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Abstract

In this paper, we consider the k— Horadam hybrid numbers and investigate some of their properties. We
also give some applications related to the k— Horadam hybrid numbers in matrices.
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1. Introduction

Let k be any positive real number and h(k) and g(k) are scaler value polynomials. For m > 0 and
h%(k) + 4g(k) > 0 the generalized k— Horadam sequence { Hy ,, } men is described by

Hy g2 = k) Hy i1 + 9(k)Hy (1)

with initial conditions Hy g = w, Hy 1 = z.
The solutions of the equation y? — h(k)y — g(k) = 0 associated with the recurrence relation (1) are

) :h(k) + \/h2(k) + 4g(k) and
2
h(k) — \/h2(k) + 4g(l<:)‘ @)

V= 5
Note that:
Aty =h(k), A=y=vh(k)+4g(k), Iy=—g(k). 3)
So the Binet formula for the k— Horadam sequence is given by
N — Ky™
Him = ~5———, (4)
-

where N =z —wy, K =2z—w\.

k— Horadam sequence is a generalization of some sequences such as the Fibonacci, Lucas, Pell, Pell-
Lucas, Jacobsthal, k— Fibonacci and k— Lucas sequences. These sequences have applications in algebra,
number theory and geometry. Hence, these sequences have been studied by a number of researchers; see
for examples: (Horadam, 1965; Koshy, 2001; Koshy, 2018; Kilic, 2019a; Kilic, 2019b; Kilic, 2019c;
Akkus & Kizilaslan, 2019; Yazlik & Taskara, 2012).



Introduction to k— Horadam hybrid numbers

Remark 1.1. Some particular cases of (1) are ;
e I[fh(k) =k g(k) =1, w=0and z = 1 then we get the k— Fibonacci sequence;

Frmyo =kFemi1 + Fems,  Fro=0,Fp1 = 1.

e Ifh(k) =k, g(k) =1, w = 2 and z = k then we have the k— Lucas sequence;
Limy2 =kLpm+1 +Lim, Lro=2 Li1=Ek.

o Ifh(k) =2, g(k) =k w = 0and z = 1 then we obtain the k— Pell sequence;
Pemt2 = 2Py i1 + kPem, Pro=0 Pe1=1

o I[f h(k) = p, g(k) = q, then we find the Horadam sequence;

Hypyo =pHpy1r +qHp, Ho=w Hp =z
e Ifh(k) =1, g(k) =1, w = 0and z = 1 then we get the Fibonacci sequence;
Foio=Fpp+F,, F=0 F=1

e Ifh(k) =2, g(k) =1, w=1and z = 1 then we have the Pell-Lucas sequence;

PLmis = 2PLyi1 + PLy,, PLy=1 PL, =1.
The set T, defined below, represents the set of hybrid numbers;
T = {t1 + toi + tse + tgh|t], ta, 13,14 € R;i? = —1,e? =0,h? = 1,ith = —hi = e +i}. (5)

Addition and subtraction of hybrid numbers are done by adding and subtracting corresponding terms.
The product of any two hybrid numbers, using the expression (5), can be defined as in Szynal-Liana
(2018) (see Table 1).

The conjugate of a hybrid number P = t; + t2i + t3¢ + t4h is defined by
P =t — tgi — tze — t4h. (6)
The nth  Horadam hybrid numbers hH, n  1s described as
hH, = H, + iHp41 + eHpyo + Hyssh. (7)
where H,, is the nth Horadam number and 7, €, h denote hybrid units.

Hybrid numbers and hybrid polynomials have been studied by several researchers; (Szynal-Liana, 2018)
introduced Horadam hybrid numbers and found some results about them. In 2019, Szynal-Liana &
Wioch, studied Fibonacci and Lucas hybrinomials. The authors (Liana et al., 2019) introduced Pell
hybrid numbers and investigated some of their properties. Kizilates ( 2020) studied the g— Fibonacci
hybrid numbers. Kilic, ( 2019a) considered split k— Jacobsthal and k— Jacobsthal Lucas quaternions
and obtained some properties of them. Also, Kilic studied Horadam octonions and dual Horadam
octonions (Kilic, 2019b, 2019c¢).

