Santhiya Kalimuthu^{1,*}

¹Dept. of Biotechnology (FoE), Karpagam Academy of Higher Education, Coimbatore, 641021, Tamilnadu

* Corresponding author: santhiya.k@kahedu.edu.in

Abstract

Pseudomonas aeruginosa is the most frequent nosocomial pathogen, causing many infections in people and posing significant health risks worldwide. The current work attempts to understand the connection between antibiotic resistance genes (ARG), virulence factors (VF), and insertion sequences (IS) in *P. aeruginosa*. Fifty-six *P. aeruginosa* complete plasmids were retrieved from the NCBI database for this investigation. The CARD and Resfinder tools are used to discover ARG in *P. aeruginosa*. The VF analyzer and ISsaga tools are used to identify virulence genes and insertion sequences in the sorted plasmids. Using the tool PHASTER, the participation of prophage and integrase genes was discovered. Resistance to sulfonamide and beta-lactam was the most common ARG among the plasmids. Fil, pil, and XCP secretion systems are prevalent virulence genes. The prophage, integrase, and transposons were also identified. The correlation analysis of ARG, VF, and IS revealed that ISs, rather than virulence factors, had the most significant effect on the *P. aeruginosa* genome studied. As a result, an understanding of infectious bacterial profiles regarding pathogenicity islands and mobile elements is required to gain knowledge of their distribution and limit their spread throughout the world.

Keywords: Antibiotic resistance; health care; insertion sequence; mobile elements; virulence genes.

1. Introduction

Antibiotic resistance is a significant global burden due to increased infection caused by MDR gram-negative bacteria in recent years. It is estimated that nearly 0.7 million people die due to antibiotic-resistant infections (Dixit *et al.*, 2019). ESKAPE (*Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa,* and *Enterobacter species*) encompasses six primary nosocomial-causing pathogens and its virulence increases day by day.

Pseudomonas aeruginosa, a gram-negative bacillus commonly found in the environment, especially in water resources, was first isolated from green pus in 1882 by Gossard. It has a massive set of regulatory genes in its genome (Ali *et al.*, 2021). It has the unique feature of being able to survive under various environmental conditions, making it sustainable in the clinical environment (Jose *et al.*, 2017). The microorganism's pathogenicity depends on its strong affinity

for the host system. This interaction is mediated by a set of specialized factors called the Virulence Factor (VF); it is a significant measure of pathogenicity causing infection in the host system. *P. aeruginosa* strains have been found resistant to most current antibiotics present on the market, including beta-lactams, aminoglycosides, fluoroquinolones, and tetracyclines. A mobile element such as a transposon or insertion sequence plays a prominent role in transferring resistance genes among different bacterial species. The contribution of mobile elements in promoting bacterial resistance and genome evolution is very significant (Ho *et al.*, 2009).

In this study, complete plasmid sequences of *P. aeruginosa* deposited in the National Centre for Biotechnology Information (NCBI) were utilized to detect the presence of antibiotic resistance genes and virulence factors. Additionally, insertion sequence analysis was also performed to decode the correlation between resistant genes and mobile elements in the pathogenicity of *P. aeruginosa*.

2. Material and Methods

2.1 Retrieval of complete plasmid sequence

The 56 complete plasmid sequences of *P. aeruginosa* (https://www.ncbi.nlm.nih.gov/genome/browse/#!/plasmids/Pseudomonas%20aeruginosa) were used for this in silico analysis. The sequences of *P. aeruginosa* were retrieved from the NCBI public database in February 2020.

2.2 Detection of antibiotic resistant genes

A Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) and Resfinder (https://cge.cbs.dtu.dk/services/ResFinder/) are bioinformatics curated online resource tools providing a molecular basis for bacterial antimicrobial resistance (AMR) for nucleotide and protein sequences (Alcock *et al.*, 2020). The plasmids which harbor antibiotic-resistant genes were only taken for further analysis.

2.3 Detection of virulence gene

The presence of virulence genes for the sorted plasmids was found using the tool, Virulence Factor Database (VFanalyzer, http://www.mgc.ac.cn/VFs/); it is a comparative pathogenomics pipeline. It constructs conserved regions within the query genome and conducts iterative sequence similarity searches to avoid false positives (Liu *et al.*, 2019).

