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  ABSTRACT  
In this paper, we introduce slant submersions from almost paracontact Riemannian manifolds 
onto Riemannian manifolds. We give examples and investigate the geometry of foliations 
which are arisen from the definition of a Riemannian submersion. We also find necessary and 
sufficient conditions for a slant submersion to be totally geodesic.

Keywords:  Riemannian submersion; almost paracontact Riemannian manifold; slant 
submersion.

INTRODUCTION 

Given a −∞C submersion π  from a Riemannian manifold ),( gM  onto a Riemannian 
manifold ),( gB ′), there are several kinds of submersions according to the conditions on 
it: e.g. Riemannian submersion (O’Neill, 1966; Gray, 1967), slant submersion (Ṣahin, 
2011; Park, 2012; Gündüzalp, 2013a), almost Hermitian submersion (Watson, 1976), 
paracontact semi-Riemannian submersion (Gündüzalp & Ṣahin, 2013), anti-invariant 
semi-Riemannian submersions (Gündüzalp, 2013b), paraquaternionic submersion 
(Caldarella, 2010), quaternionic submersion (Ianus et al., 2008), etc. As we know, 
Riemannian submersions are related with physics and have their applications in the 
Yang-Mills theory (Bourguignon & Lawson, 1981; Watson, 1983), Kaluza-Klein 
theory (Ianus & Visinescu, 1987; Bourguignon & SS Lawson, 1989), supergravity 
and superstring theories (Ianus & Visinescu, 1991; Mustafa, 2000), etc. On the other 
hand, slant submanifolds of almost paracontact metric manifolds were studied in 
(At.ceken, 2010).

Riemannian submersions between almost Hermitian manifolds were studied by 
Watson in (1976) under the name of holomorphic submersions. One of the main result 
of this notion is that vertical and horizontal distributions are invariant under almost 
complex structure. He showed that if the total manifold is a Kähler manifold, then 
the base manifold is also a Kähler manifold. Recently, (Ṣahin, 2011) has introduced 
slant submersions from almost Hermitian manifolds to Riemannian manifolds. He 
showed that the geometry of slant submersions is quite different from holomorphic 
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submersions. Indeed, although every holomorphic submersion is harmonic, slant 
submersions may not be harmonic. The paper is organized as follows. In the following 
seedons we recall some notions needed for this paper and we give the definition of slant 
Riemannian submersions and provide examples. We also investigate the geometry of 
leaves of the distributions. Finally we give necessary and sufficient conditions for 
such submersions to be totally geodesic.

PRELIMINARIES  

In this section, we define almost paracontact Riemannian manifolds, recall the notion 
of Riemannian submersions between Riemannian manifolds, and give a brief review 
of basic facts of Riemannian submersions.

 Almost paracontact Riemannian manifolds.  Let M  be a ( +m 1)-dimensional 
manifold. If there exist on M  a (1,1)  type tensor field ,F  a vector ,ξ  and 1-form 
η  satisfying 

          =)(,=2 ξηξη ⊗−IF 1,       (1)

 then M  is said to be an almost paracontact manifold, where ,⊗  the symbol, denotes 
the tensor product. In the almost paracontact manifold, the following relations hold 
good: 

        =Fξ  0, =Fη 0, .=)( mFrank      (2)

An almost paracontact manifold  is said to be an almost paracontact metric 
manifold if Riemannian metric g  on M  satisfies 

       g(FX, FY) ()(),(= ηη YXYXg − ), ),(=)( ξη XgX     (3)

 for all ,YX Γ∈ (TM). From (2) and (3), we can easily derive the relation 

         g(FX, Y) = g(X, FY).         (4)

An almost paracontact metric manifold is said to be an almost paracontact 
Riemannian manifold with −),,,( ηξgF  Levi Civita connection if 0=F∇  and 

=η∇ 0, where ∇ denotes the connection on .M  Since ,=2 ξη ⊗−IF  the vector 
field ξ  is also parallel with respect to ∇  (Ianus et al., 1985).

