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ABSTRACT

In this paper, we introduce slant submersions from almost paracontact Riemannian manifolds
onto Riemannian manifolds. We give examples and investigate the geometry of foliations
which are arisen from the definition of a Riemannian submersion. We also find necessary and
sufficient conditions for a slant submersion to be totally geodesic.
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INTRODUCTION

Givena C*® — submersion 77 froma Riemannian manifold (M, ) ontoa Riemannian
manifold (B, g"), there are several kinds of submersions according to the conditions on
it: e.g. Riemannian submersion (O’Neill, 1966; Gray, 1967), slant submersion (Sahin,
2011; Park, 2012; Giindiizalp, 2013a), almost Hermitian submersion (Watson, 1976),
paracontact semi-Riemannian submersion (Giindiizalp & Sahin, 2013), anti-invariant
semi-Riemannian submersions (Giindiizalp, 2013b), paraquaternionic submersion
(Caldarella, 2010), quaternionic submersion (lanus et al., 2008), etc. As we know,
Riemannian submersions are related with physics and have their applications in the
Yang-Mills theory (Bourguignon & Lawson, 1981; Watson, 1983), Kaluza-Klein
theory (lanus & Visinescu, 1987; Bourguignon & SS Lawson, 1989), supergravity
and superstring theories (Ianus & Visinescu, 1991; Mustafa, 2000), etc. On the other
hand, slant submanifolds of almost paracontact metric manifolds were studied in
(Atceken, 2010).

Riemannian submersions between almost Hermitian manifolds were studied by
Watson in (1976) under the name of holomorphic submersions. One of the main result
of this notion is that vertical and horizontal distributions are invariant under almost
complex structure. He showed that if the total manifold is a Kéhler manifold, then
the base manifold is also a Kdhler manifold. Recently, (Sahin, 2011) has introduced
slant submersions from almost Hermitian manifolds to Riemannian manifolds. He
showed that the geometry of slant submersions is quite different from holomorphic
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submersions. Indeed, although every holomorphic submersion is harmonic, slant
submersions may not be harmonic. The paper is organized as follows. In the following
seedons we recall some notions needed for this paper and we give the definition of slant
Riemannian submersions and provide examples. We also investigate the geometry of
leaves of the distributions. Finally we give necessary and sufficient conditions for
such submersions to be totally geodesic.

PRELIMINARIES

In this section, we define almost paracontact Riemannian manifolds, recall the notion
of Riemannian submersions between Riemannian manifolds, and give a brief review
of basic facts of Riemannian submersions.

Almost paracontact Riemannian manifolds. Let A/ be a (7 +1)-dimensional
manifold. If there exist on A/ a (1,1) type tensor field /', a vector £, and 1-form
17 satisfying

F*=1-n®&n(&)=1. (1)
then )/ is said to be an almost paracontact manifold, where &, the symbol, denotes

the tensor product. In the almost paracontact manifold, the following relations hold
good:

FE=0,n0F =0,rank(F)=m. )
An almost paracontact manifold is said to be an almost paracontact metric
manifold if Riemannian metric & on M satisfies
g(FX, FY) = g(X,Y) =n(X)n(¥), n(X) = g(X,<) 3)
forall X,Y € I'(TM). From (2) and (3), we can easily derive the relation
8(FX, Y) = g(X, FY). 4

An almost paracontact metric manifold is said to be an almost paracontact
Riemannian manifold with (F,g,&,17)— Levi Civita connection if VF =( and
V1 =0, where V denotes the connection on A/, Since F 2=J- n®¢&, the vector
field & is also parallel with respect to V (lanus et al., 1985).

Example 1. The almost paracontact Riemannian structure (£, g,&,77) is defined on
R’ in the following way:

0 0 0 0
FC =2 P = ) = F ) =
ox, axz ox, ox, 8)’1 oy, oy, 8y1

F(E)_ 5— ol =
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If Z=a, (i) +b, (i) + v(g) e T(R), then we have
ox, oy, ot

l 2 2
g(Z,2)=Yal +D b} +Vv’.
i=1 i=1
From this definition, it follows that
2(Z,8)=n(Z)=v.g(FZ F2) = g(Z,Z)~n*(Z), FE=0, n(&)=1

for an arbitrary vector field Z. Thus (R5 ,F,2,£,1) becomes an almost paracontact
0

Riemannian manifold, where € and {——,——,—} denote usual inner product and

ox,” dy, ot
standard basis of T(R’), respectively.