Now, we introduce the k—Horadam hybrid numbers and investigate some of their properties. We
also give some applications related to the k— Horadam hybrid numbers in matrices.
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2. k— Horadam hybrid numbers

For m > 0, the k— Horadam hybrid numbers are defined by
EHk,m = Hpm + iHg i1 + €Hg y2 + Hy mysh (8)
where Hj, ,, is the mth k— Horadam number and i, £, h are hybrid units.
Theorem 2.1. Let s > 2 be an integer. Then
hHy s = h(k)hHys 1 + g(k)hHp oo 9
with hHy g = w+iz +e[h(k)z +g(k)w] + h[h2(k)z + h(k)g(k)w+ g(k)z] and hHy = z+i[h(k)z +
g(k)w] + e[h?(k)z + h(k)g(k)w + g(k)z] +h[h3(k)z + h2(k)g(k)w + 2h(k)g(k)z + ¢ (k)w].
Proof. If s = 2 then, we get
h(k)hHy, 1 + g(k)hHy o
= h(k){z +i[h(k)z + g(k)w] + e[h*(k)z + h(k)g(k)w + g(k)z] + h[h?(k)z + W2 (k)g(k)w
+ 2h(k)g(k)z + ¢*(K)w]} + g(k){w + iz + [h(k)z + g(k)w] + h[h?(k)z + h(k)g(k)w
+9(k)z]}
= h(k)z + g(k)w + i[R%(k)z + h(k)g(k)w + g(k)2] + e[h3(k)z + W2 (k)g(k)w + 2h(k)g(k)z
+ g*(k)w] + h[h*(k)z + h* (k)g(k)w + 3h2(k)g(k)z + 2h(k) g (k)w + g*(k)z]
= Hkg + Z'Hk,;; + EHkA + th’5
— hHpo.
If s > 3 then using (1), we obtain
%Hk,s
=Hps+iHpgp1 +eHg gy +hHy o3
= h(k)His—1 + g(k)Hps—2 + i[A(k)Hys + g(k)Hp,s—1] + €[h(k) Hg 511 + g(k) Hi,s]
+hh(k)Hg s12 + g(k)Hg s11]
= h(k)[Hys—1 +iHy s+ eHyop1 + WHy o 0] + g(k)[Hy s—2 + iHp 1 + eHy s + hHj, o 41]
= h(k)hHys_1 + g(k)hHp oo

which completes the proof.

Theorem 2.2. (Binet Formula) For m > 0, the Binet formula for k—Horadam hybrid numbers is

hH,, = YA KT (10)
] )\_,.Y

where N = z —wy, K =2z—w), A= 14+id+eX2 +hX3and 4 = 1+ iy +ey? + hyd.
Proof. Using (8) and (4), we can write the following expression

hHy

= Hpm + iHy i1 + €Hg ppyo + hHp 43

NI — K,ym - N)\m+1 - K,ym-‘,-l N)\m+2 . K’)/m+2

_ h
RTINS
NA™ Ky

= 0 I+ i+ e+ hAY — S (1 + iy + ey + o]

A—r A—7

N)\mj\—K’ym'y
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Remark 2.3. For h(k) = k, g(k) = 1, w = 0 and z = 1, we obtain \ = k+V2k2+4, v = k—vki+d V2k2+4,
N =1, K = 1 and the Binet formula for the k— Fibonacci hybrid number F'Hy, ., has the form

FHm

1 k+vVE24+4\™ k+vVE24+4 . E+VE2+4, | k+VEZ4+4 .,

= () [ R e g
— 2 m _ 2 _ 2 _ 2

B (k: \/Qk +4) [1+(k \/2k: +4)i—|—(k \/2k +4)25+(k \/Qk +4>3h”_

Remark 2.4. For h(k) = k, g(k) = 1, w = 2 and z = k, we obtain \ = Etvkitd V2k72+4, v = hovki+d V2k2+4,
N = Vk? + 4, K = —Vk? + 4 and the Binet formula for the k— Lucas hybrid number LH}, ,,, has the
Jform

LHgm
_ (kz+\/2k:21>m[l+ (k+\/2l<2+4)Z,+(k+\/2/c?+4)25+(k+\/2k?+4)3h]
N (k— \/fﬁ)m[lﬂk— \/2k72+4)i+ <k—\/2kZ+4)26+(k— \/2k:2+4)3h]'

Lemma 2.5. Let m > 1 be an integer. Then

1
h?(k) + 4g(k)

T gRIR(R) + P (R)] + K221 447 — 27 761}.

hHj, o h Hyo = {N2)\2m[1 + 22— 2X3 = XS] — 2N K (—g(k)™[1 — g(k)

Proof. From (10), we have

NN — K’ym’y} [an& - Kﬂy””y]

hHpmhHy = { "

A—7y
By Eq. (3) and some elementary calculations we have

1
h?(k) + 4g(k)

T gURh(k) + PR + K221 442 — 295 — 761}.

hHj, i h Hyo = {NW% + 22— 2X3 = XS] — 2N K (—g(k)™[1 — g(k)

Theorem 2.6. The generating function for the k— Horadam hybrid number sequence {EH feom ) IS

