
The effect of antiviral treatment on SARS-CoV-2 infectious disease progression: A

comparison of the multi-state models

Nihan Potas∗

Dept. of Healthcare Management, Ankara Hacı Bayram Veli University, Turkey
*Corresponding author: nihan potas@hotmail.com

Abstract

Combating SARS-CoV-2 is the first concern and goal of the whole world faced with the global health
crisis. Since 2019, the SARS-CoV-2 infection (COVID-19) and even mutated infection cases have been
increasing rapidly. From 2019 through 27 August 2021, a total of 214,468,601 individuals were con-
firmed cases of SARS-CoV-2, including 4,470,969 death toll. Some of these individuals were able to
access treatment and some could not, but for a while there was complete uncertainty. It was not known
whether those who accessed treatment were lucky, but treatment was based on trial and error because of
this uncertainty around the world until data was collected. Therefore, the aim of this study was to model
SARS-CoV-2 infectious disease progression from the date of polymerase chain reaction (PCR) test to
the date of negative outcome via Bayesian multi-state model approaches considering risk factors such
as gender, age, and antiviral treatment. Data from 746 inpatients were collected from August 1st until
the December 1st, 2020. For the multi-state model, five various discrete states were selected according
to the Republic of Turkey Ministery of Health treatment algorithm. The results showed that Bayesian
multi-state models with the Weibull distributed baseline hazard function were more appropriate models
in the presence of risk factors and antiviral treatment.

Keywords: Bayesian multi-state modeling; continuous-time Markov process; antiviral treatment; base-
line hazard function, SARS-CoV-2 infectious disease progression

1. Introduction

Longitudinal failure time data and also the occurrence of subsequential medical events are widely de-
scribed and investigated by complex models such as multi-state modeling and competing risks models
(Beyersmann et al., 2012). Modeling, estimating and predicting transition probabilities of being in the
state (having disease or not), and between states are common for evaluating progression of chronic and
non-chronic diseases and events (death) in practice and epidemiology. Infectious diseases are included in
non-chronic diseases in spite of the fact that the transitions of times are shorter. It was observed that com-
plex situations in chronic diseases are also experienced in infectious disease progression with the effect
of potential risk factors (Crowther and Lambert, 2017). The complexity of multi-state data depends on
the number of states, risk factors (covariates), and the transitions between the states. However, as com-
plex as it is, multi-state modeling can be estimated by parametric, semiparametric, and non-parametric
inferences with both frequentist and bayesian approaches.

Some of the most important studies about Bayesian approaches to disease multi-state modeling in-
clude, but are not restricted to prostate cancer data analyzed based on surgery and radiotherapy outcomes,
with the Bayesian multi-state modeling (Beesley et al., 2019). A proposed hierarchical Bayesian multi-
state model was investigated by multiple capture-recapture ecological data (Calvert et al., 2009). Using
a new Bayesian multi-state model, radio-telemetry, band-resight, and dead recovery data for reintroduced
individuals were analyzed based on survival and breeding state transitions (Converse et al., 2012). The
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breast cancer tumor progression for women was modeled with Bayesian multi-state analysis, consid-
ering the risk factor of tumor history in the family (Hui-Min Wu et al., 2008). When in attempt to
determine the risk factors and transitions between the smoking states in a Bayesian multi-state model,
the expectation-maximization variable selection method was proposed (Koslovsky et al., 2018). HIV
disease progression in Zimbabwe was investigated with the Bayesian multi-state model according to pa-
tients receiving antiretroviral therapy (Matsena Zingoni et al., 2019). A Bayesian multi-state modeling
approach was presented for periodic cancer screening data (Shen et al., 2017). The Bayesian approach
was used to identify and explore the relationship between occasion-specific cognitive function and stroke
(van den Hout et al., 2015).

Since 2019, the SARS-CoV-2 infectious disease (COVID-19) caused health concerns around the
world, and multi-state modeling studies for patients are scarce (El Zowalaty and Järhult, 2020; Wang
et al., 2020). This is due to the use of data that requires longitudinal follow-up in the nature of the
modeling.

In spite of advancements in treatment and vaccination, SARS-CoV-2 disease has affected 2 billion
people worldwide and still poses to be a global threat (Ursino et al., 2021). Despite the fact that some
patients are asymptomatic, SARS-CoV-2 infectious disease led to around 20% of patients being admitted
to the intensive care unit (ICU), and 70% of inpatients being intubated (Luo et al., 2020; Petrilli et al.,
2020). However, in clinical studies and the experience of many physicians, very contradictory results
emerged regarding patients who were admitted to the intensive care unit, were intubated, and given
antiviral treatments (Çelik and Çora, 2020; Elavarasi et al., 2020; Ghazy et al., 2020; Kılıç et al., 2021;
Ladapo et al., 2020; Meng et al., 2020; Nadaroglu, 2020; Zhou et al., 2020). Countries followed various
or similar treatment algorithms; still, the risk factors impacting the clinical states of patients have yet to
be completely understood. The issue of mortality is still being debated. While few studies about multi-
state modeling related to the SARS-CoV-2 disease all around the world were done (Ursino et al., 2021;
Zuhairoh et al., 2020), a unique study has not been performed using a Bayesian approach for multi-state
modeling.

The aim of this study was to model SARS-CoV-2 infectious disease progression from the date of
testing with a PCR test to the date of being negative via Bayesian multi-state model approaches consid-
ering risk factors such as gender, age, and antiviral treatment. Subsequently, using a mean sojourn time,
how fast a disease progresses from one state to another was determined with the influence of risk factors.
Also, the performances were compared based on Bayesian multi-state model approaches.

