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Abstract

Coronavirus (COVID-19) has continued to be a global threat to public health. When the coronavirus
pandemic began early in 2020, experts wondered if there would be waves of cases, a pattern seen in other
virus pandemics. The overall pattern so far has been one of increasing cases of COVID-19 followed by a
decline, and we observed a second wave of increased cases and yet we are still exploring this pandemic.
Hence, updating the prediction model for the new cases of COVID-19 for different waves is essential to
monitor the spreading of the virus and control the disease. Time series models have extensively been
considered as the convenient methods to predict the prevalence or spreading rate of the disease. This
study, therefore, aimed to apply the Autoregressive Integrated Moving Average (ARIMA) modelling
approach for predicting new cases of coronavirus (COVID-19). We propose a deterministic method to
predict the basic reproduction number Ro of first and second wave transition of COVID-19 cases in
Kuwait and also to forecast the daily new cases and deaths of the pandemic in the country. Forecasting
has been done using ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting
model and machine learning models like log-linear, polynomial and support vector regressions. The
results presented aligned with other methods used to predict Ro in first and second waves and the
forecasting clearly shows the trend of the pandemic in Kuwait. The deterministic prediction of Ro

is a good forecasting tool available during the exponential phase of the contagion, which shows an
increasing trend during the beginning of the first and second waves of the pandemic in Kuwait. The
results show that support vector regression has achieved the best performance for prediction while a
simple exponential model without trend gives good optimal results for forecasting of Kuwait COVID-19
data.
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1. Introduction

The world suffered a lot of pandemics and diseases throughout the history of mankind. One of these
pandemics was the Coronavirus (COVID-19), which arose in the last year 2020 and has been classified
as a global public health emergency. This pandemic is thought to be among the most horrific outbreaks
of disease throughout all human history. In January, 2020 WHO declared the coronavirus is responsible
for respiratory illness in Wuhan China and the first case in Kuwait was reported on February, 24th 2020.
Since then the daily new cases increased exponentially until May, 2020 when the first wave started to
decline. The same exponential dynamics has been observed between January and March, 2021. The
forecast of new cases and deaths recorded daily is crucial so that health experts and citizens can be
guided in order to avoid an escalation of the pandemic. Since the emergence of COVID-19 pandemic
in Kuwait, the country has experienced a high stationary number of new cases until a slight decline in
December, 2020. After the first wave, the new cases increased exponentially from January, 2021 until
March, 2020 followed by a stationary phase analogue to that of 2020 but with a higher average number
of daily new cases.

The COVID-19 pandemic has resulted in a lot of fatality across the globe, but the tenth of April 2021,
the statistics by worldometer® (Worldometer 2021) indicated that Kuwait cumulated number of cases
is 244,325, with a number of deaths equal to 1,393 (323 per million), corresponding to a fatality rate of
0.58% , placing Kuwait in 83rd place (in the ranking of decreasing fatality rate) of developed countries.
Recovery rate was 93.57%, critical cases treated in ICU were 224 − 0.09% of total cases, daily cases
receiving treatment was 14, 305−5.85% of total cases, and cumulated confirmed cases proportion equals
56,568 per million.

In recent time, there has been a lot of research on the COVID-19 pandemic in different fields rang-
ing from statistics, epidemiology, mathematics, biology, medicine, etc. and these fields have looked at
various aspects of COVID-19 pandemic modelling in the areas of reported and unreported cases, pre-
diction of basic reproduction number Ro, lockdown and more recently introduction of vaccines. For
example, in (Demongeot et al. 2020) authors worked on the spread parameters of the new COVID-19
cases dynamic and concluded on how temperature indicates the cases in 21 countries. They proposed
the ARIMA model to analyse incidence patterns and estimate short-term forecasts for retro-predicting
the first wave of COVID-19 outbreak. (Seligmann et al. 2020) worked on inverted covariate effects for
first versus mutated second wave COVID-19 and how confinements hasten viral evolution toward greater
contagiousness, (Demongeot et al. 2021) proposed a new method for calculating the daily reproduction
number during the contagiousness period of an individual.

Many researchers so far have applied data-driven statistical models like Autoregressive Integrated
Moving Average (ARIMA) for prediction of future trends of the infectious disease as one wave using data
of different countries, for example, (Abenvenuto et al. 2020), (Anastassopoulou et al. 2020) modelled
China Covid 19, (Grasselli et al. 2020), (Russo et al. 2020) proposed a time series model for Italy,
(Massonnaud et al. 2020) used France Covid 19 data, (Wise et al. 2020) proposed a statistical model for
USA covid data, (Fanelli & Piazza 2020) used China, Italy and France data and (Gupta & K Pal 2020)
India data. The technique of time series analysis has been widely applied, for its reliability and quick
implementation by various stakeholders. Machine learning model is another effective technique that
can be applied using different models such as log-linear and support vector regression. Both the waves
of Covid 19 will be considered separately for better accuracy. Sensitivity analysis for advanced four
compartment mathematical model was explained by (Munir et al. 2020).