%Hk,() + t[sz,l - h(k)ﬁHk,O]

2 Mt = L e (o

S
Proof. Let A(t) = > hHj,t™ . Then

m=0
A(t) = hHyo + hHy 1t + hHy ot + ... (12)
Multiply (12) on both sides by —h(k)t and then —g(k)t? we have

—h(k)tA(t) = —h(k)thHyo — h(k)t*hHj 1 — h(k)t*hHjo — ... (13)
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—g(k)2A(t) = —g(k)2hHyp — g(R)EhHy 1 — g(k)E Ry — .. (14)
By adding (12), (13) and (14), we have

hHyo + t[hHy1 — h(k)hHy )

A = =T hmt — g2

Theorem 2.7. Let m > 1 be an integer. Then

m.o 1 » » ~ »
thJ = th, +g(k th,O — th,m 1 —g(k th,m .
Proof. By using the Binet formula of the k— Horadam hybrid numbers, we find that
~ NN - KA
hHy; = _—
Z o ; A=

N [)\—)\m‘H B K~ [’y—'merl
A=t 1=2AX A—7

By Egs. (3), (10) and some elementary calculation, we obtain

mo 1 _ _ _ _
hHy,; = hH kYhHio — hHy a1 — g(k)hHy )
Z: = TR 7g(k)[ k1 + g(k)hHy o kymt1 — (k) Hpm]

The results in following theorem can be obtained by Theorem 2.2, Eq.(3) and convenient routine
operations.

Theorem 2.8. For m > 1, the following identities hold:

o 4 e folloy X
. ~ o hHy 2—g*(k)hHy o—hHg am12+9° (k)hHy 2m
(4) > hHy i = 1=R2(k)—29(k)+92(k) ’

=1

L ~ L _
N SN T g hHys—g?(R)hHy 1 —hHk 5y 3+9* (R)AH 2m 41
(#1) > hHgit1 = T-h2 (k) —29(k) + g2 (F) :

Theorem 2.9. The exponential generating function for the k— Horadam hybrid number hH kIS

tt NieM - K7e
Zthl S T

A=y
Proof. By considering Theorem (2.2) we have
t NA =0\ ’y tl
S Wty = 35 D s
B NAeM — Kfy\eﬂt
A—7 )

Corollary 2.10. The Poisson generating functions for the k— Horadam hybrid numbers are

i EH,-tie_t B NieM — KAert
=0 it - et()\ B ’Y)
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Proof. By Theorem 2.2, we have

i hH;tiet i (Nm — Kfyify)tie—t

! — T
1=0 v i—O A Y 2.
_ tz N ot ad vt
1l
P A—° — il
. N)\e — I('yemS
e'(A =)
Theorem 2.11. For g > p > 0, we have
Em:EHk - (k))p[th mp+q — thq p] 1 _th,mp—i-p—l-q + th,q '
o (=g(R)) = A7 =P +1 (=g(R))P = AP =P +1

Proof. From Theorem 2.2, we have

m
Z hHppitq = hHiq + hHpg1p + ... + hHp gmp
1=0

_N NN — K93 N NIPFON — KAP+ay L NN+ — [ ymptay

A _ ,y A /y . )\ — ’7
= {NX/\q[Amp+p7p — AP AP 1] KAy TTPAY — M — AP 4 1] }
A=y APYP — NP — 4P 41 APAP — NP — AP 4 1
1 NINTPAPHaAP . [(5~mp+p+a\p NINMPHPHE . [Rymp+p+a
:(—g(k))”—kp—vpﬂ{ N—~ =1 g ]

NP — KFyIN . NN — K751
_ n ]
A= A—r
_ (=g(k))P[hHmp+q — hHq—p] —hHpmpyprq + g
= n ‘
(—g(k))P = AP — P +1 (—g(k))P — N — AP + 1

Theorem 2.12. (Catalan Identity) For m,r € Z* such that m > r. Then
~ ~ ~ NK(_g(k;))m{AA A" “ yr }
hHy marhHi ey — (hHpm)? = 22 _d M4]1 - =]+ . 15

Proof. By using Theorem 2.2, we obtain;

TLHk m—i—rﬁHkm r (ﬁHk m)2
)\m—i—r}\ K’)/m—HM N~ 7")\ K,ym 7‘ NAmj\ _ K,ym;y
= -1 J?
A= A= A=y
NK  ~. m,.m r+m,m—r AN [\ Am m—r . m+r
:W[)\V(A AT = NI AN = ATy

After some elementary calculations, we obtain

G o NKCg)m N
hH g mirhH gy — (RHjp)? = Iﬂ(k:)—i—élg(k){)\ﬂl — =+ AL - ]}
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For r = 1 in the Catalan identity, we get the Cassini identity for £— Horadam hybrid numbers in the
next Theorem.