2.4 Insertion sequence analysis

The mobile elements like Insertion Sequence and Transposons in the sorted plasmids were analyzed using the ISsaga database (http,//issaga.biotoul.fr/issaga_index.php), which works under the platform of the ISfinder (Varani *et al.*, 2011).

2.5 Detection of prophage, integrase, and transposons

The presence of the prophage and integrase gene in the chosen plasmid was analyzed using the tool PHASTER (https://phaster.ca/) followed by BLAST. The transposons were found using the tool ISsaga database. The analysis was done only for the plasmids which have a correlation profile (ARG, IS and VF).

2.6 Phylogenetic analysis

The evolutionary relationship of plasmids was determined using MAFFT software (https://mafft.cbrc.jp/alignment/server/) for the chosen plasmids. MAFFT is based on the Fourier transform theory. It provides multiple sequence analysis and a phylogenetic interface to the user under one platform (Katoh *et al.*, 2019).

3. Result and Discussion

The genome analysis was conducted by analyzing 56 complete plasmid sequences (Table 1) of *P. aeruginosa* (1 kb to 500 kb) retrieved from the NCBI database. This study is exclusively based on the in silico approach. Out of 56 plasmids, 26 plasmid sequences were found to have various antibiotic resistance genes based on the annotation using the CARD and ResFinder tools, whereas 22 plasmids were identified to have 100% perfect resistance gene sequences in their genome.

Accession Number	Stuain	Size(Mb)		CDS	Delegge Date
Accession Number	Stram	Size(IVID)	GC 70	CDS	Release Date
CP011370.1	S04 90	0.159187	57.7321	175	2015-05-08T
CM003767.1	BH6	0.003652	55.8598	2	2016-02-08T
CP016215.1	PA121617	0.423017	56.4067	460	2016-07-07T
AJ877225.1	Nil	0.057121	59.4702	51	2005-06-01T
AM261760.1	Nil	0.089147	59.0059	97	2006-09-16T
AM778842.1	Nil	0.024179	63.8116	29	2007-08-21T
EU410482.1	Nil	0.00214	45.7944	1	2008-05-21T
HM560971.1	Nil	0.123322	60.5829	137	2014-10-15T
AY257538.1	Nil	0.103532	60.928	105	2012-11-04T
KC189475.1	Nil	0.02188	62.8108	23	2013-03-07T
KC609322.1	Nil	0.007995	55.5222	8	2013-09-12T
KC609323.1	Nil	0.031529	60.189	26	2013-09-14T
CM007350.1	PA3448	0.049094	58.8972	58	2016-10-27T
CP015000.1	PA7790	0.049021	58.8972	57	2016-11-08T
CP018048.1	DN1	0.317349	56.9376	384	2016-12-20T
CP020602.1	E6130952	0.036454	61.3348	40	2017-04-13T