Riemannian submersions. Let (M, g) and (B, g") be two Riemannian manifolds.
A surjective C* —map 7 : M — B is a (* — submersion if it has maximal rank
at any point of M. Putting V, = kerr, , for any x € M, we obtain an integrable
distribution ), which is called vertical distribution and corresponds to the foliation
of M determined by the fibres of 7. The complementary distribution H of V,
determined by the Riemannian metric g, is called horizontal distribution. A C* —
submersion 77 : M — B between two Riemannian manifolds (M, g) and (B, g') is
called a Riemannian submersion if, at each point X of M, 7, preserves the length
of the horizontal vectors. A horizontal vector field X on Jf is said to be basic if X
is - —related to a vector field X' on B. Itis clear that every vector field X' on B
has a unique horizontal lift X to A/ and X is basic.

We recall that the sections of V), respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A Riemannian submersion 7 : M — B
determines two (1,2) tensor fields 7 and A on M, by the formulas:

T(E,F)=T,F=hV vF+vV hF (5)
and

A(E,F)= AF =W _hF + hV, vF (©6)

for any E,F € I'(TM), where v and h are the vertical and horizontal projections
(Falcitelli et al., 2004). From (5) and (6), one can obtain

VW =T, W+V W; (7)
VX =T, X +h(V,X). ®)
V,U=wV,U)+4,U, )

V. .Y =AY +h(V,Y), (10)
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forany X,Y eT'( kerzz-*)i), U,W eI (kerr,). Moreover, if X is basic then
hV,X)=hV,U)=A4,U. (11)

We note that for U/, J e I'(kerr,) T,V coincides with the second fundamental
form of the immersion of the fibre submanifolds and for X,Y e I'( kerz,)").

A, Y = %V[X Y] reflecting the complete integrability of the horizontal distribution
‘H. Itisknownthat A isalternating on the horizontal distribution: 4,Y = -4, X, for
X, Yel( kerﬁ*)l) and T is symmetric on the vertical distribution: T,V =T, U,
for U,V el'(kerr,)-

We now recall the following result which will be useful for later.

Lemma 1. (O’Neill, 1966). If 7 : M — B is a Riemannian submersion and X,Y
basic vector fields on M, m—related to X' and Y’ on B, then we have the
following properties

1. h[X,Y] is abasic vector field and 7, A[X,Y]=[X",Y']ox;

2. (VYY) isabasic vector field 7 —related to (V',.Y"), where V and V' are the
Levi-Civita connection on M and B;

3. [E,U]eTI(kerrm,). forany U eI'(kerr,) and for any basic vector field E.
We recall the notion of harmonic maps between Riemannian manifolds. Let
(M,g,,) and (N,gy) be Riemannian manifolds and suppose that 77 : M — N is
a smooth map between them. Then the differential 77, of 77 can be viewed a section
of the bundle Hom (TM ,@~'TN) = M, where s 'TN is the pullback bundle which
has fibres (z7'TN), =T, ,,N,p € M. Hom (TM , @ 'TN) has a connection V
induced from the Levi-Civita connection Y™ and the pullback connection Y7 . Then
the second fundamental form of 7 is given by
(VZ)X.Y)=VizY -7 (ViY) (12)
for X,Y e I'(TM). Recall that 77 is said to be harmonic if trace(Vr,)=0 and 7
is called a totally geodesic map if (Vz, )(X,Y)=0 for X,Y e ['(TM) (Baird &

Wood, 2003). It is known that the second fundamental form is symmetric.

SLANT SUBMERSIONS

In this section, we define slant submersions from an almost paracontact Riemannian
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manifold onto a Riemannian manifold by using the definition of a slant distribution
given in (Atc eken, 2010). We give examples, investigate the geometry of leaves of
distributions. ' We also obtain a necessary and sufficient condition for such submersions
to be totally geodesic maps.