Theorem 2.13. (Cassini Identity) Let m > 1 be an integer. Then

_ NK(=g(k)"
= 12(k) + 49(k)

2

~ ~ ~ . A .
hHy i1 hHpn—1 — (RHj m)? {Afm — 5] + A1 — ]}.

>

Theorem 2.14. (d’Ocagne Identity ) For m € Z and n € N such that m > n + 1. Then

NEK(—g(k))"

R2(k) + 4g(k) ANy =L

EHk:,mEHk,n—i-l - ?LHk,m—i-l%Hk:,n =

Proof. From Theorem 2.2 and Eq.(3), we have

?’JHk,m%Hk,nH - ?LHk,m+1sz,n
_ [N)\mX — K™% NA"Jrlj\ . K,.yn+1:y - NAerl;\ o K,Yerl;y NA”X — K44

]

A—r A—r A—7 A—7
_ NK XA _\mantl  ymtlon Aj\ A\tymtl _ \ntlom
—(A_V)Q{v[ A+ Y]+ AAN Yy Y™}
NK(—g(k))"

- A3y — A

Vh2(k) +4g(k)

3. Matrix representations of k-Horadam hybrid numbers

Now, we will give the matrix representation of k— Horadam hybrid numbers. Also we obtain a formula
for k— Horadam hybrid numbers h Hj, ,,, in terms of tridiagonal determinant, by using the same kind of
approach that was used in (Catarino, 2016; Kizilates et al., 2019).

Theorem 3.1. Let u > 0 be an integer. Then

ﬁHk,quz ?LHk,qul _ EHk,Q EHM h(k) 11"
h 1 _|n n x (16)
th,u-i—l hH’%U thJ th70 g(k‘) 0

Proof. We use the induction method to prove this theorem. If © = 0, then the result is obvious. Assume
the expression is satisfied for u > 0

EHk,un Eyk,u—l-l _ ﬁﬂm EHk,l " [h(k‘) 1]u
hHy 1 hHpy hHy1 hHyg g(k) 0

We next prove that

EHk,u—Hi EHk,u—i-? _ ZlHk,Z ZlHk,l « [h(k) 1r+1 17
hHy 2 hHyaq1 hHy 1 hHy g(k) 0

We consider the right-hand side of (17)
hHys hHiq [h(k) 1}“*1 { hHys hHgq [h(k) 1}“} [h(k) 1}
~ ~ X = ~ ~ X X
hHy 1 hHy g(k) 0 hHy 1 hHy g(k) 0 g(k) 0

From Eq.(9) and induction hypothesis, we have
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([ 2ol o <[
_ FLHk,uH %flk,u—l-l] v [h(k) 1}
hHpwi1  hHpy g(k)

ZLHk,u—I—Zi ZLHk,u—I—Z
th,quQ th,qul

Thus the proof is completed.

Using Theorem 2.1 and Eq. (16), the following remarks can be given;

Remark 3.2. For h(k) =k, g(k) = 1, w = 0 and z = 1 in Eq.(16) and Theorem 2.1 , we have the
matrix representation of k— Fibonacci hybrid numbers as follows;
ClE1T
10

Remark 3.3. For h(k) = k, g(k) = 1, w = 2 and z = k in Eq.(16) and Theorem 2.1 , we have the
matrix representation of k— Lucas hybrid numbers as follows;

RLH, 12 iNLLHka] B [ELHk,Q ?iLHk,l] y [k 1] v

EFHk,u+2 }VLFHk7u+1 . ﬁFHkQ EFHkJ
hFHy,t1  hFHg, hFH, hFHj

WLHyui1 hLHp, | |RLHgy hLHpg 10

The nth terms of k— Horadam hybrid number can be easily obtained by calculating the determinant
of the tridiagonal matrix A,_1.
Using Eq.(9) the following propositions can be easily proved.
Proposition 3.4. The n x n tridiagonal matrices
a b
c d 1
c d 1
c d 1
c d
satisfy detA,, = ﬁHnH, where a = 7LH;€72, b= EHM, c=—g(k) and d = h(k).
k— Horadam hybrid number can be obtained using another tridiagonal matrix.

Proposition 3.5. For m > 1, we have

hHjpm =
b a 0 0 0 0
1 0 ¢ 0 0 0
0 -1 d ¢ 0 0
0 0 0 0 d ¢
0 0 0 0 “1 d
mXm

where a = %Hk,g, b= ﬁHk,l, c=g(k) and d = h(k).
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