In Section 2, SARS-CoV-2 infectious disease progression using Bayesian and frequentist approaches
in a continuous-time discrete-state Markov model is examined. The SARS-CoV-2 infectious disease
dataset was described and the data collection process was explained. The theoretical formulations of
the continuous-time discrete-state Markov model-based Bayesian approach are presented. Section 3,
summarizes the results and compares the performance of the approaches for a five-state Markov model
considering risk factors such as gender, age, and antiviral treatment. Finally, in Section 4, the advantages
and limitations of the models are discussed.

2. Material and methods

The data were collected from Edirne Sultan 1st Murat state hospital patients who were diagnosed
with SARS-CoV-2 infectious disease and hospitalized for the study. Due to the intensity and difficulty
of the treatment of the screened patients, it was decided that it would be appropriate to study the patients
after they were discharged. All patients were evaluated in terms of a PCR test to detect SARS-CoV-2. For
inclusion into study, the following criteria were used; diagnosed with SARS-CoV-2 infectious disease,
hospitalized and treated in Edirne Sultan 1st Murat state hospital, willingness to participate in the study,
and having enough education to understand the aim of the study. The surviving inpatients who did not
fully complete the online survey or gave un-realistic answers were excluded. Therefore, twenty-one of
the online surveys were eliminated based on exclusion criteria.

The study was approved by Edirne Provincial Health Directorate Scientific Research Committee.
Also data was collected from August 1st until the December 1st, 2020 after ethics committee approval
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from Ankara Hacı Bayram Veli University (2020-65).
A semi-structured information form was designed to obtain time-to-event data regarding the ages,

gender, and antiviral treatment. To determine the sequence of states of progression of SARS-CoV-2
information was obtained as follows: date of PCR test, date of being positive for SARS-CoV-2, date of
admission to ICU, date of intubation, and date of being negative for SARS-CoV-2. The survival time,
which was defined as the number of days between the date at which the inpatient’s initial state was
recorded and the date at which the inpatient entered another state until death/recovery. The descriptive
statistics for variables and results of test statistics are presented in Table 1 .

Categories Survivors Non-survivors p− value
(n = 702) (n = 44)

Gender Male 397 (56.6%) 22 (50.0%) 0.488a

Female 305 (43.4%) 22 (50.0%)
Age 50.6 ± 22.1 72.1 ± 12.9 pb<.001**

Antiviral Treatment Control 259 (36.9%) 8 (18.2%) pa<.001**
Treatment 443 (63.1%) 36 (81.8%)

Intensivecare unit No 655 (93.3%) 6 (13.6%) pa<.001**
Yes 47 ( 6.7%) 38 (86.4%)

Intubation No 687 (97.9%) 13 (29.5%) pa<.001**
Yes 15 ( 2.1%) 31 (70.5%)

Survival Time (day) 7.8 ± 11.7 18.7 ± 17.0
Favipiravir No 643 (91.6%) 23 (52.3%) pa<.001**

Yes 59 ( 8.4%) 21 (47.7%)
Azitro||Azax No 409 (58.3%) 35 (79.5%) 0.008a*

Yes 293 (41.7%) 9 (20.5%)
Plaquenil No 404 (57.5%) 29 (65.9%) 0.351a

Yes 298 (42.5%) 15 (34.1%)
Hydroxychloroquine||Chloroquine No 640 (91.2%) 43 (97.7%) 0.216c

Yes 62 ( 8.8%) 1 ( 2.3%)
Other No 390 (55.6%) 14 (31.8%) 0.004a*

Yes 312 (44.4%) 30 (68.2%)

Table 1. Results of Descriptive Statistics (n = 746; p<.05*, p<.001**, ” || ” = or; a: Chi-Square test,
b: Independent Sample t-test, c: Fisher’s Exact test)

2.1 Continuous-time discrete-state transition probabilities

The phenomenon of SARS-CoV-2 infectious disease progression is still an issue for the entire world.
Considering the unique characteristics of the data, different multi-state model approaches were proposed
with the inclusion of risk factors for SARS-CoV-2-specific outcomes. The multi-state models, in particu-
lar, were able to reduce or eliminate bias caused by antiviral treatment allocation and potentially provide
a more valid antiviral treatment comparison (Calvert et al., 2009). The multi-state models are an ex-
clusive form of illness-death model; where the individuals start healthy and then may become infected,
then admitted and even die. In theory, patients who suffer from illness can recover and become healthy
(Andersen et al., 2002). In fact, even intubated inpatients recover from SARS-CoV-2 infectious disease
and regain health. To understand the overall survival of SARS-CoV-2 infectious disease, the univariate
and multivariate Cox proportional hazard model was used, which describes the effect of covariates on
the survival of SARS-CoV-2 inpatients.

According to the Republic of Turkey Ministery of Health treatment algorithm, five discrete states
were selected for the multi-state model in Figure 1 (Ministry of Health, 2020), event-free and SARS-
CoV-2 infectious disease-negative (State 0), alive and SARS-CoV-2 infectious disease-positive (State 1),
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Fig. 1. Diagram of SARS-CoV-2 Infectious disease progression (multi-state model).

alive and SARS-CoV-2 infectious disease-positive in the ICU (State 2), alive and SARS-CoV-2 infectious
disease-positive intubated (State 3) and absorb-state and death (State 4).

Transitions are not possible from SARS-CoV-2 infectious disease-positive intubated (State 3) to the
ICU (State 2) or from SARS-CoV-2 infectious disease-positive in ICU (State 2) to SARS-CoV-2 infec-
tious disease-positive (State 1) for the inpatients.