 Example 1. The almost paracontact Riemannian structure ),,,( ηξgF  is defined on 
5R  in the following way:
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From this definition, it follows that 

 ,=)(=),( ηξ gvZZg  (FZ, FZ) (),(= 2η ZZZg − ), =ξF 0, 1=)(ξη

for an arbitrary vector field .Z  Thus ),,,,( 5 ηξgFR  becomes an almost paracontact 

Riemannian manifold, where g  and },,{
tyx ii ∂

∂
∂
∂

∂
∂

 denote usual inner product and 

standard basis of ( 5RT ), respectively.

Riemannian submersions. Let ),( gM  and ),( gB ′  be two Riemannian manifolds. 
A surjective −∞C map BM →:π  is a −∞C submersion if it has maximal rank 
at any point of .M  Putting ,= xx ker ∗πV  for any ,Mx ∈  we obtain an integrable 
distribution ,V  which is called vertical distribution and corresponds to the foliation 
of M  determined by the fibres of .π  The complementary distribution H  of ,V  
determined by the Riemannian metric ,g  is called horizontal distribution. A −∞C
submersion BM →:π  between two Riemannian manifolds ),( gM  and ),( gB ′  is 
called a Riemannian submersion if, at each point x  of ,M  x∗π  preserves the length 
of the horizontal vectors. A horizontal vector field X  on M  is said to be basic if X  
is −π related to a vector field X ′  on .B  It is clear that every vector field X ′  on B  
has a unique horizontal lift X  to M  and X  is basic.

We recall that the sections of ,V  respectively ,H  are called the vertical vector 
fields, respectively horizontal vector fields. A Riemannian submersion BM →:π  
determines two (1,2)  tensor fields T  and A  on ,M  by the formulas: 

      hFTFET E ∇==),( vE vF v∇+  vEhF         (5)

and

       vFAFEA E ∇==),(
hEhF + h∇hEvF       (6)

for any , FE Γ∈ (TM), where v  and h  are the vertical and horizontal projections 
(Falcitelli et al., 2004). From (5) and (6), one can obtain 

        ;ˆ= WWTW UUU ∇+∇           (7)

        (= XhXTX UUU ∇+∇ ):         (8) 

            ;)(= UAUvU XXX +∇∇          (9)

             (= YhYAY XXX ∇+∇ ),            (10)
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for any )((, ⊥
∗Γ∈ πkerYX ), (, ∗Γ∈ πkerWU ). Moreover, if X  is basic then 

        .=)(=)( UAUhXh XXU ∇∇             (11)

We note that for (, ∗Γ∈ πkerVU ), VTU
 coincides with the second fundamental 

form of the immersion of the fibre submanifolds and for )((, ⊥
∗Γ∈ πkerYX ). 

],[
2
1= YXvYAX  reflecting the complete integrability of the horizontal distribution 

.H  It is known that A  is alternating on the horizontal distribution: ,= XAYA YX −  for 

))((, ⊥
∗Γ∈ πkerYX  and T  is symmetric on the vertical distribution: ,= UTVT VU  

for (, ∗Γ∈ πkerVU ).

We now recall the following result which will be useful for later.

 Lemma 1.  (O’Neill, 1966).  If BM →:π  is a Riemannian submersion and YX ,  
basic vector fields on ,M  −π related to X ′  and Y ′  on ,B  then we have the 
following properties  

1.   ],[ YXh  is a basic vector field and ;],[=],[ ππ YXYXh ′′∗  

2.    )( Yh X∇  is a basic vector field −π related to ( YX ′∇′ ′ ), where ∇  and ∇′  are the 
Levi-Civita connection on M  and ;B  