In this paper, we propose a deterministic method to predict the basic reproduction number Ro of first
and second wave transition of COVID-19 cases in Kuwait for the daily new cases and the number of
the deaths of the pandemic in the country. We will apply several statistics tools for modelling epidemic
data such as ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting model
and machine learning models. Among machine learning models we will use log-linear, polynomial and
support vector regressions to compare. The main objective and motivation of this paper is to present the
best statistical model to describe the daily count of new cases and deaths due to COVID-19 infections.
We, therefore, used the best model that we think will predict the number of new cases and a model for
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mortality due to the COVID-19 infections. The novelty of this work is to decompose the Kuwait Covid-
19 data into two main waves and model each wave separately using different tools along with the classical
time series model that depends on the basic reproduction number Ro. A deterministic method is applied
to estimateRo, followed by many different additive models to predict the time series such as Exponential
regression, log-linear and Polynomial with different degrees. In addition, we applied several smoothing
methods, Prophet and Support vector methods. A comparison is made between these different techniques
for the best fit. These different tools have been applied to Kuwait data and our models is supported
by validity and accuracy tests. We also presented the sensitivity analysis for parameters used for the
ARIMA model and exponential models. The remainder of this article is structured in the following
manner. In Section 2 we describe the methods used in this paper for processing data and present the
deterministic modelling of daily new cases observed in order to predict Ro. In Section 3, we give results
and visualisation of the machine learning tools applied on the pattern of the daily new cases and deaths in
Kuwait and demonstrate the efficiency of the models in comparison to others. Finally, Section 4 contains
conclusions conducted from the paper and major findings illustrated from our work.

2. Materials and Methods

Looking at the pattern of COVID-19 data of Kuwait, one realises that it consists of two main waves.
Each wave lasts approximately three months. We took 100 days both in the first wave and second wave
depending on the available data. First wave new cases were considered from 25/02/2020 to 03/06/2020
while second wave new cases were considered from 15/10/2020 to 22/01/2021. For the first wave,
we used daily deaths data from 04/04/2020 to 12/07/2020, while for the second wave we used those
from 15/10/2020 to 22/01/2021. We calculated the slopes from the log-linear regression analysis using
exponential model y = aebx, where y is the daily number of new cases, x the number of days, b the
slope and loga a constant in the log format logy = loga + bx. We also calculated the initial negative
autocorrelation slope of the epidemic spread averaged on six days. A deterministic model was used to
predict Ro of both the first and second wave of the pandemic in Kuwait. Simulation, data visualisation
and computation were done in R and Python environment.

2.1 Methods
2.1.1 Time series modelling

Time series modelling has been introduced by N. Wiener for prediction and forecasting (Wiener 1949)
and also by (Granger & Newbold 1986), (Majid et al. 2020) and (Box & Jenkins 1976) . Its paramet-
ric approach assumes that after subtracting the trend (increasing or decreasing) of Covid-19 new cases
dynamics, we get an underlying stationary stochastic process N(j), at day j, j = 1,2, ... which can be
described by a small number of parameters using the autoregressive ARIMA model:

N(j) =
∑

i=1,...,r

a(i)N(j − i) +W (j), (1)

where W is a random residue, whose variance is to minimise. The autocorrelation curve is obtained
by calculating the correlation A(k) between N(j) and the N(j − k)’s (j belonging to a moving time
window) by using the formula:

A(k) =
E[N(j)N(j − k)]− E(N(j))E(N(j − k))

σ(N(j)σ(N(j − k))
. (2)

where E denotes the expectation and σ is the standard deviation.The autocorrelation function A allows
examining the serial dependence of the N(j)’s. We used the classical ARIMA (p, d, q) model, where p
means the order of auto-regression, d the degree of trend difference and q the order of moving average.

2.1.2 Linear, Polynomial and Support Vector Regression
Log-linear regression model use some historic data between variables X and Y depending on X , and

consider a linear relationship between logY and X , while polynomial regression models use a similar
approach but the dependent variable Y is modelled as a polynomial of degree n in X . Support vector
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regression is a supervised machine learning model which draws a hyperplane relating the data points and
creates a boundary of possible data points (high and low) in future. Support vector regression tradition-
ally has huge forecasting abilities.

2.1.3 The Prophet Forecasting Model, Exponential smoothing model and Holt’s model
The Prophet forecasting modelling uses a decomposable time series model with three main model

components which are trend, seasonality and holidays. It is described by the model equation below:

y(j) = g(t) + s(j) + h(j) + εj . (3)

where g(j) is a piecewise linear or logistic growth curve for modelling represents non-periodic changes in
time series, s(j) represent periodic changes like weekly, yearly or seasonal, h(j) is the effect of holidays
with irregular schedules and εt. is the error term which accounts for any unusual changes or noise not
accommodated by the model (Rafferty 2021). This tool was also used on another set of data by (Abioye
et al. 2021). Exponential smoothing methods use weighted averages of past observations to forecast new
values. It combines error, trend and seasonal components in a smoothing calculation. Each term can
be combined either additively, multiplicatively or be left out of the model. Holt’s-winter method is also
called triple exponential smoothing and it is used in order to apply exponential smoothing to the seasonal
components in addition to level and trend. Holt’s linear trend method takes into account the trend of a
given data set. The method map the trend accurately without any assumptions (Chatfield 2000).

2.2 Deterministic modelling
According to (Demongeot et al. 2021), let Ro denotes the basic reproduction number among the

Kuwait population. We can estimate the distribution V (whose coefficients are denoted Vj = Rj/Ro) of
the daily reproduction numbers Rj along the contagious period of an individual, by remarking that the
number Xj of new infectious cases at day j, equal to Xj = I(j)–I(j − 1), where I(j) is the cumulated
number of infectious at day j, verifies the discrete convolution equation:

Xj =
∑
k=1,r

RkXj−k,

giving in continuous time:

X(t) =

∫ r

1
R(s)X(t− s)ds, (4)

where r is the duration of the contagion period, estimated by 1/(k+µ),where k is the recovering rate
and µ is the death rate in SIR equations:

dS/dt = −νSI

dI/dt = νSI − (k + µ)I, (5)

where S and I are respectively the size of the susceptible and infectious populations.
If r and S can be considered as constant during the first exponential phase of the pandemic, we can

also assume that the distribution V is constant and then, V can be estimated by solving the linear system:

Xj =
∑
k=1,r

RkXj−k, Xj−1 =
∑
k=1,r

RkXj−1−k, · · · ,

Xj−r+1 =
∑
k=1,r

RkXj−r−k,

which can be written as X =MR, hence giving
R =M−1X , where:
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M =


Xj−1, Xj−2, · · · , Xj−r
Xj−k, Xj−k−1, · · · , Xj−k−r+1

· · ·
Xj−r, Xj−r−1, · · · , Xj−2r+1


(6)

Equation (6) can be solved numerically, if the pandemic is observed during a time greater than 1/(k+µ).
Then, the entropy of V = R/Ro can be calculated, as the Kolmogorov-Sinaı̈ entropy of the Marko-
vian Delbrück scheme ruling the X ′js and giving new parameters for characterising pandemic dynam-
ics, namely for quantifying its robustness and stability ((Rhodes & Demetrius 2010), (Demongeot &
Demetrius 2015)).

If there are negative Vj’s, it is still possible to define an index of proximity to uniformity of V by
considering the entropy of the distribution W defined by Wj = [(Vj −min{Vk ≤ 0})/

∑
i=1,rWi].

3. Results

3.1 Application of Deterministic modelling
3.1.1 Start of the pandemic in Kuwait

Suppose we use the daily new infectious cases given in worldometer from the beginning of the pan-
demic, then we can calculate M−1 for the period from February 25th to March 1st 2020, by choosing 3
days for the duration of the infectiousness period and the following raw data for the new infected cases
are X1 = 6 the 25th February, X2 = 15 the 26th, X3 = 17 the 27th, X4 = 2 the 28th, X5 = 0 the 29th
and X6 = 1 the 1st March, hence giving for the matrix M:

M =

X5 X4 X3

X4 X3 X2

X3 X2 X1

 =

 0 2 17
2 17 15
17 15 6


Then, we have:
M−1 =  0.03140158 −0.06203727 0.06612203

−0.06203727 0.07378095 −0.00868011
0.06612203 −0.00868011 0.00102119


Because

X =

X6

X5

X4

 =

10
2

 ,
we get R =M−1X , where:

R1 = 0.16364565

R2 = −0.0793975

R3 = 0.06816441

The graphical representation of the Rj’s is given in Figure 1 and the average transmission rate Ro ≈ 0.2,
value close to that calculated directly, with a maximal daily reproduction rate the first day of the infec-
tiousness period. Because of the negativity of R2, we have to calculate the entropy H of the distribution
W = [(R1−R2)/(R1−2R2+R3), 0, (R3−R2)/(R1−2R2+R3)] = (0.622, 0, 0.378), which equals
0.663.
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Fig. 1. V-shape of the evolution of the daily Rj’s along the infectious 3-day period of an individual,
calculated for the period from February 25 to March 1 2020.

3.1.2 First exponential phase of the pandemic in Kuwait
If we use the daily new infectious cases given in (Worldometer 2021) during the exponential phase of

the first wave, we can calculate M−1 for the period from October 20 to October 25 2020, by choosing 3
days for the duration of the infectiousness period and the following raw data for the new infected cases
are X1 = 886 the 20th October, X2 = 813 the 21th, X3 = 889 the 22th, X4 = 812 the 23th, X5 = 695
the 24th and X6 = 708 the 25th, hence giving for the matrix M :

M =

695 812 889
812 889 813
889 813 886


Then, we have:
M−1 =  0.00507334 −0.00013316 0.00521271

−0.00013316 0.00699023 −0.00628068
0.00521271 −0.00628068 0.00166151


Because

X =

X6

X5

X4

 =

708695
812

 ,
we get R =M−1X , where:

R1 = 0.54824733

R2 = −0.33597567
R3 = 0.67466856

The graphical representation of the Rj’s for the second wave is given in Figure 2. The average transmis-
sion rate Ro verifies Ro ≈ 0.9, value close to that calculated directly, with a maximal daily reproduction
rate the first day of the infectiousness period. Because of the negativity of R2, we have to calculate the
entropy H of the distribution W = [(R1 −R2)/(R1 − 2R2 +R3), 0, (R3 −R2)/(R1 − 2R2 +R3)] =
(0.467, 0, 0.533), which is equal to H = 0.691.
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Fig. 2. V-shape of the evolution of the dailyRj’s along the infectious 3-day period of an individual, daily
new cases in Kuwait between October 20th to October 25th 2020 in worldometer and estimation of the
average transmission rate Ro for the 20th and 25th October 2020 with its 95% confidence interval (in
green).

3.1.3 Second exponential phase of the pandemic in Kuwait
If we use the daily new infectious cases given in (Worldometer 2021) during the exponential phase

of the second wave, we can calculate M−1 for the period from December 30 2020 to January 4 2021,
by choosing 3 days for the duration of the infectiousness period and the following raw data for the new
infected cases are X1 = 205 the 30th December, X2 = 286 the 31th, X3 = 285 the 1st January,
X4 = 205 the 2nd, X5 = 269 the 3rd and X6 = 372 the 4th, hence giving for the matrix M :

M =

269 205 285
205 285 286
285 286 205


Then, we have:
M−1 =  0.00504561 −0.00852449 0.00487808

−0.00852449 0.00563046 0.00399594
0.00487808 0.00399594 −0.00747849


Because

X =

X6

X5

X4

 =

372269
205

 ,
we get R =M−1X , where:

R1 = 0.58388424

R2 = −0.83734838

R3 = 1.35646161

Then, we can give a graphical representation of the Rj’s (Figure 3). The average transmission rate Ro

equals about 1.1, value close to that calculated directly, with a maximal daily reproduction rate the first
day of the infectiousness period. Because of the negativity of R2, we have to calculate the entropy H of
the distributionW = [(R1−R2)/(R1−2R2+R3), 0, (R3−R2)/(R1−2R2+R3)] = (0.393, 0, 0.607),
which is equal to H = 0.691, the same value than for the first wave.
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Fig. 3. V-shape of the evolution of the dailyRj’s along the infectious 3-day period of an individual, daily
new cases in Kuwait between December 30 2020 and January 4 2021 in worldometer and estimation of
the average transmission rate Ro for December 30th 2020 and January 4th 2021 with its 95% confidence
interval (in green).