Table 1. Fifty-six plasmids taken for the analysis

CP017294.1 PA83 0.398087 59.3712 425 2017-07-08T CP025052.1 0.059923 PB353 57.3386 75 2017-12-08T CP025054.1 PB354 0.059923 57.3386 75 2017-12-08T LT969519.1 **RW109** 2017-12-20T 0.555265 58.0933 588 LT969521.1 **RW109** 0.151612 57.2778 162 2017-12-20T CP027173.1 AR 0353 0.041559 60.7979 46 2018-03-13T CP027175.1 AR 0230 0.071782 59.6877 82 2018-03-13T CP027176.1 AR 0230 0.00135 48 2 2018-03-13T CP027167.1 AR 0356 0.165365 55.7857 200 2018-03-13T CP027168.1 AR 0356 0.057053 60.8592 68 2018-03-13T CP027170.1 AR 0356 509 0.438531 57.1435 2018-03-13T CP029091.1 190 AR441 0.165365 55.7857 2018-05-02T CP029092.1 AR441 0.057052 60.8585 67 2018-05-02T CP029094.1 AR441 0.438529 57.1426 490 2018-05-02T CP029095.1 AR439 0.001129 54.3844 2 2018-05-02T CP029096.1 AR439 0.437392 56.8778 474 2018-05-02T CP020561.2 CR1 0.046804 59.1894 56 2018-04-03T CP029708.1 K34-7 0.00444 30.0676 3 2018-06-16T CP030914.1 Y89 0.085842 60.0953 95 2018-08-14T CP032256.1 AR 0111 0.129422 57.515 150 2018-09-19T CP029714.1 BH9 0.041024 63.4945 26 2018-11-19T CP033772.1 FDAARGOS 532 0.001249 51.7214 1 2018-11-26T FDAARGOS 532 1 CP033773.1 0.001089 46.3728 2018-11-26T CP033834.1 FDAARGOS 570 0.036032 61.2816 42 2018-11-26T CP034355.1 IMP-13 0.130306 57.652 147 2018-12-19T LS998784.1 0.024853 57.0635 2019-01-29T 1 31 56.5819 CP039294.1 PABL048 0.414954 483 2019-04-22T CP040126.1 PA298 0.395774 56.8643 454 2019-05-20T AZPAE15042 0.185168 59.3385 205 CP041355.1 2019-07-18T CP041355.1 C79 0.04018 58.0762 37 2019-08-06T CM017760.1 TC4411 56.9659 478 0.419683 2019-08-23T CP042268.1 HOU1 0.167069 64.9259 165 2019-09-15T GIMC5001:PAT-CP043482.1 0.049805 59.3796 61 2019-09-15T 23 GIMC5002:PAT-CP043548.1 0.049805 59.3896 59 2019-09-15T 169 **PA59** 54 CP024631.1 0.046627 59.1331 2019-11-05T CP039989.1 T2436 0.422811 56.8755 472 2019-12-01T CP039991.1 T2101 0.439744 56.9816 492 2019-12-01T CM019124.1 4068 0.051059 59.5683 62 2019-12-05T CP049162.1 MS14403 0.05013 67 59.601 2020-03-02T KC543497.1 **PA96** 0.500839 57.598 545 2013-09-12T

Insilico analysis on the complex relationship among antibiotic resistance, virulence genes and insertion sequences in Pseudomonas aeruginosa

The antibiotic-resistant gene analysis of twenty-two *P. aeruginosa* plasmids (Table 2) indicates that the strains harbored genes mediating resistance to antimicrobial-resistant groups, namely aminoglycosides, beta-lactams, fluoroquinolone, macrolide-lincosamide-streptogramin B (MLS), phenicol, sulfonamide and tetracycline. The AMR genes against sul were found to be prominent (n=12), followed by those against OXA (n=7) and KPC (n=4 each). Most of the plasmids encode sulfonamide and beta-lactam resistance (Figure. 1).

Accessio n No	ARO AMR Family Drug Class		Drug Class	Resistance Mechanism
			carbapenem,	
			cephalosporin,	antibiotic
CP01137	VIM-2 aac(6')-	VIM	cephamycin, penam	inactivation antibiotic
0.1	29b	AAC(6')	aminoglycoside antibiotic	inactivation antibiotic target
	sul1	sul	sulfonamide antibiotic monobactam,	replacement
CM00376			carbapenem.	antibiotic
7.1	KPC-2	KPC 16S	cephalosporin, penam	inactivation antibiotic target
	Arma	rRNAmethyltransferase	aminoglycoside antibiotic carbapenem,	alteration
			cephalosporin,	antibiotic
	IMP-45	IMP	cephamycin, penam	inactivation antibiotic
	OXA-1	OXA	cephalosporin, penam	inactivation
CP01621	catB3	cinoraniphenicoi	nhanical antibiatio	inactivation
5.1		acetyltransferase (CAT)	phemeor antibiotic	antibiotic torget
	cu11	cul	sulfonomido antibiotio	replacement
	Sull	Sui quinolone resistance	sufformatinge antibiotic	antibiotic target
	QnrVC6	protein macrolide	fluoroquinolone antibiotic	protection antibiotic
	mph APH(3')	phosphotransferase (MPH)	macrolide antibiotic	inactivation antibiotic
	-Ia	APH(3')	aminoglycoside antibiotic	inactivation antibiotic
107700	aac(3)-I	AAC(3)	aminoglycoside antibiotic	inactivation
AJ87722 5.1	aadA5	ANT(3")	aminoglycoside antibiotic	inactivation
	sul1			antibiotic target
	5411	sul	sulfonamide antibiotic	replacement
	TFM-2		monobactam,	antibiotic
AM2617	1 1/11/1-2/	TEM	cephalosporin, penam,	inactivation
60.1	aadA1	ANT(3")	aminoglycoside antibiotic	antibiotic inactivation