As stated by the Ministry of Health, older than 65 years of age was evaluated as a risk. However,
it was concluded that the cut-off point in the dataset should be reconsidered since the age variable was
not significant in multi-state models. Maximally Selected Rank Statistics via conditional Monte-Carlo
was used to determine the cut-off point for the risk group (Lausen and Schumacher, 1992). Figure 2
demonstrates the results (M = 4.21; p < 0.01).

Let (Y (t) , t ∈ T ) with a descrete finite states space S = {0, 1, 2, 3, 4} be known as a continuous-
time Markov process. Let k and l, k 6= l denote one of the five states of SARS-CoV-2 infectious disease,
where k, l ∈ {0, 1, 2, 3, 4}. Consider, Y (t) represents inpatients with SARS-CoV-2 infectious disease
in state S at a given time t. For a continuous time, the transition intensity is defined by

λkl (t) = lim
∆t→0+

Pkl (Y (t+ ∆t) = k |Y (t) = l, Z(t))/∆t , k 6= l

λll (t) = −
∑
k 6=l

λkl (t) , k, l = 0, 1, 2, 3, 4

where pkl (∆t) = Pkl (Y (t+ ∆t) = l |Y (t) = k, Z(t)) , is the probability of transition from state
k → l during time period ∆t with time dependent covariate vector Z(t) (Andersen and Keiding, 2002;
Jackson et al., 2003; Régis and Artes, 2015). Transition intensities will be modeled as a function of age,
gender, and antiviral treatments (favipiravir, azitro||azax, plaquenil, hydroxychloroquine||chloroquine
and other) as previously stated. Specifically, each of the 9 non-zero transition intensities seen in Figure 1
is denoted by λkl for k, l ∈ S,

log (λkl) = βkl,0 + βkl,1 × age+ βkl,2 × female+ βkl,3 × Favipiravir
+βkl,4 ×Azitro||Azax + βkl,5 × Plaquenil

+βkl,6 ×Hydroxychloroquine||Chloroquine+ βkl,7 ×Other.
(1)
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Fig. 2. Results of the standardized logrank statistics using conditional Monte-Carlo (Replication Number
= 105).

where age is an indicator of inpatients who are less than or equal to 59 years of age, with older than
59 years as the baseline. The variable male is an also indicator of the gender of patients, where female
inpatients are the baseline. The antiviral treatment covariates are considered the same; Favipiravir is the
indicator for not treated with favipivavir where treated with favipivavir is the baseline. For a continuous-
time Markov process with 5-states in Figure 1, the Markov transition intensity matrix Q (λ) is
λ00 = −λ01 λ01 0 0 0

λ10 λ11 = − (λ10 + λ12 + λ14) λ12 0 λ14

λ20 0 λ22 = − (λ20 + λ23 + λ24) λ23 λ24

λ30 0 0 λ33 = − (λ30 + λ34) λ34

0 0 0 0 0


where the diagonal of Q matrix defined as λll = −

∑
k 6=l λkl, which is exceptional for any model in the

absorb-state λll = 0, let λ be the vector of transition intensity with a length of 25 (Jackson et al., 2003).
The Chapman–Kolmogorov forward and backward differential equations, using the transition intensities,
are computed as dP kl (t)/dt =

∑
∀u Pku (t)λku, ∀k, l. The solution to the differential equations, to

obtain transition probabilities pkl (∆t) are from P (∆t) = exp (Q∆t) (Cox and Miller, 1965).
The forward or backward equations in selection and computation problems arise for complex models.

Some methods are satisfied by both backward and forward equations such as using the Taylor expansion
of exp (Q∆t) (Reddy, 2011). Kulkarni (2011) has demonstrated, however, the accuracy of using the
Taylor expansion method is numerically unstable. The uniformization algorithm for P (t) was proposed
to implement an easier solution.

The algorithm was computed by using the following steps (Kulkarni, 2011):

Step 1: Given Q, t, where approximation error 0 <ε< 1 .

Step 2: Compute λmax by using
∑4

l λkl = λk and λmax ≥ max1≤u≤k(λu) .

Step 3: Compute P̂ by using P̂ = [p̂kl] as (1−
∑
λk/λmax) if k = l or (λkl/λmax) if k 6= l.
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Step 4: A = P̂ ; B = exp− (λmaxt) I ; c = exp− (λmaxt) ; sum = c; k = 1.

Step 5: While sum < 1− ε, do:

i. c = c× (λmaxt)/k

ii. B = B + cA

iii. A = AP̂

iv. sum = sum+ c

v. k = k + 1

end.

Step 6: B is within ε of P (t).

After that, for inpatients i and observation time tij , j = 1, ··· ,mi, is recorded over ni discrete time
points until the sample of n inpatients is complete. In the corresponding states for inpatients i, observed
at a particular time period tij , ti(j−1) can be defined as δij = tij − ti(j−1).

Let Nk be the total observed inpatients in state k and Okl (δij) is the observed inpatients from state
j → k during time period δij . For the likelihood function of SARS-CoV-2 infectious data, assuming that
the observed transitions from the starting state k during time period δij can be modelled, the multinomial
distribution is as follows:

(Ok0 (δij) , . . . , Ok4 (δij)) ∼Multinomial (Pk0 (δij) , . . . , Pk4 (δij) ;Nk (δij)) .

The likelihood function is defined by considering the risk factors as follows:

L (λ,β|Y ) =
n∏
i=1

mi∏
j=1

4∏
k=0

Nk (δij)!∏4
l=0Okl (δij)!

4∏
l=0

Pkl (δij ;Z|λ,β)Okl(δij).

The product of transition probabilities between observed states, inpatients i, i = 1, ..., n, at a given
time ti,1, . . . , ti,mi where observation times j which are observed k times (Kalbfleisch and Lawless,
1985).