3. (],[ ∗Γ∈ πkerUE ). for any )( ∗Γ∈ πkerU  and for any basic vector field .E  

We recall the notion of harmonic maps between Riemannian manifolds. Let 

),( MgM  and ),( NgN  be Riemannian manifolds and suppose that NM →:π  is 

a smooth map between them. Then the differential ∗π  of π  can be viewed a section 

of the bundle Hom (TM , 1N−π TN ,) M→  where N1−π TN is the pullback bundle which 

has fibres ( 1−π TN .,=) )( MpNT pp ∈π  Hom (TM , 1N−π TN )  has a connection ∇  

induced from the Levi-Civita connection M∇  and the pullback connection π∇ . Then 

the second fundamental form of π  is given by 

     (∇ ∗π )( )(=), YYYX M
XX ∇−∇ ∗∗ πππ             (12)

for ,YX Γ∈ (TM). Recall that π  is said to be  harmonic if 0=)( ∗∇πtrace  and π  
is called a  totally geodesic map if ( ∗∇π )( 0=),YX  for ,YX Γ∈ (TM) (Baird & 
Wood, 2003). It is known that the second fundamental form is symmetric.

SLANT SUBMERSIONS 

In this section, we define slant submersions from an almost paracontact Riemannian 
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manifold onto a Riemannian manifold by using the definition of a slant distribution 
given in (At

.
c eken, 2010). We give examples, investigate the geometry of leaves of 

distributions. We also obtain a necessary and sufficient condition for such submersions 
to be totally geodesic maps.

Definition 1.  Let π  be a Riemannian submersion from an almost paracontact 
Riemannian manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ,( 22 gM ). If 
for any non-zero vector kerX π −∈ ∗  sp{ pξ }: ,1Mp ∈  the angle )(Xθ  between 
FX and the space (kerπ −∗ sp{ pξ }), is a constant, i.e. it is independent of the choice 
of the point 1Mp ∈  and choice of the tangent vector X  in (kerπ −∗ sp }),{ pξ  then 
we say that π  is a slant submersion. In this case, the angle θ  is called the slant angle 
of the slant submersion.

It is known that the distribution )( ∗πker  is integrable for a Riemannian submersion 
between Riemannian manifolds. In fact, its leaves are (1 p−π ), ,1Mp ∈  i.e., fibers. 
Thus it follows from above definition that the fibers of a slant submersion are slant 
submanifolds of ,1M  for slant submanifolds, (At

.
c eken, 2010). We note that the 

characteristic vector field ξ  is a vertical vector field.

We first give some examples of slant submersions.

 Example 2. Every anti-invariant Riemannian submersion from an almost paracontact 
Riemannian manifold onto a Riemannian manifold is a slant submersion with 90.=θ
 Example 3.  Consider the following Riemannian submersion given by 

25: RR →π

,
2

(),,,,( 2
11

2121 xyxtyyxx −
→ ).

Then π  is a slant submersion with slant angle 45.=θ
 Example 4.  Define a map 25: RR →π  by 

sincos,(=),,,,( 1122121 ααπ yxxtyyxx − ),

where 90.<<0 α  Then the map π  is a slant submersion with the slant angle 
.= αθ

 Example 5.  Define a map 25: RR →π  by 

 )cossin,sincos(=),,,,( 22112121 ββααπ yxyxtyyxx −− ).

Then the map π  is a slant submersion with the slant angle θ  with 

cos =| sin( ) | .θ α β+
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Let π  be a Riemannian submersion from an almost paracontact Riemannian 

manifold 1M  with the structure ),,,( 1 ηξFg  onto a Riemannian manifold ),( 22 gM  ), 

Then for ( ∗Γ∈ πkerX ), we write 

               FX ,= XX ωφ +         (13)

 where Xφ  and Xω  are vertical and horizontal parts of FX. From (4) and (13), one 
can easily see that 

         ,(=),( 11 YXgYXg φφ ).            (14)

 for any (, ∗Γ∈ πkerYX ).

Also for Γ∈Z (( )⊥
∗πker ). we have 

           FZ = BZ+CZ,              (15)

 where BZ and CZ are vertical and horizontal component of FZ. From (4) and (15), 
one can easily see that 

         g1(Z1, CZ2)=g1(CZ1, Z2)               (16)

 for any )((, 21
⊥

∗Γ∈ πkerZZ ).