Table 2. Resistance genes detected in the 22 plasmids of P. aeruginosa

	tet(A)	major facilitator		
		superfamily (MFS)	tetracycline antibiotic	antibiotic efflux
	dfrA1	trimethoprim resistant dihydrofolatereductase	diaminopyrimidine antibiotic	antibiotic target replacement
	SAT-2	streptothricinacetyltransfera		antibiotic
		se (SAT)	nucleoside antibiotic	inactivation
	11	1		antibiotic target
KC18947	sull	sui	suitonamide antibiotic	replacement
5.1			carbapeneni,	antihiatia
	VIN 2	X7IN/	cephalosporin,	inactivation
	V 11VI-2	V IIVI	monobactam	mactivation
KC60032			arbananam	antibiotio
3 1	KPC 2	KDC	carbaponerin, penam	inactivation
5.1	KrC-2	KIC	cephalosporni, penam	antibiotic target
	sul1	cul	sulfonamide antibiotic	replacement
	aac(6')-	Sul	sunonamide antioiotie	antibiotic
	Ih	$\Delta \Delta C(6')$	aminoglycoside antibiotic	inactivation
CP02505	OXA-			antibiotic
2.1	101	OXA	cephalosporin penam	inactivation
2.1			monobactam.	antibiotic
	TEM-1B	TEM	cephalosporin, penam	inactivation
	CTX-M-		- F F F	antibiotic
	30	CTX-M	cephalosporin	inactivation
			1 1	antibiotic target
	sul1	sul	sulfonamide antibiotic	replacement
	aac(6')-			antibiotic
CP02505	Ib	AAC(6')	aminoglycoside antibiotic	inactivation
4.1			monobactam,	antibiotic
	TEM-1B	TEM	cephalosporin, penam	inactivation
	CTX-M-			antibiotic
	30	CTX-M	cephalosporin	inactivation
CP02717			carbapenem,	antibiotic
3.1	GE'S-1	GES	cephalosporin, penam	inactivation
			monobactam,	
CP02716			carbapenem,	antibiotic
8.1	KPC-2	KPC	cephalosporin	inactivation
			monobactam,	
CP02909	WDG A	WDG	carbapenem,	antibiotic
2.1	KPC-2	KPC	cephalosporin,	inactivation
	11			antibiotic target
	sull	sul	sulfonamide antibiotic	replacement
			carbapenem,	a
CD02000	IN / D 10	I) (D	cephalosporin,	antibiotic
CF02909 6 1	11111-10	IIVIF small multidrug registance	cepnamycin, penam	macuvation
0.1		(SMR) antibiotic offlux		
	each		fluoroquinolone antibiotio	antibiotic offlux
	AAC(6')	թաութ		antibiotic
	-II	AAC(6')	aminoglycoside antibiotic	inactivation
CP02970	tet(K)	major facilitator	tetracycline antibiotic	antibiotic efflux
	()	J	J	