2.2 Illness-death with recovery model representation including risk factors

Multi-state model parameters can be estimated using maximum likelihood or Bayesian approaches.
In this study, Bayesian Multi-State Models (BMSM) with different distributed baseline hazard functions
were applied to consider the risk factors. Bayesian estimations, where parameters are iteratively drawn
in a Markov chain Monte Carlo algorithm, were used in an attempt to focus on comparing the maximum
likelihood estimation. The key benefit of utilizing a Bayesian approach is that it provides a flexible
way for estimating posterior transitions based on both the likelihood of SARS-CoV-2 infectious disease
progression data and also additional prior information for unknown parameters (Rashid and Chand,
2019).

In the study, it is assumed that each transition of the illness-death and recovery model is represented
by a Cox proportional hazards model. Accordingly, the transition intensities are defined as follows using
this formula:

λkl (t) = λkl,0(t) exp
(
βTklZ(t)

)
(2)

where λkl,0 is the baseline hazard function for transition k → l and βkl is a vector of coefficients
associated with time dependent covariate vector Z(t) (Marshall and Jones, 1995; Putter et al., 2006).

In the Bayesian multi-state model, a prior distribution is applied to the baseline hazards functions and
the model coefficients. In this analysis of the SARS-CoV-2 infectious disease data using the proposed
Bayesian approach, λkl,0 is assumed to have a parametric-prior distribution as follows:
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λkl,0 ∼ Exp (aekl) , k, l ∈ S, (3)

λkl,0 ∼Weibull (awkl, b
w
kl) , k, l ∈ S, (4)

λkl,0 ∼ Gamma
(
agkl, b

g
kl

)
, k, l ∈ S. (5)

For all 9 transitions, a Cox proportional hazards model structure was utilized, with Gaussian, Weibull
and gamma baseline hazard function (Beesley et al., 2019; Beesley and Taylor, 2021; Casellas, 2007;
Kern et al., 2016). In Bayesian inference, it is common to investigate the effects of the different prior
distributions (Koc and Cengiz, 2020; Ulas and Karaman, 2018). The eight parameters were stated in
equation 1, intercept (βkl,0) and the model coefficients (βkl,1, . . . , βkl,7), respectively.

Within Bayesian models, the choice of prior distribution is a significant decision. Non-informative
priors were chosen as only limited or very little and vague information is known clearly about the
parameters of SARS-CoV-2 infectious disease progression (Saberi and Ganjali, 2013). Each of the
prior distributions for regression coefficients is taken as a Gaussian βkl ∼ Normal

(
0, τ2

kl

)
. The

posterior distribution of parameters λkl,0 and βkl, π (λ,β|Y ) is obtained by using Bayes’ theorem
π (λ,β|Y ) ∝ L (λ,β|Y )π (λ)π (β) where π (λ) and π (β) are prior distributions (Ibrahim et al.,
2001). Random effect variance parameters are frequently given conjugate inverse-gamma priors that
appear to be weakly informative (Rashid and Chand, 2019; Röver et al., 2021). Also, choosing the ran-
dom effect variance parameters within proper intervals did not change any of the results of the analysis.
In common practice, non-informative priors are assigned either uniform or diffuse normal priors with
large variances. However, a generative Bayesian model can be defined with prior predictive simulation
to eliminate the vague information (Wesner and Pomeranz, 2021). The prior distributions (iid) involved
are: aekl, a

w
kl, a

g
kl ∼ Normal (0, 4), bwkl, b

g
kl ∼ Gamma (2.5, 0.4),τ2

kl ∼ Inv − Gamma (0.1, 10) .
The values in computations are suggested according to prior predictive simulation.

To complete the analysis in WinBUGS and R version 4.0.2 software, the likelihood function was
combined with the prior information. For Bayesian estimation, all the parameters were run for 30000
iterations with a burn-in of 9000 iterations to provide draws from the posterior distributions in a Markov
chain Monte Carlo (MCMC) algorithm. In practice, the various posterior distributions can be complex,
and parameters can be estimated using Metropolis-Hastings within Gibbs sampling algorithm. In gen-
eral Gibbs sampling assume that the target distribution is π (λ) where λ = (λ1, . . . , λd) and that the full
conditional distributions π (λi) = π (λi|λ−i), i, i = 1, ..., d are available. The steps are generated
from π (λ). However, sometimes π (λi|λ−i) cannot be sampled directly because of the instability in
the posterior estimates of noninformative priors, Metropolis-Hastings steps can be generated as a sub-
stitute. All the convergence results for Metropolis-Hastings within the Gibbs sampling algorithm still
hold (Beesley and Taylor, 2021; Ghirmai, 2015; Ibrahim et al., 2001). Figure 3 demonstrated Bayesian
approach estimates of the hazard ratio for baseline risk factors and antiviral treatments in each of the 9
transitions from equation 1. In addition, to compare with the multi-state models, univariate and multi-
variate maximum likelihood estimates of the hazard ratio and 95% CIs from standard Cox proportional
hazards models are presented in Table 2.

In the literature, there are several types of variable and model selection methods for multi-state
modelling. In the study, the known method for model comparison and the recent method for variables
selection were used. For Bayesian model comparison and selection of adequate models, the Deviance
Information Criterion (DIC) is extensively utilized in the literature (Ando, 2010; Plummer, 2008; Rossi
et al., 2021). For the variable selection, the expectation-maximization method for Bayesian multi-state
Markov models was proposed with supplementary documents (Koslovsky et al., 2018).