3.2 Regression curves and slopes for first wave start and second wave transition
In this Section we applied the regression model on the daily new cases for both waves. As expected,

the 100 first days of the first wave start show a positive slope (0.0687) and the 100 first days of the second
wave transition show a negative slope (-0.0094).

For first wave start, we obtain the exponential model: y = 0.8e0.07x, based on the following results:
Log-linear regression: slope = 0.0686852051631, intercept=0.800565672854, r = 0.939152595486, p-
value = 2.079801359e−45, standard error = 0.002591135543915, R-squared = 0.882008, Root MSE =
0.711400960815.

Using polynomial regression of order 4 we get: R-squared = 0.787421, Root MSE = 0.586403581239,
p-value< 2.2e−16, standard error = 0.6069, F-statistics = 256.7. Using Support vector regression we
get: R-squared = 0.98382, Root MSE = 0.263424533991, slope = 0.0128466, intercept= 3.697591, p-
value< 4.33e−15.

For second wave transition, the exponential model is y = 6.5e−0.009x, based on the following results:
Log-linear Regression: slope = -0.0093674219195, intercept = 6.5198283885, r = -0.57106504118,
p-value = 5.50386624132e-10, standard error = 0.00136023603, R-squared = 0.326115, Root MSE
= 0.388700386316, Polynomial of order four Regression: R-squared = 0.0927367, Root MSE =
0.1818719990, p-value< 2.2e−16, standard error = 0.186, F-statistics = 137.2, Support Vector Regres-
sion: R-squared = 0.9680774158, Root MSE = 0.0846001608, slope = -0.2570435, intercept= -1.370541,
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p-value = 0.2775. Figures 4 show different regressions for the first and transition to second waves of
Covid-19 in Kuwait. All coefficients for the first wave and transition to second wave for both log-linear
and polynomial regression are significant with p-value less than 0.001. The residuals of the log-linear
regression were examined and it was discovered that the median for both the cases were close to zero
with median = 0.06031 for the first wave and median = 0.07629 for transition to the second wave. The
normality of the residual was tested using Jarque-Bera test and with high p-value we fail to reject the
null hypothesis that the skewness and kurtosis of the residuals are significantly equal to zero. Also, the
median of the residual for both first wave and transition to second wave of polynomial regression of
order four is close to zero with median = 0.0271 and median = 0.00669 respectively. For support vector
regression, we tested the normality of the residual using the Jarque-Bera test and it was discovered that
it’s skewness and kurtosis are significantly equal to zero since the p-value is large. The mathematical
formulation of the support vector regression where b and w are the coefficients is given as:

y = f(x,w) =< w, x >=
m∑
j=1

wjxj + b, (7)

with wj > 0 support points minimize prediction error where ‖w‖ is the magnitude of the normal vector

minw
1

2
‖w‖2, (8)

with constraints
| yj − wjxj |≤ ε. (9)

The error term is instead handled in the constraints, where we set the absolute error less than or equal to
a specified margin, called the maximum error (ε). The general parameters for the support vector we used
are cost = 1, γ = 1 and ε = 0.1.

(a)

(b)
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(c)

(d)

Fig. 4. (a) Log-linear and polynomial regression for first wave cases. (b) Support vector regression for
first wave cases. (c) Log-linear and polynomial regression for second wave transition cases. (d) Support
vector regression for second wave transition cases. The origin of time corresponds to the corresponding
wave start.

3.3 ARIMA result for first wave start and second wave transition
In this Section we applied the time series model on both the daily new cases and deaths for the first

and second waves. We used the ’auto’ function in R software for ARIMA model to fit the best model
for the data in consideration with degree of freedom 8 and model degree of freedom 2 with 10 lags. We
compared the results given by this function with other parameters for (p,d,q) as defined in Section 2.1
and we discovered that the parameters values given by this function were efficient and gave a better result
as others gave higher Root MSE and p-value. We trained 60% of the data and forecast 100 days while
the rest was tested to show the validation and accuracy of the model. We observed that while the Root
MSE of the tested data was high, by checking the residual using Ljung-Box test, the Q∗ is large with
p-value < 0.05 which shows that the autocorrelation did not come from white noise. We present the
results as follows and the visualisation in Figure 5: for first wave new cases the ARIMA parameters used
are (0,1,1) with drift, Root MSE for training = 30.7, Root MSE for test = 533.5, Q∗ = 33 and p-value=
0.00007. For second wave transition new cases the ARIMA parameters used are (0,1,2) with drift, Root
MSE for training = 74.5, Root MSE for test = 402.3, Q∗ = 15 and p-value= 0.04. Using the Death data
we apply the ARIMA model and got: for first wave deaths the ARIMA parameters used are (1,1,1), Root
MSE for training = 2.2, Root MSE for test = 2.37, Q∗ = 16 and p-value= 0.04. For the second wave
transition deaths the ARIMA parameters used are (0,1,0) and this is the only case where the p-value was
high despite low Root MSE: the model degree of freedom is zero, Root MSE for training = 2.21, Root
MSE for test = 0.894, Q∗ = 13 and p-value= 0.2. We conclude that the ARIMA model best fits the first
wave deaths with the best performance.
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(a)

(b)

(c)

(d)

Fig. 5. (a) ARIMA forecast for first wave new cases, (b) ARIMA forecast for second wave transition
cases, (c) ARIMA forecast for first wave deaths and (d) ARIMA forecast for second wave transition
deaths.