8.1		superfamily (MFS) antibiotic efflux pump		
			carbapenem,	
	VIM-6		cephalosporin,	antibiotic
	OXA 10	VIM	cephamycin, penam	inactivation antibiotic
CP03383	aac(6')-	OXA	cephalosporin, penam	inactivation antibiotic
4.1	Ib3' aph(6)-	AAC(6')	aminoglycoside antibiotic	inactivation antibiotic
	Id	APH(6) major facilitator	aminoglycoside antibiotic	inactivation
	cmx	superfamily (MFS)		
		antibiotic efflux pump	phenicol antibiotic	antibiotic efflux antibiotic target
	sul1	sul	sulfonamide antibiotic	replacement antibiotic
CP03929 4.1	aadA10	ANT(3")	aminoglycoside antibiotic	inactivation antibiotic
	OXA-10 ANT(2")	OXA	cephalosporin, penam	inactivation
	-Ia	ANT(2")	aminoglycoside antibiotic carbapenem,	inactivation
			cephalosporin,	antibiotic
	IMP-45	IMP chloramphenicol	cephamycin, penam	inactivation antibiotic
CP04012	catB3	acetyltransferase (CAT)	phenicol antibiotic	inactivation antibiotic target
0.1	sul1	sul	sulfonamide antibiotic carbapenem,	replacement
			cephalosporin,	antibiotic
CP04135	VIM-1	VIM	cephamycin, penam	inactivation antibiotic target
5.1	sul1	sul resistance-nodulation-cell	sulfonamide antibiotic	replacement
CP04226 8.1	CpxR	division (RND) antibiotic	a macrolide antibiotic	antibiotic efflux
	APH(3")	emux pump		antibiotic
	-Ib	APH(3")	aminoglycoside antibiotic	inactivation
	sul1	sul	sulfonamide antibiotic	antibiotic target replacement antibiotic
CP03998	OXA-10	OXA major facilitator	cephalosporin, penam	inactivation
9.1		superfamily (MFS)		
	cmlA5	antibiotic efflux pump rifampin ADP-	phenicol antibiotic	antibiotic efflux antibiotic
	arr-2 ANT(2")	ribosyltransferase (Arr)	rifamycin antibiotic	inactivation antibiotic
	-Ia	ANT(2")	aminoglycoside antibiotic	inactivation
	VEB-2	VEB	monobactam,	antibiotic

			cephalosporin	inactivation
	OXA-10	OXA	cephalosporin, penam	inactivation
	FEB-1	VED	monobactam,	antibiotic
	(_)	VEB major facilitator	cephalosporin	inactivation
	tet(G)	superfamily (MFS)	tetracycline antibiotic	antibiotic efflux
CP03999	ANT(2")			antibiotic
1.1	-la	ANT(2")	aminoglycoside antibiotic	inactivation
	CARB-2	CARB	Penam	inactivation
	FFR 1		monobactam,	antibiotic
TLD-1	VEB	cephalosporin	inactivation	
	sul1	cul	cenhalosporin nenam	antibiotic
		501	cephalosporni, penam	antibiotic
	OXA-10	OXA	cephalosporin, penam	inactivation
	11	1	10 11 (11)	antibiotic target
KC54349	$\Delta \Delta C(6')$	sui	suitonamide antibiotic	antibiotic
7.1	-Ib4	AAC(6')	aminoglycoside antibiotic	inactivation
			carbapenem,	
			cephalosporin,	
			cephamycin, penam,	antibiotic
	IMP-9	IMP	penem	inactivation

Fig. 1. Frequency of Beta-lactam resistant genes in the plasmids studied

Sulfonamide resistance is frequently associated with florfenicol and oxytetracycline resistance, and it will be transferred to-resistant genes through selection (Dominguez *et al.*, 2019). However, in this study, sul genes coexisted with beta-lactam resistant genes like OXA10, CTX-M-30, and TEM in most of the plasmids. The beta-lactam resistant genes like OXA, VIM, IMP, TEM, CTX, and KPC have been detected in the plasmids taken for the analysis. Beta-lactam antibiotics are commonly used for the treatment of *P. aeruginosa* infections. Antibiotic resistance is caused by lactamase enzymes cleaving antibiotics (Zilberberg *et al.*, 2010). In *P. aeruginosa*, there is a significant association between toxin secretion and beta-lactamase

producers. In clinical isolates of *P. aeruginosa*, pigment production was more strongly linked to beta-lactam antibiotic resistance than the development of virulence components such as elastases and proteases (Finlayson *et al.*, 2011).

3.1 Involvement of Virulence Factors

Among 22 plasmids analyzed in the VFDB database, only 11 plasmids were found to have virulence genes in their genome (Table 3). The virulence factors for adherence and secretion systems were prominent in the *P.aeruginosa* plasmid taken for the study.