Span }{ξ  defines the vertical vector field distribution. If ∗∈ πkerX  is a vertical 
vector field, which is orthogonal to ,ξ  then 

         g(FX, FX)= g(X, X) ≥ 0,

the same is valid for .Xφ  For vertical vector fields the Cauchy-Schawrz inequality, 
),( YXg ≤ | X | Y |, is verified. Therefore the Wirtinger angle, ,θ  is given by: 

( , ø ) = cos .
| || ø |
g FX X
FX X

θ

We define the covariant derivatives of φ  and ω  as follows 

      YYY XXX ∇−∇∇ ˆˆ=)( φφφ               (17)

and 

      YYhY XXX ∇−∇∇ ˆ=)( ωωω             (18)

 for (, ∗Γ∈ πkerYX ). where .=ˆ YvY XX ∇∇  Then we easily have

 Lemma  2.   Let ),,,,( 11 ηξFgM  be an almost paracontact Riemannian manifold 
and ),( 22 gM  a Riemannian manifold. Let ),(),,(: 2211 gMFgM →π  be a slant 
submersion. Then we get 

YYTY XXX +∇+∇ ˆ=ˆ φωφ BT YX

YYhYT XXX +∇∇+ ˆ= ωωφ CT YX
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 for any (, ∗Γ∈ πkerYX ).

Let π  be a slant submersion from an almost paracontact Riemannian manifold 
),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with the slant angle 

(0,90),∈θ  then we say that ω  is parallel with respect to the Levi-Civita connection 

∇  on )( ∗πker  if its covariant derivative with respect to ∇  vanishes, i.e., we have 

       0=ˆ=)( YYhY XXX ∇−∇∇ ωωω            (19)

 for (, ∗Γ∈ πkerYX ).

Invariant and anti-invariant submanifolds are particular classes of slant 
submanifolds with slant angles 0=θ  and =θ 90, respectively. A slant submanifold 
which is neither invariant nor anti-invariant submanifold is called a proper slant 
submanifold (At

.
c eken, 2010).

Theorem 1. Let π  be a Riemannian submersion from an almost paracontact 
Riemannian manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ,( 22 gM ), 
Then π  is a proper slant submersion if and only if there exists a constant [0,1]∈λ  
such that 

))((=2 ξηλφ XXX −

for ).( ∗Γ∈ πkerX  If π  is a proper slant submersion, then .cos= 2θλ

Proof:  For any nonzero ( ∗Γ∈ πkerX ), we can write 

       || ø ||cos ( ) = ,
|| ||

XX
FX

θ                          (20)

where )(Xθ  is the slant angle. By using (14), (20) and (1) we get

      ),(=),( 1
2

1 XXgXXg φφφ

      
2

1= ( ) ( , )cos X g FX FXθ

      ),()(cos= 2
1

2 XXFgXθ

      ),)(()(cos= 1
2 XXXgX ξηθ −            (21)

 for all ).( ∗Γ∈ πkerX  Since 1g  is Riemannian metric, from (21) we have 

    (cos= 22 θφ XX )( )(− ξη XX ), ( ∗Γ∈ πkerX ).           (22)

 Let .cos= 2θλ  Then it is obvious that [0,1]∈λ  and (=2 ξηλφ ⊗−I ).

Conversely, let us assume that there exist a constant [0,1]∈λ  such that 
)(=2 ξηλφ ⊗−I  is satisfied. From (13), (14) and (1) we get 

1( , ø )cos ( ) =
|| |||| ø ||
g FX XX
FX X

θ
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1( , )= ,
|| |||| ø ||
g FX FX
FX X

λ

for all ( ∗Γ∈ πkerX ). Thus we have 

|| ||( ) = .
|| ø ||

FXcos X
X

λθ

Since || ø ||( ) =
|| ||

Xcos X
FX

θ  , then by using the last equation we obtain ,=)(2 λθ Xcos  

which implies that )(Xθ  is a constant and π  is a proper slant submersion.

From Theorem 1, (13) and (3) we have the following result.