11



3.4 Prophet® package Forecasting®
Prophet is a procedure for forecasting time series data based on an additive model where non-linear

trends fit yearly, weekly, and daily data seasonal and holiday effects. We observed that the death data has
a better performance than the new case data. We present the visualisation and 100 days forecasting of
the results in the Figures concerning (a) Prophet forecast for first wave deaths, (b) Prophet forecast for
second wave transition deaths, (c) Prophet forecast for first wave cases, (d) Prophet forecast for second
wave transition cases, (e) Trend plots for first wave deaths, (f) Trend plots for second wave transition
deaths, (g) Trend plots for first wave cases and (h) Trend plots for second wave transition cases. Also we
present in Tables 1 and 2 the predicted values for Kuwait daily new cases and deaths for October, 2020
along with predicted range. It is observed that some of the numerical values generated using this model
are close to the observed values of the COVID-19 pandemic in Kuwait. The mean square error is given
as follows: first wave cases = 79247.71, second wave transition cases = 40288.81. The MSE for first
wave deaths = 9.04 and second wave transition deaths = 3.93.

(a)

(b)

(c)
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(d)

(e)

(f)

(g)
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(h)

Fig. 6. (a) Prophet forecast for first wave deaths, (b) Prophet forecast for second wave transition deaths,
(c) Prophet forecast for first wave cases, (d) Prophet forecast for second wave transition cases, (e) Trend
plots for first wave deaths, (f) Trend plots for second wave transition deaths, (g) Trend for first wave
cases and (h) Trend plot for second wave transition cases.

3.5 Exponential smoothing method
Simple exponential model (SES or ANN) is a good forecasting tool and in our case we used α = 0.2 as

one of our parameters while other parameters varies depending on the case in consideration. The degree
of freedom (df) is 8 while the model degree of freedom is 2 with 10 lags. Also, 60% of the data was
trained with 100 days forecasting while 40% was tested. We observed that while training and testing the
model, the best exponential model is when the trend is removed from the test set as it can be seen in Figure
7 even though the test Root MSE is quite large but the p-value is low. Other exponential models like
diff.SES (removing trend from SES), simple exponential smoothing with multiplicative errors (MNN)
and simple exponential smoothing with additive errors (MAN) did not give better performance when
we compared because their Root MSE were extremely larger than the simple exponential model without
trend. The median of the residual is zero for all cases except first wave cases whose median is -55, which
shows that residual is normally distributed. We present the parameters and result for each case as follows:
for first wave cases the parameters used are l = 0.48 and σ = 39, Root MSE for training = 38.3, Root
MSE for test = 219.9, Q∗ = 78 and p-value= 1e−13; for second wave transition cases the parameters
used are l = 0 and σ = 92.3, Root MSE for training = 90.7, Root MSE for test = 76.2, Q∗ = 30 and
p-value= 2e−04; for first wave deaths the parameters used are l = 0.0106 and σ = 2.73, Root MSE for
training = 2.69, Root MSE for test = 2.07, Q∗ = 29 and p-value= 4e−04 and for second wave transition
deaths the parameters used are l = 0.4891 and σ = 2.49, Root MSE for training = 2.45, Root MSE for
test = 1.05, Q∗ = 14 and p-value= 0.09. We can conclude that the simple exponential smoothing model
without trend works better for first wave deaths.

(a)
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(b)

(c)

(d)

Fig. 7. (a) Simple exponential smoothing for first wave cases, (b) Simple exponential smoothing for
second wave transition cases (c) Simple exponential smoothing for first wave deaths and (d) Simple
exponential smoothing for second wave transition deaths.

3.6 Performance, accuracy and validation of the regression models
In order to know the performance of our regression models we trained 80% of the data and test 20%

percent of the data and also did cross validation to be sure of the accuracy. The predicted and the observed
values are very close to the result presented for all the regression models used in this article. For Log
linear model we present the cross validation result in Figure 8a whose average mean square errors for
the 5 portion folds are 0.5027791 for first wave on the left and 0.1533665 for second wave transition
on the right. We observed high correlations between the tested and the predicted values (R-squared =
0.9278587 for first wave cases and R-squared = 0.5312499 for second wave transition cases) for both
cases.

For polynomial regression of order four, we present the performance of the test model as follows: for
first wave cases, multiple R-squared= 0.9437, p-value= 3.448e−09, relative standard error is 0.5152 and
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the residual median is 0.03408, value close to zero which shows that the model performs very well; for
second wave transition cases, multiple R-squared= 0.9039, p-value= 1.829e−07, relative standard error
is 0.194 and the residual median is 0.00386, value close to zero which shows that the model performs
optimally.

Lastly for support vector regression we present the optimum model with parameters (ε = 0 for both
cases, and cost = 4 and cost = 10 ) respectively, for the first and second wave transition cases in Figure 8d
and 8e with mean square error values of 0.3840138 and 0.03 respectively using 10 folds cross validation.
Root MSE for the first and second wave transition cases are 0.5757138 and 0.16 respectively, slope
values of -0.0452387 and - 0.1503307 respectively, p-value = 1.554e−15 for first wave cases, p-value
= 0.293 for second wave transition cases and intercept values 3.751997 and 3.85671 respectively. We
present a comparison of Root MSE for support vector model, tuned support vector model, constructed
support vector model and also the test model in Figure 8b for first wave cases and Figure 8c for second
wave transition cases. The left hand side of both figures is the tuned support vector model while the right
hand side is the test model prediction. The test model performance is presented as follow: first wave
cases: R-squared = 0.8450823 and Root MSE = 0.784234; second wave transition cases: R-squared=
0.8516843 and Root MSE = 0.1668129.