S. No	Accession No	Virulence genes
1	CP039294.1	xcpU
2	CP016215.1	mtrD, xcpU, xcpA
3	AJ877225.1	cyaB, cyaA
4	CP029096.1	bplL, xcpU, xcpA
5	CP039989.1	xcpU, xcpA
6	CP011370.1	pilB, pilQ
7	CP039991.1	xcpU, xcpA
8	CP040126.1	xcpU, xcpA
9	CP027173.1	fliD
10	KC543497.1	xcpU, xcpA
		fimV, xcpQ, xcpR, xcpS, xcpY, xcpW, xcpP, xcpU, xcpT, xcpV,
11	CP042268.1	pilB, pilT, pilQ, pilB, gspE, bplL, tagT, ybtP, eccCa1, cyaB, fha1,
		pchl, fleR, popN

Table 3. Virulence gene profile for plasmids

P.aeruginosa has various cell surface pili and flagella related to genes responsible for the twitching motility of the bacteria and involved in its biogenesis, expression, and functionality of pilus. It attaches to the host cell and guides the bacteria to accelerate along the cell surface. It also helps biofilm formation, avoids the host immune system, and creates resistance against antibiotics (Sriramulu *et al.*, 2005). The secretory system plays a significant role in bacterial pathogenicity. There were about eight types of secretory systems (Tseng *et al.*, 2009). Xcp factor comes under T2SS and has been identified in *P. aeruginosa*. Xcp needs the proper localization of PilB and PilC and secretes toxins in the extracellular fluid. Xcp secretes the quorum sensing regulated virulence factors elastaseA, elastase B and exotoxin A.

3.2 Existence of Insertion sequence in plasmids

A mobile genetic element such as transposons, insertion sequence, and integrons plays a crucial role in *P. aeruginosa* to become multidrug-resistant bacteria. The sorted plasmids are predicted to have 12 different transposon families and various insertion sequences like ISKpn6, ISKpn7,

ISPa16, ISPa17, IS6100, ISPt3, ISPen2, TnAs3 and IS222. Among the 12 types, IS21 and IS6 are the most prominent families (Figure. 2).

Fig. 2. ISs profile for plasmids taken for study

The study by Bouteille *et al.*, 2004 suggested that IS mediated efflux pump depression has been detected in the IS21 family due to more repressors, especially in *P. aeruginosa*, that tend to increase the occurrence of beta-lactam resistant genes in the genome. According to the study, the majority of the beta-lactam resistance identified has an IS21 family of ISs.

The resistant gene KPC belongs to the beta-lactam resistance and has been chiefly carried along with the Tn3 like transposon family. This genome arrangement plays a role in disseminating the blaKPC gene among varied species, especially in *P. aeruginosa*. The current study shows the presence of the blaKPC gene along with ISKpn6 and ISKpn7 belonging to the IS1182 and IS21 families, respectively. The study by Johnson TA *et al.*, 2016 revealed that IS6100 type transposon has an abundance of genes conferring resistance to about six antibiotic classes and class 1 integrase. In relevance to this study, IS6100 is likely to have a resistance gene profile (APH(3")-Ib, sul1, cmlA5, arr-2, ANT (2")-Ia, VEB-2) in two plasmids and another resistance pattern (OXA-10, sul1, AAC(6')-Ib4, IMP-9) found in three plasmids.

The correlation profile among ARG, IS, and VG for 7 out of 22 *P.aeruginosa* plasmids taken for analysis is listed in Table 4. The correlation analysis shows that five plasmids had similar kinds of ARGs and are profiled in their genomes, and it is interesting that VF was not found in those five plasmids. The remaining two plasmids found virulence genes for adherence with similar ARG patterns.

S. No	Accession No	Sample source	Location	ARG	IS	VF
1	KC609323.1	Bronchial secretion	France	KPC-2	ISApu1,ISKpn6	No
2	CP025052.1	Urine	USA	sul1 TEM-1 CTX-M-30	IS6100,ISEcp1	No
3	CP025054.1	Urine	USA	sul1 TEM-1 CTX-M-30	IS6100	No
4	CP027168.1	-	USA	KPC-2	ISKpn6, ISKpn7	No
5	CP029092.1	-	USA	KPC-2	ISKpn6, ISKpn7	No
6	CP039989.1	Adult male sputum	UK	APH(3")-Ib sul1 OXA - 10 arr-2 ANT(2")-Ia VEB-2	IS10A, IS6100	xcpU, xcpA
7	CP039991.1	Adult male sputum	UK	OXA-10 FEB-1 ANT(2")-Ia FEB-1 sul1	IS6100	xcpU, xcpA