 Corollary 1.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then, for any (, ∗Γ∈ πkerYX ). we have 

    ))()(),((cos=),( 1
2

1 YXYXgYXg ηηθφφ −        (23)

    )).()(),((sin=),( 1
2

1 YXYXgYXg ηηθωω −         (24)

From (1), (13) and (15) we have the following result.

 Corollary 2.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then, we have 

        ξηωφ ⊗−+ IB =2             (25)

         ωφ =ωC+  0.             (26)

From Theorem 1 and (25) we have the following result.

 Corollary 3.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then π  is a proper slant submersion if and only if there exists a constant 
[0,1]∈µ  such that 

(= ξηµω ⊗−IB ).

If π  is a proper slant submersion, then .sin= 2θµ

 Proposition 1.   Let π  be a slant submersion from an almost paracontact 
Riemannian manifold onto a Riemannian manifold with the slant angle (0,90).∈θ  
If ω  is parallel with respect to ∇  on ( ∗πker ), then we have 

       ))((cos= 2 ξηθφφ XXX TXXTXT −         (27)
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 for ( ∗∈ πkerX  ).

Proof:  If ω  is parallel, then from Lemma 2 we have CT YTY XX φ=  for 
(, ∗∈ πkerYX ). Interchanging the role of X  and ,Y  we get CT .= XTX YY φ  Thus 

we have 

CT YX − CT XTYTX YXY φφ −=

Since T  is symmetric, we derive .= XTYT YX φφ  Then substituting Y  by Xφ  
we get .=2 XTXT XX φφ φ  Finally using Theorem 1 we obtain (27).

We now investigate the geometry of the leaves of the distributions )( ∗πker  and 
.)( ⊥

∗πker
 Theorem 2.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then the distribution )( ∗πker  defines a totally geodesic foliation on 
1M  if and only if 

 (=),()( 11 hgZTgY XX φξη ∇ ωφ ,(), 1 YhgZY Xω∇+ CZ ,(1 YTg Xω+  BZ)

for )(, ∗Γ∈ πkerYX  and )(( ⊥
∗Γ∈ πkerZ ).

 Proof:  For )(, ∗Γ∈ πkerYX  and Γ∈Z (( )⊥
∗πker ), from (3) and (13) we have 

 ,(=),( 11 YgZYg XX φ∇∇  FZ) ,(1 Yg Xω∇+  FZ).

Using (3),(13) and (15) we get 

(),(=),( 1
2

11 gZYgZYg XXX φ ∇+∇∇ ωφ ), ZY
                       ,(1 Yg Xω∇+ BZ ,() 1 Yg Xω∇+  CZ).

 Then from (7), (8) and Theorem 1 we obtain 

 (),()(),(cos=),( 111
2

1 hgZTgYZYgZYg XXXX ωφξηθ ∇+−∇∇ ωφ ), ZY

     ,(1 YTg Xω+  BZ ,() 1 YTg Xω+  CZ).

 Hence we have 

 (),()(=),(sin 111
2 hgZTgYZYg XXX φξηθ ∇+−∇  ωφ ), ZY

            ,(1 YTg Xω+  BZ ,() 1 Yhg Xω∇+  CZ)

 which proves assertion.

Theorem 3.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold (M1, g1, F, ),ηξ  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then the distribution ⊥
∗)( πker  defines a totally geodesic foliation on 

1M  if and only if 
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(v X∇φ BY AX+ CY () AB X+ BY Ch X∇+ CY 0=)
for )((, ⊥

∗Γ∈ πkerYX ).

Proof:  For )((, ⊥
∗Γ∈ πkerYX ), since M  is an almost paracontact Riemannian 

manifold, we have = FY XX ∇∇ FY. From (9), (10),(13) and (15) we get 

   = ( )X X XY F BY CY∇ ∇ + ∇

= ( )X X X XF A BY v BY A CY h CY+ ∇ + + ∇  
= ø øX X X X X XBA BY CA BY v BY v BY A CY A CYω ω+ + ∇ + ∇ + +

,X XBh CY Ch CY+ ∇ + ∇
which proves the assertion.