(a)

(b)
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(c)

(d)

(e)

Fig. 8. (a) Cross validation result for Log linear model for new cases; (b) Comparison of the tuned
support vector model and support vector regression model with the test prediction for first wave new
cases; (c) Comparison of the tuned support vector model and support vector regression model with the
test prediction for second wave transition new cases; (d) Optimum support vector model mean square
error visualisation for first wave new cases and (e) Optimum support vector model mean square error
visualisation for second wave transition new cases.
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3.7 Holt’s method
We have been able to demonstrate different types of exponential smoothing models with their compar-

ison visualisation (see Figures 9b, 9d, 9f and 9h) to give significance for recent observations and produce
accurate forecasts of 100 days while Holt’s model (AAN) as shown in Figures 9a, 9c, 9e and 9g gives
the trend and level of a time series and is computationally more efficient than double moving average.
Holt’s-Winters’ model considers randomness using efficient smoothing process and is computationally
efficient too. Holt’s linear method with additive errors did not give better performance when we com-
pared with the optimal Holt’s model because the Root MSE was extremely larger. In subsequent Section
we will give a precise evaluation for the training and test sets. We present the visualisation of the results
in Figure 10.

(a)

(b)

(c)
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(d)

(e)

(f)

(g)
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(h)

Fig. 9. (a) Holt’s method first wave deaths, (b) Comparison between different methods for first wave
deaths, (c) Holt’s method first wave cases, (d) Comparison between different methods for first wave cases,
(e) Holt’s method second wave transition deaths, (f) Comparison between different methods for second
wave transition deaths, (g) Holt’s method second wave transition cases and (h) Comparison between
different methods for second wave transition cases.

3.8 Performance, accuracy and validation of the exponential models
We give an explicit analysis of the performance and accuracy of the simple exponential without trend

and Holt’s model. Figures 10e to 10h gives the comparison between optimal Root MSE’s of simple
exponential model without trend and Holt’s model. We trained 60% of the model while others were
tested and 10 lags were used for the modelling. Figures 10a to 10d show visualisation of comparison
between the holts model and the optimal Holt’s model

- for first wave cases : Optimal model for simple exponential model without trend parameters are
α = 0.05, l = 1.3 and σ = 36.4, with result of Root MSE for training = 35.8, Root MSE for test =
219.4, Holt’s model parameters are α = 0.04095, l = 8.9848, b = 3.0532, β = 0.0004, df= 6, model df
= 4 and σ = 31.8, with result of Root MSE for training = 30.7, Root MSE for test = 534.4, Q∗ = 32
and p-value= 1e−05, Holt’s optimal model result of Root MSE for training = 21.3, Root MSE for test =
409.3;

- for second wave transition cases : optimal model for simple exponential model without trend pa-
rameters are α = 0.05, l = −5.0588 , df= 8, model df = 2 and σ = 86.7, with result of Root MSE for
training = 85.2, Root MSE for test = 73.2, Q∗ = 30 and p-value= 2e−04, Holt’s model parameters are
α = 0.7798, l = 755.866, b = −9.4126, β = 0.0004, df= 6, model df = 4 and σ = 84.9, with result
of Root MSE for training = 82, Root MSE for test = 422, Q∗ = 35 and p-value= 4e−06, Holt’s optimal
model result of Root MSE for training = 84.6, Root MSE for test = 504.5;

- for first wave deaths : Optimal model for simple exponential model without trend parameters are
α = 0.05, l = 0.107 , df= 8, model df = 2 and σ = 2.55, with result of Root MSE for training = 2.51,
Root MSE for test = 2.06, Q∗ = 27 and p-value= 6e−04, Holt’s model parameters are α = 0.5016, l =
0.6829, b = 0.0621, β = 0.0004, df= 6, model df = 4 and σ = 2.38, with result of Root MSE for training
= 2.3, Root MSE for test = 271, Q∗ = 27 and p-value= 1e−04, Holt’s optimal model result of Root MSE
for training = 2.40, Root MSE for test = 2.46;

- for second wave transition deaths : Optimal model for simple exponential model without trend
parameters are α = 0.05, l = 0.0422 , df= 8, model df = 2 and σ = 2.32, with result of Root MSE
for training = 2.28, Root MSE for test = 0.94, Q∗ = 13 and p-value= 0.1, Holt’s model parameters are
α = 0.0004, l = 6.8362, b = −0.0891, β = 0.0004, df= 6, model df = 4 and σ = 1.92, with result of
Root MSE for training = 1.85, Root MSE for test = 1.50, Q∗ = 8 and p-value= 0.2, Holt’s optimal model
result of Root MSE for training = 1.79, Root MSE for test = 1.79.
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(a)

(b)

(c)
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(d)

(e)

(f)
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(g)

(h)

Fig. 10. (a) Comparison of Holt’s model and optimal Holt’s model forecast for first wave cases, (b)
Comparison of Holt’s model and optimal Holt’s model forecast for second wave transition cases, (c)
Comparison of Holt’s model and optimal Holt’s model forecast for first wave deaths, (d) Comparison
of Holt’s model and optimal Holt’s model forecast for second wave transition deaths, (e) Comparison
of simple exponential model without trend optimal Root MSE and Holt’s model optimal Root MSE
for first wave cases, (f) Comparison of simple exponential model without trend optimal Root MSE and
Holt’s model optimal Root MSE for second wave transition cases, (g) Comparison of simple exponential
model without trend optimal Root MSE and Holt’s model optimal Root MSE for first wave deaths and
(h) Comparison of simple exponential model without trend optimal Root MSE and Holt’s model optimal
Root MSE for second wave transition deaths.