Definition 1. Let 7 be a Riemannian submersion from an almost paracontact
Riemannian manifold (M, g,,F,&,77) onto a Riemannian manifold (M, g,). If
for any non-zero vector X € kerm, — sp{& ,1: p €M), the angle O(X) between
FX and the space (kerm, —sp {& » 1), 18 a constant, i.e. it is independent of the choice
of the point p € M, and choice of the tangent vector X in (kerm, —sp {fp }), then
we say that 77 is a slant submersion. In this case, the angle @ is called the slant angle

of the slant submersion.

Itis known that the distribution (kerr,) is integrable for a Riemannian submersion
between Riemannian manifolds. In fact, its leaves are x! (p), P< M, i.e., fibers.
Thus it follows from above definition that the fibers of a slant submersion are slant
submanifolds of M, for slant submanifolds, (Atc eken, 2010). We note that the
characteristic vector field & is a vertical vector field.

We first give some examples of slant submersions.

Example 2. Every anti-invariant Riemannian submersion from an almost paracontact
Riemannian manifold onto a Riemannian manifold is a slant submersion with @ = 9().

Example 3. Consider the following Riemannian submersion given by
T:R >R’

)
(xlbxzoylayzat) %(#’XZ)-

Then 7 is a slant submersion with slant angle g = 45

Example 4. Define amap 7 : R’ > R? by
(X, Xy, ¥y, V5,t) = (X,,X, cOsa — y, sinq),
where () < g <90. Then the map s is a slant submersion with the slant angle
0=a.
Example 5. Define amap 7 : R’ > R? by
(X, X5, Vs Vy,t) = (X, cOSx — y, sin e, x, sin S — y, cos f3).
Then the map 7 is a slant submersion with the slant angle § with

cosd =|sin(a+ f)|.
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Let 77 be a Riemannian submersion from an almost paracontact Riemannian
manifold M with the structure (g,, F,&,7) onto a Riemannian manifold (M, g, ),
Then for X e I'(kerr,), we write

FX =¢X + X, (13)

where ¢X and X are vertical and horizontal parts of FX. From (4) and (13), one
can easily see that

g (X, 4Y) = g,(¢X.Y). (14)
forany X,Y eI'(kerr,).
Also for Z e T'((kerm,)™). we have
FZ=BZ+CZ, (15)

where BZ and CZ are vertical and horizontal component of FZ. From (4) and (15),
one can easily see that

g(Z, CZ)=¢/(CZ, Z,) (16)
forany 7,7, e T'( kerm,)")

Span {&} defines the vertical vector field distribution. If X € kerr, is a vertical
vector field, which is orthogonal to &, then

g(FX, FX)=g(X, X) 20,

the same is valid for @X. For vertical vector fields the Cauchy-Schawrz inequality,
g(X,Y)<|X|Y],is verified. Therefore the Wirtinger angle, €, is given by:

g(FX ,eX) _

0s 6.
| FX ||oX |
We define the covariant derivatives of @ and @ as follows
(V@)Y =V g gV ¥ (17)
and
(V@)Y =hV ,0Y —aV Y (18)

for X,Y e I'(kerrm,). where \% Y =vV Y. Then we easily have

Lemma 2. Let (M,,g,,F,&,17) be an almost paracontact Riemannian manifold

and (M,,g,) aRiemannian manifold. Let 7 :(M,g,F)— (M,,g,) beaslant
submersion. Then we get

V@Y +TyY = ¢V Y +BT .Y
T gY +hV oY = oV Y +CTyY



Slant submersions from almost paracontact Riemannian manifolds 23

forany X,Y e I'(kerr,).

Let 7 be a slant submersion from an almost paracontact Riemannian manifold
(M,,g,,F,&,n7) onto a Riemannian manifold (M,,g,) with the slant angle
Qe (0990), then we say that @ is parallel with respect to the Levi-Civita connection
V on (kerr,) if its covariant derivative with respect to V vanishes, i.e., we have

(V,0)Y =hV oY —oV Y =0 (19)
for X,Y e '(kerr,).

Invariant and anti-invariant submanifolds are particular classes of slant
submanifolds with slant angles & =0 and € = 90, respectively. A slant submanifold
which is neither invariant nor anti-invariant submanifold is called a proper slant
submanifold (At c eken, 2010).