Finally we give necessary and sufficient conditions for a slant submersion with 
slant angle (0,90)∈θ  to be totally geodesic. Recall that a differentiable map π  
between Riemannian manifolds ),( 11 gM  and ),( 22 gM  is called a totally geodesic 
map if  ( )( , ) = 0X Yπ∗∇  for all 1, ( ).X Y TM∈Γ

Theorem 4.   Let π  be a slant submersion from an almost paracontact Riemannian 
manifold ),,,,( 11 ηξFgM  onto a Riemannian manifold ),( 22 gM  with slant angle 

(0,90).∈θ  Then π  is totally geodesic if and only if 

 2
1 1 1 1( ) ( , ) = ( ø , ) ( , ) ( , )cos X X X XY g T Z g h Y Z g h Y CZ g T Y CZθη ξ ω ω ω∇ + ∇ +

and 
2

1 2 1 2 2 1 21 1 1 1
( ø , ) = ( , ) ( ) ( , )cosZ Z Z Zg h X Z g A BZ h CZ X X g A Zω ω θη ξ∇ + ∇ +
 

for ))((,, 21
⊥

∗Γ∈ πkerZZZ  and (, ∗Γ∈ πkerYX ).

 Proof:  First of all, since π  is a Riemannian submersion we have 

1 2( )( , ) = 0Z Zπ∗∇

for )((, 21
⊥

∗Γ∈ πkerZZ ).

For )(, ∗Γ∈ πkerYX  and ))((,, 21
⊥

∗Γ∈ πkerZZZ ). from (3), (12) and (13) we 
have 

2 1 1(( )( , ), ) = ( ø , ) ( , ).X Xg X Y Z g F Y Z g Y FZπ π ω∗ ∗∇ − ∇ − ∇
 

Using (13) and (15) we get 
2

2 1 1(( )( , ), ) = ( ø , ) ( ø , )X Xg X Y Z g Y Z g Y Zπ π ω∗ ∗∇ − ∇ − ∇
                1 1( , ) ( , ).X Xg Y BZ g Y CZω ω− ∇ − ∇
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Then Theorem 1, (7) and (8) imply that 
2 2

2 1 1 1(( )( , ), ) = ( , ) ( ) ( , ) ( ø , )cos cosX X Xg X Y Z g Y Z Y g T Z g h Y Zπ π θ θη ξ ω∗ ∗∇ − ∇ + − ∇

         1 1( , ) ( , ).X Xg T Y BZ g h Y CZω ω− − ∇

Hence we obtain
2 2

2 1 1(( )( , ), ) = ( ) ( , ) ( , )sin cos X Xg X Y Z Y g T Z g h Y Zθ π π θη ξ ωϕ∗ ∗∇ − ∇  

         1 1( , ) ( , ).X Xg T Y BZ g h Y CZω ω− − ∇       (28)

 Similarly, we get 
2 2

2 1 1(( )( , ), ) = ( ) ( , ) ( ø , )sin cos X Xg X Y Z Y g T Z g h Y Zθ π π θη ξ ω∗ ∗∇ − ∇

                   1 1( , ) ( , ).X Xg T Y BZ g h Y CZω ω− − ∇   
2 2

2 1 2 1 2 2 1 21 1 1
(( )( , ), ) = ( , ) ( ) ( , )sin cosZ Z Zg X Z Z g A BZ h CZ X X g A Zθ π π ω θη ξ∗ ∗∇ + ∇ +

         1 21
( ø , ).Zg h X Zω− ∇              (29)

 Then the proof follows from (28) and (29).
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غمور جانبية من منطويات ريمانية مثل – تلامسية تقريباً

يلماز جوندوزالب
قسم الرياضيات -جامعة ديكل-21280- دياربكر-تركيا

خلاصة
نقدم في هذا البحث غمور جانبية من منطويات ريمانية مثل – تلامسية تقريباً إلى منطويات 
ريمانية. نعطي بعض الامثلة و ندرس هندسة التوريقات التي تنتج عن هذا الغمر. كما نجد 

شروط ضرورية و كافية ليكون الغمر الجانبي جيوديزي كلياً.
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