,1, c = −g(k) and d = h(k).

k− Horadam hybrid number can be obtained using another tridiagonal matrix.

Proposition 3.5. For m ≥ 1, we have

h̃Hk,m =∣∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 0 . . . 0 0
−1 0 c 0 . . . 0 0
0 −1 d c . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 . . . d c
0 0 0 0 . . . −1 d

∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

where a = h̃Hk,2, b = h̃Hk,1, c = g(k) and d = h(k).

Introduction to k− Horadam hybrid numbers
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