Theorem 1. Let 7 be a Riemannian submersion from an almost paracontact
Riemannian manifold (M, g,,F,&,n) onto a Riemannian manifold (M, g,),
Then 7 is a proper slant submersion if and only if there exists a constant A €[0,1]
such that

¢’ X = UX -n(X)E)

_ 2
for X e'(kerz,) If 7 is a proper slant submersion, then A=cos 0.

Proof: For any nonzero X € I'(kerrx,), we can write

cos@(X)IM,
I EX |

where @(X) is the slant angle. By using (14), (20) and (1) we get

g(#° X, X) = g,(¢X,4X)

=cos (X g, (FX ,FX )

= cos”O(X)g,(F* X, X)

=cos’ O(X)g, (X —n(X)&, X) 21)
X el'(kern,) gince

(20)

for all &1 is Riemannian metric, from (21) we have
¢ X = cos’ O(X)X —n(X)é). X eT(kerr)- 22)
Let A = cos’d. Then it is obvious that 4 €[0,1] and ¢* = A(/ —n ® &).

Conversely, let us assume that there exist a constant A €[0,1] such that
¢* = 21 —n Q&) is satisfied. From (13), (14) and (1) we get

cos¢9(X)=—g1(FX’gX)
[ EX [l oX ||
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_ g (FX ,FX)
I EX (||| oX ||

forall X e I'(kerr,)- Thus we have

Al FX
cosO(X )= M
leX ||
Since cosO(X ) = % , then by using the last equation we obtain cos’@(X )=A4,

which implies that @(X) is a constant and 7 is a proper slant submersion.

From Theorem 1, (13) and (3) we have the following result.

Corollary 1. Let 7T be a slant submersion from an almost paracontact Riemannian
manifold (M, g,,F,&,n) onto a Riemannian manifold (M ,, g,) with slant angle
0 €(0,90). Then, for any X,Y €T (kerz,). we have

& (#X,4Y) = cos’ 0(g,(X,Y) —n(X)n(Y) (23)
& (X, 0Y) =sin’ 6(g,(X,Y) = n(X)n(Y)). (24)

From (1), (13) and (15) we have the following result.

Corollary 2. Let 7 be aslant submersion from an almost paracontact Riemannian
manifold (M, g,, F',&, i) onto a Riemannian manifold (M,,g,) with slant angle
6 €(0,90). Then, we have

#*+Bo=1-n1Q¢& (25)
0f+Cow=0. (26)

From Theorem 1 and (25) we have the following result.

Corollary 3. Let 7z beaslant submersion from an almost paracontact Riemannian
manifold (M, g,, F,&,n) onto a Riemannian manifold (M, g,) with slant angle

0 €(0,90). Then 7 is a proper slant submersion if and only if there exists a constant
1 €[0,1] such that

Bo=u(l-n®¢E).
If 7T is a proper slant submersion, then 4 = sin’ 0.

Proposition 1. Let 7 be a slant submersion from an almost paracontact
Riemannian manifold onto a Riemannian manifold with the slant angle & € (0,90).
If @ is parallel with respect to V on (kerr,), then we have

Ty X = cos” O(Ty X —n(X)T, &) (27)
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for X e (kerr,).

Proof: If @ is parallel, then from Lemma 2 we have CT =T X¢Y for

X,Y e (kerm,). Interchanging the role of X and Y, we get CT , X =T,¢X. Thus
we have

T Y —cryX =Ty @Y —T,¢X

Since 7' is symmetric, we derive 7', @Y = T,¢X. Then substituting ¥ by @gX
we get TX¢2 X = T¢X¢X . Finally using Theorem 1 we obtain (27).

We now investigate the geometry of the leaves of the distributions (kerz,) and
(kerm,)".

Theorem 2. Let 77 be a slant submersion from an almost paracontact Riemannian
manifold (M, g,,F,&,n) onto a Riemannian manifold (M, g,) with slant angle