3. Results

According to the survival status of 746 inpatients, there was an overwhelming significant difference
in the risk factors of age, antiviral treatment, being in the ICU, being intubated, and treated with favipi-
ravir (p < .001). In Table 1, there was a more significant difference in the risk factors of treated with
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azitro||azax and others (p < .05). The other treatments (such as immunoglobulin and oseltamivir) were
combined as other treatments due to the low frequencies among inpatients.

Categories HRsunivariable HRsmultivariable
(95%CIs) (95%CIs)

Gender Male - -
Female 1.22 0.74

(0.67, 2.21) (0.39, 1.40)
Age 1.03** 1.04**

(1.01, 1.05) (1.02, 1.06)
Antiviral Treatment Control - -

Treatment 0.68 -
(0.36, 1.29) -

Favipiravir No - -
Yes 2.91** 2.38*

(1.55, 5.44) (1.17, 4.84)
Azitro||Azax No - -

Yes 0.59 0.65
(0.28, 1.28) (0.26, 1.60)

Plaquenil No - -
Yes 1.10 1.96

(0.57, 2.12) (0.86, 4.48)
Hydroxychloroquine|| Chloroquine No - -

Yes 0.33 0.56
(0.05, 2.45) (0.08, 4.85)

Other No - -
Yes 2.20* 1.66

(1.17, 4.17) (0.81,3.41)
Likelihood ratio test 30.34**

Wald test 24.53**
Score (logrank) test 26.96**

AIC 405.80
Concordance Index 0.80

Table 2. Results of univariate and multivariate Cox proportional hazard model (n = 746;
p<.05*,p<.001**; ” || ” = or; HRs: Hazard Ratios, CIs: Confidence Intervals)

Regarding Table 2, age (HR 1.03, 95% CI: 1.01–1.05), treated with favipiravir (HR 2.91, 95% CI:
1.55–5.44) and other treatments (HR 2.2, 95% CI: 1.17–4.17) were significantly associated with overall
survival in univariate analysis.

Briefly; age and being treated with favipiravir were associated with the overall survival in the mod-
els. Interestingly, being treated with favipiravir did not decrease the risk of death (HR 2.38, 95% CI:
1.17–4.84), and similar to the literature, age increased the risk of death (HR 1.04, 95% CI: 1.02–1.06).
However, the antiviral treatments were not clear according to Cox hazard proportional models, this in-
creased the need for more complex analysis and models. Antiviral treatments should be investigated
for whether they increase or decrease the risk of entering the next state. Therefore, the results will be
effective for the treatment of infected patients and inpatients.
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Transitions to
from SARS-CoV-2 SARS-CoV-2 SARS-CoV-2 SARS-CoV-2 Event

-Negative -Positive -Positive in ICU - Positive in Intubation (Death)
State 0 1 2 3 4

SARS-CoV-2 0 0 746 0 0 0
-Negative

SARS-CoV-2 1 655 0 85 0 6
-Positive

SARS-CoV-2 2 32 0 0 46 7
-Positive in ICU

SARS-CoV-2 3 15 0 0 0 31
-Positive in Intubation

Table 3. Number of the total inpatients’ transitions between states.

The number of inpatients entering these states is summarized in Table 3. These 746 inpatients were
defined as going from SARS-CoV-2-Negative (0) to SARS-CoV-2-Positive (1) in the multi-state model.

The highest contribution of the transitions came from 655 (87.8%) of inpatients who went from
SARS-CoV-2-Positive (1) to SARS-CoV-2-Negative (0). This means that most of the inpatients re-
covered. The highest contribution to the death state came from 31 (75%) intubated inpatients; while
contrarily, the lowest contribution to the SARS-CoV-2-Negative state came from 15 intubated inpatients.
The posterior mean estimates for hazard ratios with 95% confidence intervals in the Bayesian multi-state
models are presented in Table 4. The results show that multi-state models can be used to determine
which risk factors are relevant for which transitions. The results reveal the expected tendencies of the
SARS-CoV-2 disease.

The baseline risk factors were not associated with the transition from initial SARS-CoV-2-Negative
to SARS-CoV-2-Positive in all multi-state models.

For the transition from SARS-CoV-2-Positive to SARS-CoV-2-Positive in ICU, there was an associ-
ation with age, azitro||azax, plaquenil and other treatments in all univariate multi-state models. Patients
treated with azitro||azax, (EBMSM-HR 0.17, 95% CI: 0.06–0.45; WBMSM-HR 0.24, 95% CI: 0.10–
0.41; GBMSM-HR 0.32, 95% CI: 0.11–0.98, respectively) and plaquenil (EBMSM -HR 0.11, 95% CI:
0.06–0.21; WBMSM-HR 0.28, 95% CI: 0.13–0.62; GBMSM-HR 0.11, 95% CI: 0.06–0.19, respectively)
and other treatments (EBMSM -HR 0.37, 95% CI: 0.19–0.72; WBMSM-HR 0.52, 95% CI: 0.26–0.99;
GBMSM-HR 0.32, 95% CI: 0.16–0.63, respectively) had significantly reduced the risk of admission to
the ICU. Older age excessively increased the transition rate for the same transitions.

In exponential and Weibull-bayesian multi-state models, the favipiravir-treated intubated inpatients
had decreased risk of death; however, interestingly GBMSM results were not significant. Favipiravir
treatment showed promising results for SARS-CoV-2 in the literature and the same results are observed
in our univariate study (Coomes and Haghbayan, 2020).

An expected result was that female inpatients and hydroxychloroquine||chloroquine treated inpa-
tients had no significant association with transition to another state in the univariate models. Another
interesting result was that SARS-CoV-2-Positive inpatients in ICU treated with plaquenil had decreased
the risk of being intubated (EBMSM -HR 0.41, 95% CI: 0.17–0.97; WBMSM-HR 0.32, 95% CI: 0.20–
0.84; GBMSM-HR 0.35, 95% CI: 0.15–0.84, respectively).