Table 4. Correlation profile on ARG, IS and VF

3.3 Detection of Prophage, Integrase and Transposons

Prophages are bacteriophages that have been identified to contribute to interstrain genetic diversity by integrating into bacterial chromosomes via an integrase gene. A transposase is indeed an attributed recombinase that facilitates transposition or an integrase in the case of a retrovirus with RNA intermediate in its life cycle. The transposons Tn3, ISEc9, IS600, IS3, IS6100, Tn5041, and IS1479 were identified in the plasmids taken for the study using the ISsaga database. The same resistance gene appears to be linked to many mobile elements; a closer look shows a more complicated picture.

The prophage and integrase genes were found using the PHASTER tool. The intl1 integrase was present in three plasmids taken for the study. Integrons can significantly improve the host bacterium's fitness in clinical settings. Several outbreaks of bacteria generating beta-lactamases have been linked to integron-associated antibiotic resistance genes. The presence of intI1 in recycled water is strongly linked with sul1 and tet antibiotic-resistant genes (Gillings *et al.*, 2015).

S. No	A. No	Integrase	Prophage	Transposon
1	CD020006 1	intI 1	exonuclease, Hef nuclease,	Transposase
1	CP029090.1	Inu i	methyltransferase	IS3/IS911 family
2	CP025054.1	intI1	No	ISEc9 and IS6100
3	CP025052.1	intI1	No	ISEc9 and IS6100
4	CP039989.1	No	exonuclease, Hef nuclease	Tn3
5	CP039991.1	No	exonuclease, Hef nuclease, methyltransferase,	Tn3 and IS600
6	KC609323.1	No	No	Tn5041 and Tn5044
7	CP027168.1	No	No	Tn5041 and Tn5044

Table 5. Plasmids	bearing	Integrase,	Prophage and	Transposon
-------------------	---------	------------	--------------	------------

Prophages detected in this study are exonuclease, Hefnuclease and methyltransferase (Table 5). Many bacteriophages carry methyltransferase genes. Methylation seems to be required for pathogen survival in certain strains. Hef includes a domain linked to a wide range of endonucleases. However, it has no sequence homology with the other Hef families. The survival of a hef in a population depends on repeated transposition to various destinations followed by subsequent dissemination among phages via homing (Zund *et al.*, 2021).

3.4 Phylogenetic analysis

Phylogenetic analysis was performed using MAFFT software. The analysis was done for seven plasmids with a correlation profile (ARG, IS, and VF) as per the above results. The result shows that the plasmids encoding the similar pattern of ARG and IS was presented under a single clade compared to other plasmids. The influence of prophage and integrase genes was not as prominent as per this phylogeny analysis. It indicates that plasmids play an essential role in promoting the transmission of ARG and mobile elements amongst varied plasmid categories and distant evolutionary lineages.

The sequences CP039989 and CP039991 have the same prophage and antibiotic resistance genes. However, the sequence KC609323 from France lacks any prophage genes, although all three plasmids belong to the same clade (Figure. 3). A similar situation happened in the sequences, CP027168 and CP029092.

Fig. 3. Phylogeny relation of plasmids

Zhang *et al.* 2019 illustrated that the bacteria have different ARG profiles in different time intervals. However, selective pressure has little effect on most virulence genes. In this study, the absence of virulence factors was seen in some plasmids even though they tended to have ARG and ISs in their genome. This may be due to the genome reduction in the infectious bacteria, which tends to the absence of virulence factors (Beceiro *et al.*, 2013). Hence, the results suggest that the possible spread of *P. aeruginosa* among various microbial communities is due to the influence of some virulence genes. The abundance of insertion sequences in their genome plays a notable role in pathogenicity.