0 € (0,90). Then the distribution (kers,) defines a totally geodesic foliation on
M, if and only if

n(Ng (Tyé,2) = g,(hV w08 Y, Z)+ g,(hV ,0Y ,CZ+ g (Ty©Y , BZ)
for X,Y eT(kerr,) and Z eT'( kerm,)".
Proof: For X,Y e'(kerx,) and Z eI (( kers,)"), from (3) and (13) we have
(VY. Z)=g/(V oY, F2)+ g (V y oY, F2).
Using (3),(13) and (15) we get
& (VY. 2)= g (VY. Z) + g,(V,00Y,2)
+g,(V,yoY,B7 )+ g(V oY, C2).
Then from (7), (8) and Theorem 1 we obtain
g (VyY,Z)=cos’0&,(V Y, 2)-n(Y)g (T &, 2) + g,(hV 00 Y, Z)
+ g, (TyoY, Bz)+g (TywY, C2).
Hence we have
sin”08,(V 1Y, Z) = -n(Y)g (T £, Z) + g,(hV y 0y ¥ Z)
+g,(T,0Y,BZ)+ g (hV y0Y, C7)
which proves assertion.

Theorem 3. Let 77 be a slant submersion from an almost paracontact Riemannian
manifold (M, g, F, &,71) onto a Riemannian manifold (M 5 gz) with slant angle

0 € (0,90). Then the distribution (kers,)" defines a totally geodesic foliation on
M, if and only if
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¢(VV BY+ A, CY)+ B(ABY+hV ,CY)=0
for XY eT( kerm,)").

Proof: For X,Y eI'( kerm,)"), since )/ is an almost paracontact Riemannian
manifold, we have V Y = FV FY. From (9), (10),(13) and (15) we get

VY =F(,BY +V,CY)
=F(A,BY +vV,BY +4,CY +hV ,CY)
=BA,BY +CA,BY +ovV,BY +awV ,BY +04,CY +wA,CY
+BhV ,CY +ChV,CY ,
which proves the assertion.

Finally we give necessary and sufficient conditions for a slant submersion with
slant angle @ e (0,90) to be totally geodesic. Recall that a differentiable map
between Riemannian manifolds (M, g,) and (M,, g,) is called a totally geodesic
map if (VzZ)X,Y)=0 forall X,Y¥ eI TM,).

Theorem 4. Let ;7 be a slant submersion from an almost paracontact Riemannian
manifold (M 81 F,&,n) ontoa Riemannian manifold (M 5s g2) with slant angle

6 €(0,90). Then 7 is totally geodesic if and only if

0052077(Y Vg, T, ¢,Z2)=g,(hV,yw0Y ,Z)+g,(hV,a¥ ,CZ)+g (T, a ,CZ)
and

gl(hvzlngazz):gl(Alezz +hvzlczzaa)X)+COSZQ77(X )gl(Azlf,Zz)

for Z,Z,,Z, eT( kerm,)") and X,Y e [(kerrn)).

Proof: First of all, since 7 is a Riemannian submersion we have
(Ve )Z,,Z,)=0
for Z,,Z, eT( kerm,)").
For X,Y e(kerr,) and Z,Z,,Z, e T( kerm,)"). from (3), (12) and (13) we

ave
g, ((Vr )XY ) Z)=-g (VyFoY ,Z)-g (Vyd ,FZ).
Using (13) and (15) we get

g, (Vz)X Y ), 7.Z)=-g,(V,0Y ,Z)-g,(V,00Y ,Z)
-g,(Vya¥ ,BZ)-g,(Vya ,CZ).

h



Slant submersions from almost paracontact Riemannian manifolds 27

Then Theorem 1, (7) and (8) imply that

gz((Vﬂ*)(XaY )»”*Z):_Cosz‘ggl(vxy:Z)+0052€77(Y )gl(TXﬁ,Z)—gl(hVXwﬂY,Z)
-g, T, ,BZ)-g,(hV,al ,CZ).

Hence we obtain
Sinzggz((v”*)(X ,Y )a ”*Z) = COSZHU(Y )gl(TX é:,Z ) _gl(th CO(DY 7Z)

-g,T,ao¥ ,BZ)—g,(hV,al ,CZ). (28)

Similarly, we get
sin0g, (V)X .Y ),7,Z)=cos’On(¥ )g, (T &, Z)~g,(hV yweY ,Z)
g, T, ,BZ)—g,(hV oY ,CZ).

sin0g,(Vz )X ,Z),7.Z,) =g1(AZIBZ2 +hVZ]CZZ,a)X)+c052977(X )gl(AZ].f,Zz)

—gl(hvzla)ﬂX,Zz). (29)

Then the proof follows from (28) and (29).
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