When considering the recovery transitions, older age was associated with a reduction in transi-
tions from SARS-CoV-2-Positive to SARS-CoV-2-Negative. Favipiravir (just in EBMSM), plaquenil,
and other treatments reduced the transition rate from SARS-CoV-2-Positive in ICU to SARS-CoV-2-
Negative; and also favipiravir (just in EBMSM) and plaquenil reduced the transition rate from SARS-
CoV-2-Positive intubated to SARS-CoV-2 -Negative. According to the DIC criteria of the univariate
models, the lowest DIC was derivated from the Weibull Bayesian multi-state models.

Figure 3 demonstrates the hazard ratio for baseline risk factors and antiviral treatment in each of the
9 transitions in the multivariate multi-state models

In the multivariate multi-state models, there was an association between azitro||azax and plaquenil-
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Transitions Model Covariates
mean estimates HRsa,b,c

(95% Credible Interval)a,b,c

Gender Age Favipiravir Azitro||Azax Plaquenil Hydroxychloroquine|| Other
Chloroquine

Female ≥59 Treatment Treatment Treatment Treatment Treatment
0→ 1 a 0.870 0.500 0.789 1.503 1.586 1.074 1.011

(0.473, 1.60) (0.210, 1.191) (0.336, 1.851) (0.629, 3.593) (0.668, 3.765) (0.496, 2.33) (0.538, 1.899)
b 0.914 0.665 0.848 1.235 1.245 0.982 0.962

(0.431, 1.934) (0.355, 1.242) (0.319, 2.255) (0.641, 2.381) (0.606, 2.559) (0.288, 3.341) (0.513, 1.802)
c 0.909 0.615 0.873 1.084 1.651 0.976 0.991

(0.424, 1.949) (0.328, 1.153) (0.317, 2.402) (0.455, 2.577) (0.659, 4.134) (0.275, 3.462) (0.511, 1.946)
1→ 2 a 1.521 17.440 0.997 0.170 0.113 0.780 0.373

(0.764, 3.03) (7.691, 39.546) (0.431, 3.307) (0.064, 0.447) (0.062, 0.207) (0.277, 2.19) (0.191, 0.728)
b 1.225 6.851 0.934 0.288 0.288 0.476 0.515

(0.618, 2.427) (2.321, 20.213) (0.476, 2.476) (0.098, 0.414) (0.134, 0.618) (0.161, 1.408) (0.263, 0.991)
c 1.226 7.947 1.514 0.323 0.107 0.478 0.321

(0.614, 2.448) (2.843, 22.221) (0.658, 3.478) (0.107, 0.979) (0.059, 0.192) (0.161, 1.420) (0.163, 0.634)
1→ 4 a 1.058 1.354 0.977 0.750 0.897 0.816 0.889

(0.007, 15.96) (0.006, 28.32) (0.00, 24.94) (0.005, 9.592) (0.00, 8.158) (0.002, 26.94) (0.007, 14.411)
b 1.036 1.238 0.931 0.837 0.931 0.865 0.911

(0.037, 2.863) (0.012, 1.408) (0.003, 2.285) (0.014, 4.917) (0.030, 2.845) (0.013, 5.401) (0.035, 2.375)
c 1.041 1.249 0.940 0.847 0.904 0.863 0.848

(0.035, 3.076) (0.006, 2.289) (0.001, 5.277) (0.020, 3.579) (0.000, 9.898) (0.013, 5.728) (0.01, 1.181)
2→ 3 a 1.028 1.471 0.695 0.700 0.405 0.729 1.912

(0.466, 2.269) (0.528, 4.095) (0.286, 1.689) (0.236, 2.075) (0.168, 0.973) (0.137, 3.86) (0.857, 4.265)
b 1.002 1.111 1.271 0.791 0.317 0.772 1.801

(0.460, 2.181) (0.392, 3.143) (0.493, 3.377) (0.277, 2.259) (0.197, 0.837) (0.122, 1.486) (0.802, 2.042)
c 0.993 1.087 1.245 0.786 0.352 0.772 1.853

(0.456, 2.160) (0.384, 3.067) (0.482, 3.210) (0.264, 2.338) (0.148, 0.838) (0.127, 4.672) (0.825, 4.162)
2→ 4 a 1.237 0.883 0.403 1.230 1.63 0.845 1.049

(0.056, 26.96) (0.014, 5.550) (0.003, 5.131) (0.007, 2.038) (0.040, 6.644) (0.021, 33.93) (0.050, 21.799)
b 1.092 0.933 0.586 1.151 1.147 0.981 1.002

(0.172, 6.925) (0.070, 1.243) (0.050, 2.804) (0.064, 2.057) (0.095, 2.380) (0.072, 1.330) (0.103, 1.976)
c 1.077 0.925 0.586 1.096 2.836 0.984 1.247

(0.168, 6.905) (0.052, 1.659) (0.048, 7.117) (0.087, 3.706) (0.060, 3.349) (0.072, 2.350) (0.015, 2.057)
3→ 4 a 1.208 2.799 0.457 1.699 0.501 0.905 1.048

(0.521, 2.799) (1.072, 7.308) (0.212, 0.988) (0.594, 4.861) (0.213, 1.178) (0.086, 9.47) (0.426, 2.582)
b 1.027 1.622 0.555 1.459 0.977 0.811 1.165

(0.458, 2.303) (0.602, 4.374) (0.315, 0.820) (0.474, 2.493) (0.381, 2.095) (0.057, 1.114) (0.432, 1.314)
c 1.037 1.797 0.834 1.177 0.478 0.813 0.907