To conclude this Section we give a critical look at the Root MSE comparison in Figures 10e to 10h
because it guides the choice of parameters to be used in the model. In Figure 10e we observed that for
simple exponential model without trend on the left, if the α value is increased beyond 0.2, the Root MSE
value is on the increasing trend while for Holt’s model on the right, it is best to use β of about 0.05 and
after then the Root MSE is on the increasing trend. In Figure 10f we notice that for the simple exponential
model without trend on the left the choice for αmust be below 0.2 and after that the Root MSE continues
to increase while for Holt’s model on the right, β must be below 0.1 else the Root MSE value becomes
large. The Figure 10g is a bit tricky because for the choice of α makes the values of Root MSE to be
stationary till the point where α is 0.6 where the increasing trend begins for simple exponential model
without trend on the left while for Holt’s model on the right there was turning point when the value of
β is 0.15 but the value gives minimum Root MSE when β = 0.04 and β = 0.38, which means that the
choice of β for this case is very critical and must be precise. In Figure 10h, the simple exponential model
on the left shows that there was a turning point at α = 0.5 with the highest Root MSE and the least Root
MSE is for values α = 0 and α = 1.0. For Holt’s model the minimum Root MSE values is for β = 0
and β = 0.1, and any other values increases the Root MSE value.
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3.9 Neural Prophet method
We have also presented in Figures 11a to 11d a loss plot for our neural network model which helps to

know the performance of the model. It was observed that our loss plot shows a good fit and convergence
of the model. The plot of training loss decreases to a point of stability and also the plot of validation loss
decreases to a point of stability and has a small gap (generalisation gap) with the training loss. In Figures
11e and 11f we provide the visualisation of the neural forecast of 100 days for the first wave cases and
second wave transition cases which aligns with the trend of results we have presented in other forecasting
results in the previous Section, and also from the observed results from worldometer, we noted a decrease
in daily cases from end of April to May 2021 and this also aligns with the result presented in Table 2.

(a)

(b)
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(c)

(d)

(e)
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(f)

Fig. 11. (a) Loss plot for second wave transition deaths, (b) Loss plot for second wave transition cases,
(c) Loss plot for first wave deaths, (d) Loss plot for first wave new cases, (e) Neural forecast for first
wave cases and (f) Neural forecast for second wave transition cases.

We present the predicted values for Kuwait daily new cases and deaths alongside the observed values.
Table 1. Kuwait number of daily deaths predicted for October, 2020 (Note: PR means predicted range,

OV means Observed value from worldometer and PV means predicted value).

Date PR OV PV In range?
11/10/20 0 ∼ 5 3 2 YES
12/10/20 0 ∼ 6 6 3 YES
15/10/20 0 ∼ 6 8 3 NO
16/10/20 0 ∼ 6 6 3 YES
17/10/20 1 ∼ 6 4 3 YES
18/10/20 0 ∼ 5 7 2 NO
19/10/20 0 ∼ 6 9 3 NO
20/10/20 0 ∼ 5 4 3 YES
21/10/20 1 ∼ 6 7 3 NO
22/10/20 0 ∼ 6 9 3 NO
23/10/20 0 ∼ 6 10 3 NO
24/10/20 1 ∼ 5 4 3 YES
25/10/20 0 ∼ 5 2 2 YES
26/10/20 0 ∼ 6 3 3 YES
27/10/20 0 ∼ 5 7 3 NO
28/10/20 0 ∼ 6 7 3 NO
29/10/20 0 ∼ 6 4 3 YES
30/10/20 0 ∼ 6 6 3 YES
31/10/20 0 ∼ 6 6 3 YES
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Table 2. Kuwait number of daily deaths and daily cases predicted for April and May, 2021 (Note: PRD
means predicted range for daily deaths, PVD means predicted values for daily deaths, PRC predicted
range for daily cases and PVC means predicted value for daily cases).

