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Abstract

Neighbor designs (NDs) are used in the experiments where neighbor effects may arise. Neighbor designs
neutralize these effects and are, therefore, considered to be robust against neighbor effects. Minimal
neighbor designs are always most economical among the neighbor designs and are, therefore, preferred
by the experimenters. Method of cyclic shifts provides these designs in circular blocks only for odd
v (number of treatments). For v even, minimal circular generalized neighbor designs in which only v

2
unordered pairs of distinct treatments that do not appear as neighbors will be the better alternate to the
minimal neighbor designs. In this article, such minimal generalized neighbor designs are constructed in
circular blocks for v even.

Keywords: Direct effects; minimal circular blocks; neighbor designs; neighbor effects; robust to
neighbor effects.

1. Introduction

Neighbor designs (NDs) are used in the experiments where neighbor effects may arise. Neighbor designs
neutralize these effects and are, therefore, considered to be robust against neighbor effects. Minimal
neighbor designs are always most economical among the neighbor designs and are, therefore, preferred
by the experimenters. Tomar et al. (2005) suggested that competition among neighboring units becomes
a source of bias and treatments comparisons are not much affected by neighbor effects with the use of
neighbor balanced designs (NBDs). If each treatment appears exactly once with all other treatments as
neighbor then design is minimal neighbor balanced. If every treatment occurs equal number of times, say
λ′ as neighbor of every other treatment, design is called neighbor balanced, here λ′ is positive integer. If
λ′ = 1 then it is minimal NBD. If each treatment appears either (i) λ′

1 = 1 and λ′
2 = 0, or (ii) λ′

1 = 1 and
λ′
2 = 2 times with other treatments as neighbor (left or right) then designs are called minimal generalized

neighbor designs (GNDs).
Rees (1967) finds application of minimal NBDs in serology for virus research. In experiments of

agriculture, horticulture, and forestry, neighbor effects arise due to plots’ nature, plots’ layout, pest
infections from neighboring plots, etc. Minimal NBDs are available in literature to neutralize neighbor
effects economically for v odd. For v even, our proposed minimal circular GNDs (MCGNDs) will
reduce the bias due to neighbor effects economically and efficiently. Williams (1952) constructed NBDs
in linear blocks. Rees (1967) used neighbor designs in virus research using circular blocks. Rees (1967)
constructed neighbor designs also for k ≤ v. Hwang (1973) constructed NBDs for some cases of v
odd. Cheng (1983) constructed neighbor designs for block size (k) equal to v. NBDs reduce bias due
to neighbor effects, see Azais (1987), Langton (1987), Azais et al. (1993) and Kunert (2000). Iqbal
et al. (2009) constructed some series of NBDs through method of cyclic shifts. Akhtar et al. (2010)
and Ahmed & Akhtar (2011) presented NBDs for k = 5 and 6 respectively. Shehzad et al. (2011a)
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constructed minimal circular blocks neighbor designs for some limited cases. Misra et al. (1991) relaxed
the conditions of balance property up to some extent and constructed GNDs. GNDs will be minimal
GN2-designs if λ′ may take only two values (i) λ′

1 = 1 and λ′
2 = 0, or (ii) λ′

1 = 1 and λ′
2 = 2. Nutan

(2007) and Kedia & Misra (2008) constructed some classes of circular GNDs (CGNDs) in which some
are GN2-designs. Ahmed et al. (2009), Zafaryab et al. (2010), Shehzad et al. (2011b) and Iqbal et al.
(2012) presented MCGNDs for some limited cases. In this article, MCGNDs are obtained for v even in
equal and unequal block sizes. In our proposed designs, v

2 pairs of treatments do not appear as neighbors.
This article is organized as: Method of cyclic shifts is described in Section 2, along with the

conditions for existence of MCGNDs. Efficiency measure is described in Section 3. MCGNDs are
obtained for m ≡ 0 (mod 4) in Section 4 and for m ≡ 3 (mod 4) in Section 5. Discussion and conclusion
are given in Section 6.

2. Method of cyclic shifts

Iqbal (1991) introduced method of cyclic shifts which is simplified here for minimal CNBDs and
minimal CGNDs.