(0.468, 2.301) (0.659, 4.896) (0.317, 2.191) (0.382, 3.628) (0.209, 1.089) (0.060, 1.987) (0.377, 2.197)
1→ 0 a 0.836 0.389 0.609 1.710 1.711 1.155 1.001

(0.444, 1.572) (0.159, 0.948) (0.250, 1.483) (0.706, 4.143) (0.712, 4.115) (0.519, 2.57) (0.521, 1.922)
b 0.882 0.511 0.704 1.342 1.286 1.032 0.955

(0.407, 1.908) (0.265, 0.987) (0.253, 1.964) (0.684, 1.263) (0.615, 2.268) (0.296, 3.601) (0.498, 1.831)
c 0.861 0.493 0.724 1.199 1.825 1.045 0.997

(0.392, 1.887) (0.255, 0.951) (0.251, 2.086) (0.495, 2.909) (0.659, 4.134) (0.287, 3.797) (0.511, 1.945)
2→ 0 a 1.446 2.452 0.217 0.664 0.061 2.892 0.214

(0.636, 3.285) (0.634, 9.469) (0.059, 0.796) (0.186, 2.360) (0.010, 0.357) (1.122, 7.45) (0.083, 0.551)
b 1.418 0.867 0.362 1.113 0.386 2.245 0.348

(0.513, 2.537) (0.209, 3.586) (0.115, 1.142) (0.301, 1.410) (0.105, 1.412) (0.865, 4.584) (0.142, 0.856)
c 1.145 0.992 0.353 1.315 0.035 2.216 0.166

(0.511, 2.563) (0.246, 3.996) (0.108, 1.154) (0.375, 4.602) (0.004, 0.315) (0.852, 5.763) (0.060, 0.456)
3→ 0 a 1.396 7.346 0.084 0.210 0.056 6.104 0.537

(0.411, 4.732) (1.906, 28.304) (0.018, 0.386) (0.023, 1.881) (0.018, 0.171) (1.401, 26.58) (0.159, 1.808)
b 1.122 1.993 0.367 0.580 0.416 1.614 0.676

(0.331, 3.810) (0.541, 7.339) (0.068, 1.977) (0.108, 1.107) (0.063, 0.731) (0.021, 3.364) (0.195, 1.235)
c 1.126 2.521 0.353 0.765 0.046 1.595 0.456

(0.327, 3.876) (0.699, 9.085) (0.064, 1.950) (0.157, 3.730) (0.014, 0.765) (0.025, 3.781) (0.139, 1.489)
-2Log-likelihood a 1705.239 1650.527 1673.928 1684.143 1677.912 1693.88 1694.377

DIC 3446.478 3337.053 3383.857 3404.286 3491.823 3423.76 3424.75
-2Log-likelihood b 1705.143 1650.172 1673.521 1683.242 1677.521 1693.8 1694.312

DIC 3446.287 3336.344 3446.287 3402.483 3402.483 3423.01 3424.24
-2Log-likelihood c 1707.178 1652.41 1673.754 1685.876 1679.393 1695.781 1696.438

DIC 3450.357 3340.821 3383.509 3407.752 3394.786 3427.562 3428.875

Table 4. Results of univariate Bayesian multi-state models across transitions (a: Exponential- Bayesian
multi-state model (EBMSM), b:Weibull-Bayesian multi-state model (WBMSM), c:gamma-Bayesian
multi-state model(GBMSM).
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Covariates Estimate [95% CI]
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Chloroquine treatment

Other treatment
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-0.23 [-1.37,  0.91]
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-1.40 [-2.45, -0.35]
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 0.07 [-2.12, 1.75]
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Age ≥ 59
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Hydroxychloroquine||
Chloroquine treatment
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Positive (1) → Death (4)
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 0.22 [-0.62, 0.72]
 0.15 [-0.65, 0.72]
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 0.15 [-0.97, 1.27]
 0.18 [-1.05, 1.39]
 0.16 [-1.02, 1.40]

-0.69 [-1.71, 0.30]
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 0.12 [-1.16,  1.41]
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 2.20 [ 0.89,  3.52]
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Fig. 3. Results of multivariate Bayesian multi-state models across transitions (a: Exponential- Bayesian
multi-state model (EBMSM), b:Weibull-Bayesian multi-state model (WBMSM), c:gamma-Bayesian
multi-state model(GBMSM).
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treated older inpatients and the transition from SARS-CoV-2-Positive to SARS-CoV-2-Positive in ICU;
both treatments significantly reduced the risk of being in the ICU but age increased the risk. In all
multivariate Bayesian multi-state models, there was an association between older inpatients with other
treatments and the transition from SARS-CoV-2-Positive intubated to Death; other treatments reduced
the risk of death in older inpatients. In the recovery transitions, older inpatients with other treatments had
increased transitions rate from SARS-CoV-2-Positive to Negative; however, the transitions rate decreased
because of age. The multivariate Weibull bayesian multi-state model had the lowest DIC compared
to the other models (EBMSM -2Log-likelihood 1644.631, DIC: 3361.262; WBMSM-2Log-likelihood
1648.318, DIC: 3350.637; GBMSM-2Log-likelihood 1649.858, DIC: 3353.716, respectively).

Hydroxychloroquine||chloroquine treatments were statistically significant in the multivariate and
univariate models in many studies but both worst and best scenarios for inpatients (Elavarasi et al.,
2020; Lahouati et al., 2020; Ursino et al., 2021). In our study in both univariate and multivariate cases
there were no associations between hydroxychloroquine||chloroquine and any transitions.