No Date PRD PVD PRC PVC
1 17-04-21 1 ∼ 8 5 344 ∼ 1223 766
2 18-04-21 1 ∼ 8 4 467 ∼ 1303 869
3 19-04-21 1 ∼ 8 3 267 ∼ 1164 704
4 22-04-21 0 ∼ 7 4 380 ∼ 1276 824
5 23-04-21 0 ∼ 7 3 237 ∼ 1172 716
6 24-04-21 1 ∼ 9 5 345 ∼ 1241 776
7 25-04-21 0 ∼ 8 4 445 ∼ 1303 879
8 26-04-21 1 ∼ 8 4 268 ∼ 1131 714
9 27-04-21 0 ∼ 7 3 336 ∼ 1233 776
10 28-04-21 0 ∼ 7 3 397 ∼ 1280 857
11 29-04-21 0 ∼ 8 4 395 ∼ 1271 834
12 30-04-21 0 ∼ 7 3 281 ∼ 1166 725
13 01-05-21 1∼ 8 5 340 ∼ 1216 786
14 02-05-21 0∼ 8 4 439 ∼ 1311 888
15 03-05-21 0 ∼ 8 4 282 ∼ 1151 723
16 04-05-21 0 ∼ 7 3 369 ∼ 1228 786
17 05-05-21 0 ∼ 7 3 455 ∼ 1313 867
18 06-05-21 0 ∼ 8 4 387 ∼ 1274 844
19 07-05-21 0 ∼ 7 3 280 ∼ 1178 735
20 08-05-21 1 ∼ 8 5 357 ∼ 1215 795
21 09-05-21 0∼ 8 4 478 ∼ 1342 898
22 10-05-21 1 ∼ 8 4 291 ∼ 1155 733
23 11-05-21 0 ∼ 7 3 371 ∼ 1230 795
24 12-05-21 0 ∼ 6 3 457 ∼ 1345 877
25 13-05-21 0 ∼ 8 4 447 ∼ 1302 853
26 14-05-21 0 ∼ 7 3 330∼ 1211 744
27 15-05-21 1 ∼ 9 5 383 ∼ 1259 805
28 16-05-21 0 ∼ 8 4 448 ∼ 1369 908
29 17-05-21 1 ∼ 8 4 308 ∼ 1193 743
30 18-05-21 0 ∼ 7 3 381 ∼ 1245 805
31 19-05-21 0 ∼ 7 3 450 ∼ 1333 886
32 20-05-21 0∼ 7 4 441 ∼ 1291 863
33 21-05-21 0 ∼ 7 3 299 ∼ 1184 754
34 22-05-21 1 ∼ 9 5 332 ∼ 1284 815
35 23-05-21 0 ∼ 7 4 467 ∼ 1354 917
36 24-05-21 1 ∼ 8 4 279 ∼ 1184 753
37 25-05-21 0 ∼ 7 3 362 ∼ 1262 815
38 26-05-21 0 ∼ 7 3 494 ∼ 1332 896
39 27-05-21 0 ∼ 7 8 406 ∼ 1299 873
40 28-05-21 0 ∼ 7 3 340 ∼ 1213 764
41 29-05-21 1 ∼ 9 5 367 ∼ 1241 824
42 30-05-21 0 ∼ 7 4 510 ∼ 1375 927
43 31-05-21 1 ∼ 8 4 328 ∼ 1207 762
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Sensitivity Analysis
Here, we present the sensitivity analysis of the parameters used in the modelling of our study. The

support vector model performance is sensitive to the choice of the cost function, γ and ε parameters for
the data set and that is why we used the idea of cross validation and optimal model to choose the best
parameters that best fit the model.

From Table 3, we present the sensitivity parameters for the cases we considered. We discovered that
for ARIMA models, all the cases are more sensitive to the choice of the order of the auto regression and
moving average while it is least sensitive to the trend difference.

For exponential models, the data is very sensitive to the choice of σ and α but least sensitive to the
number of lags and choices of β. The optimal algorithm was able to choose the best parameter that fit
the model.

Table 3. The sensitive parameters for the analysis showing their Root MSE results (Note: FWC means
first wave new cases, SWC means transition to second wave new cases, FWD means first wave deaths
and SWD means transition to second wave deaths).

FWC SWC FWD SWD
ARIMA (6,1,0) = 281.5 ARIMA (6,1,0) = 200.7 ARIMA (6,1,0) = 3.0 ARIMA (6,1,0) = 2.0
ARIMA (2,1,0) = 98.1 ARIMA (0,1,2) = 73.1 ARIMA (2,1,3) = 1.9 ARIMA (0,1,1) = 1.6
ARIMA (0,1,1) = 30.7 Holt’s = 82.0 ARIMA (1,1,1) = 2.4 ARIMA (0,1,0) = 0.9

Holt’s = 30.7 SES = 76.8 Holt’s = 2.3 MNN = 1.7
SES = 31.4 diff.SES = 90.7 SES = 2.3 Holt’s = 1.9

MAN = 111.0 - MAN = 2.2 SES = 1.9
diff.SES = 38.3 ARIMA (0,1,2) with drift = 74.5 diff.SES = 2.7 diff.SES = 2.5

4. Discussion and conclusion

We have proposed a set of different regression methods in order to find the best ones in the Kuwait
context, both for daily new cases and deaths, without a priori about the degree of non-linearity and the
stochastic structure of noise behind the data. Surprisingly, we discovered that often the best regression
method was the support vector one and that the stochasticity of the data at the start of the two waves
was the same. This result confirmed our choice of comparing several regression methods (exponential
regression being the most commonly, and often the only one, chosen) and showed that once the trend due
to epidemic dynamics and its seasonality has been removed, the random factors explaining the variations
compared to the deterministic model of Bernoulli-Ross-McKendrick (namely the uncertainties related to
the counting of new cases and deaths) were expressed through a similar noise for the first and the second
wave.

The two phases of the COVID-19 outbreak in Kuwait present differences:
- the first wave start shows an increase of the daily new cases (with a peak of 1000 daily new cases)

during about 60 days with a slope of the exponential regression equal to 0.07, followed by an endemic
phase with a high mean number of daily new cases (about 600) and with a delay of about 15 days an
increase of deaths,

- the second wave transition shows a decrease of the new cases during about 50 days with a slope of
the exponential regression equal to -0.009, followed by an increase during about 20 days. But these two
phases show a certain homogeneity in their stochastic structure at their beginning, because they have
the same level for the variation coefficient (around 0.5), both for daily new cases number and for death
number, and for the autocorrelation initial slope (-0.031 for the first phase and -0.038 for the second).

In most of the examples studied in this article, the best regression for prediction is support vector
regression and the best forecasting model is the simple exponential model without trend for Kuwait
COVID-19 data. Also from our result we discovered that all models work better for the daily deaths case
than for the daily new cases as well.
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Data Availability
The code and data for replication of the analysis is available in the link below:
https://github.com/Honkay/Kuwait-time-series-project.git
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