4. Conclusion

In this study, 22 out of 56 complete plasmids of *P. aeruginosa* were found to have known antibiotic resistance genes. The most prominent resistant genes are sulfonamide and beta-lactam and mainly related to adherence and xcp secretion system. IS21 and IS6 are the prominent IS families observed in plasmids taken for the analysis. The plasmids were identified as the intI1 gene and prophages like exonuclease, Hef nuclease, and methyltransferase. The correlation among ARG, VF, and IS indicates that IS elements occurring within the plasmids significantly influence the antibiotic resistance profile in the analysed *P. aeruginosa* plasmids. In contrast, the proportion of VF was lower and predicted to have less influence on the genome. It could be that environmental factors might have some influence on the genome features of ARGs and VFs in the plasmids taken for the study. However, the coexistence of antibiotic resistance genes and mobile elements needs to be considered to understand the dissemination and influence on each other in multidrug-resistant bacteria like *P. aeruginosa* to identify more specific and accurate drug treatments to overcome the infections in the future.

References

Alcock, B.P., Raphenya, A.R., Lau, T.T.Y., Tsang, K.K., Bouchard, M., Edalatmand, A., *et al.* (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1): D517-D525.

Ali, F., Kamal, S., Shakeela, Q. & Ahmed, S. (2021) Extended-spectrum and Metallo-beta lactamase enzymes mediated resistance in Pseudomonas aeruginosa in clinically isolated specimens. Kuwait Journal of Science, 48(2): 1-9.

Beceiro, A., Tomás, M. & Bou, G. (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2):185-230.

Boutoille, D., Corvec, S., Caroff, N., Giraudeau, C., Espaze, E., Caillon, J., Plésiat, P., & Reynaud, A. (2004) Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. FEMS microbiology letters, 230(1), 143–146.

Dixit, A., Kumar, N., Kumar, S. & Trigun, V. (2019) Antimicrobial Resistance: Progress in the Decade since Emergence of New Delhi Metallo- β -Lactamase in India. Indian Journal of Community Medicine, 44(1):4-8.

Domínguez, M., Miranda, C. D., Fuentes, O., de la Fuente, M., Godoy, F. A., Bello-Toledo, H., & González-Rocha, G. (2019) Occurrence of Transferable Integrons and *sul* and *dfr* Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Frontiers in microbiology, 10, 748.

Finlayson, E.A. & Brown, P.D, (2011) Comparison of antibiotic resistance and virulence factors in pigmented and non-pigmented *Pseudomonas aeruginosa*. The West Indian medical journal, 60 (1), 24–32.

Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M, & Zhu, Y.G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J, 9(6):1269-1279.

Ho Sui, S.J., Fedynak, A., Hsiao, W.W., Langille, M.G., & Brinkman, F.S. (2009) The association of virulence factors with genomic islands. PloS one, 4(12), e8094.

Johnson, T. A., Stedtfeld, R. D., Wang, Q., Cole, J. R., Hashsham, S. A., Looft, T., Zhu, Y. G., &Tiedje, J. M. (2016) Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture. mBio, 7(2), e02214–e2215.

Jose, J., Santhiya, K., Jayanthi, S. & Ananthasubramanian, M. (2017) Insertion sequencebased analysis of clinical isolates with NDM (*bla*NDM-1) resistance, Indian Journal of Biotechnology; 16(2): 182-188.

Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160-1166

Liu, B., Zheng, D.D., Jin, Q., Chen, L.H. & Yang, J. (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res; 47(D1): D687-D692.

Sriramulu, D.D., Lunsdorf, H., Lam, J.S. & Romling, U. (2005)Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. Journal of Medical Microbiol;54:667-676.

Tseng, T.T., Tyler, B.M. & Setubal, J.C. (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiology, 9, S2.

Varani, A.M., Siguier, P., Gourbeyre, E., Charneau, V. & Chandler, M. (2011)ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biology, 12(3): R30.

Zilberberg, M.D., Chen, J., Mody, S.H., Ramsey, A.M. &Shorr, A.F. (2010)Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review. BMC Pulmonary Medicine, 10:45.

Zünd, M., Ruscheweyh, H.J., Field, C.M., Natalie, M., Miguelangel, C., Daniel, H. et al. (2021) High throughput sequencing provides exact genomic locations of inducible prophages and accurate phage-to-host ratios in gut microbial strains. Microbiome, 9, 77.

Submitted:	06/06/2021
Revised:	17/05/2022
Accepted:	01/06/2022
DOI:	10.48129/kjs.14591