Considering the Cox proportional hazard model, the results showed that favipiravir (in both univariate
and multivariate cases) and other treatments (in univariate cases) increased the risk of death, but the
results reversed considering the multi-state modeling. In this kind of pandemic, evaluating each transition
is valuable with multi-state models. The comprehensive statistical models used enabled us to derive
clinically meaningful results that would not have been attainable using less complex methods.

4. Conclusion

The study was based on data obtained from a single-center city and possible unobservable con-
founders. A limitation of study is the unobservable transitions in the model. By making different assump-
tions about the baseline hazard function, several proportional hazard models can be created. Generally,
in the literature of the proportional hazard model baseline hazard function is defined as the exponential
family. The reason for that; assuming the baseline hazard is constant, the risk is doubled or tripled,
which causes the new risk to be constant even though it is high over time. Furthermore, it can be useful
to model monotonic upward or downward trends over time with Weibull and Gompertz, which include
the properties of the exponential family as a special case.

In the literature of example of baseline function, the gamma-distributed baseline hazard function was
used to analysis of cancer trajectories of palliative care patients for the Bayesian joint model (Lesperance
et al., 2015). For the different states, Weibull and piecewise- exponential-distributed baseline hazard
functions were taken to model the outcome of the surgery and radiotherapy in Prostate Cancer (Beesley
et al., 2019). A piecewise Weibull baseline hazard function was used to model the animal survival data
(Casellas, 2007). In order not to spoil the general framework, one special case, and two exponential
family distributions were taken in Bayesian multi-state models.

The results showed that the estimated marginal posterior distributions substantially covered the true
values of parameters in the simulation data. The true values of the parameter were defined as:
β0→1 =

[
0.9, 0.7, 0.8, 1.1, 1.6, 1.0, 1.0

]
, β1→2 =

[
1.2, 6.9, 1.0, 0.3, 0.2, 0.5, 0.5

]
,

β1→4 =
[
1.0, 1.2, 0.9, 0.8, 0.9, 0.9, 0.9

]
, β2→3 =

[
1.0, 1.1, 1.2, 0.8, 0.4, 0.8, 1.9

]
,

β2→4 =
[
1.1, 0.9, 0.6, 1.1, 1.1, 1.0, 1.0

]
, β3→4 =

[
1.0, 1.6, 0.5, 1.5, 1.0, 0.8, 1.1

]
,

β1→0 =
[
0.9, 0.5, 0.7, 1.3, 1.3, 1.0, 1.0

]
, β2→0 =

[
1.4, 0.9, 0.3, 1.1, 0.3, 2.3, 0.3

]
,

β3→0 =
[
1.1, 2.0, 0.3, 0.5, 0.4, 1.6, 0.5

]
.

In this study, statistical testing was confined to the evaluation of HR posterior means estimates and
95% CIs for all Bayesian multi-state model fits. The Weibull-Bayesian multi-state model was more
consistent based on the results in the literature, and the DIC was the lowest. In Bayesian models, 95%
confidence intervals had more accurate and consistent results.

The baseline hazards functions are important because of represent the hazard when all risk factors
and antiviral treatments are equal to zero. In this study, it was concluded that SARS-CoV-2 time-to-
event data were more in consistent with the Weibull distribution. It is known that a Weibull baseline
hazard function is restricted to monotonous behavior. This shows that without risk factors and antiviral
treatments, the hazard of SARS-CoV-2 inpatients has a monotonically increase, decrease, or constant
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trend over time.
Observation of the time-dependent conditions of SARS-CoV-2 inpatients is important in identifying

risk factors and antiviral treatment methods.When compared to estimation based on the Cox proportional
hazard model applied to overall survival data, the intervals calculated using Bayesian multi-state estima-
tions tend to be narrower and it can reveal situations that may be misleading with antiviral treatment and
risk factors. In the models were observed that the simultaneous use of antiviral treatments does not create
a very good situation and that even single-use antiviral treatment has different effects in each state. The
chance to observe that the situation would differ even in distributions with different but similar struc-
tures was shown. In addition, it was also investigated whether the distribution of the baseline risk can be
differentiated through the disease progresses.

This study also demonstrates the benefits of Bayesian multi-state modeling in identifying risk factors
and antiviral treatments related to SARS-CoV-2.The simultaneous and single-use effects of antiviral
treatments on the states in the progress of the disease will make a serious contribution to the literature. By
the distribution information in this study, it is thought that it will help to take other than non-informative
priors. Thus researchers who want to model using SARS-CoV-2 patient data using Bayesian approaches
will be given different perspectives.
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Çelik, E., & Çora, A. R. (2020). Treatment Approach to Coronavirus Disease (COVID-19) Seen Early
After Open Heart Surgery. SN Comprehensive Clinical Medicine, 2(8), 1208–1212.

Converse, S. J., Royle, J. A., & Urbanek, R. P. (2012). Bayesian analysis of multi-state data with
individual covariates for estimating genetic effects on demography. Journal of Ornithology, 152(S2).
561–572.

Coomes, E. A., & Haghbayan, H. (2020). Favipiravir, an antiviral for COVID-19? Journal of Antimi-
crobial Chemotherapy, 75(7). 2013–2014.

13



Cox, D. R., & Miller, H. D. (1965). Markov Processes with Discrete States in Continuous Time. In The
Theory of Stochastic Processes (pp. 146–200). New York, NY: Chapman & Hall/CRC New York.

Crowther, M. J., & Lambert, P. C. (2017). Parametric multistate survival models: Flexible modelling
allowing transition-specific distributions with application to estimating clinically useful measures of
effect differences. Statistics in Medicine, 36(29). 4719–4742.
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