Let Sj = [qj1, qj2, · · · , qj(k−1)] be i sets, j = 1, 2, · · · , i, 1 ≤ qju ≤ v − 1 and u = 1, 2, · · · , k − 1.

• If each of 1, 2, · · · , v − 1 appears exactly once in S∗ then designs will be minimal CNBD.

• If each of 1, 2, · · · , v − 1 appears either (a) 1 and 0, or (b) 1 and 2 in S∗ then designs will be
minimal CGND.

Here S∗ contains:

(i) Each element of all sets Sj .

(ii) Sum (mod v) of all elements in each set Sj .

(iii) Complements of all elements in (i) and (ii), here complement of a being v − a.

In this article, we deal with the construction of MCGNDs in which v
2 unordered pairs will not appear

as neighbors. To construct minimal CGNDs for v = 2ik1 + 2k2 + 2k3 + · · · + 2kh + 2, using Rule I,
proceed as.

• If sum of A is divisible by v then it will produce required MCGNDs, here A = [1, 2, · · · ,m]. For
this, one or more elements can be replaced with their complements, here 2m = v − 2.

• Divide resultant A in i classes of k1 size , one class each of k2, k3, · · ·, and kh sizes in such a way
that sum of each class is divisible by v.

• Required sets of shifts will be obtained by deleting one element (any) from each class.

Example 2.1

S = [1, 2, 3] provides minimal CGND for v = 10 and k = 4.

Proof: S∗ = [1, 2, 3, 6, 9, 8, 7, 4] which contains each of 1, 2, · · · , 9 once but 5 does not appear. Hence 
S = [1, 2, 3] provides minimal CGND in blocks of size 4. Blocks of the design are generated as follows 
from the given set(s) of shifts.

Each set requires v blocks. Assign to each block 0 to v − 1 as first unit e lement. Add 1 (mod v) to first 
unit elements for second unit elements. Then add 2 (mod v) to second unit values and so on, see Table 1.

2

An easy construction of generalized neighbor designs in minimal circular blocks



Table 1. Blocks obtained from S = [1, 2, 3]

Blocks
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 0
3 4 5 6 7 8 9 0 1 2
6 7 8 9 0 1 2 3 4 5

S1 = [3,4,7], S2 = [1,5] produce following MCGND for v = 16, k1 = 4 and k2 = 3.

Proof: S∗ = [3,4,7,14,1,5,6,13,12,9,2,15,11,10], Here each of 1, 2, · · · , 15 appears once except 8 which
does not appear. Hence S1 and S2 generate MCGND for v = 16, k1 = 4, k2 = 3.

Table 2 and 3 jointly present MCGND for v = 16, k1 = 4, k2 = 3. In this design, unordered pairs
(0,8), (1,9), (2,10), (3,11), (4,12), (5,13), (6,14), (7,15) do not appear as neighbors. Hence we save
[16(15) − 16(7)] = 53.33% experimental units at the cost of losing [ 8

120 × 100%] = 6.67% neighbor
balance.

Table 2. Blocks obtained from S1 = [3, 4, 7]

Blocks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6

14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 3. Blocks obtained from S2 = [1, 5]

Blocks
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5

3. Efficiency of neighbor effects

The model repeatedly discussed for residual effects in literature is the traditional model given by,

yijk = µ+ τd(k,j) + γd(k−1,j) + πk + ξij + εijk, (1)

The efficiency factor for neighbor effect is the harmonic mean of non-zero Eigen values of their respective
information matrix, see James & Wilkinson (1971) and Pearce et al. (1974). Design with high value of
En is considered efficient to estimate neighbor effects. Our proposed designs possess high values of En,
therefore, these are suitable for this purpose.

Example 3.1

[2,3,4,5,7,13], [1,6,8,9,10], [11,12,14,15,16] produce MCGND for v = 34, k1 = 6 and k2 = 5 with
En = 0.90.

3

Example 2.2

Muhammad Nadeem, Muhammad Rasheed, M. H. Tahir, Khadija Noreen, Sajid Hussain, Rashid Ahmed



4. Minimal CGNDs for m ≡ 3 (mod 4)

Here, MCGNDs are obtained for m ≡ 3 (mod 4) with m = v−2
2 .

Theorem 4.1

If m ≡ 3 (mod 4), sets obtained from A = [1, 2, · · ·, (3m−1)
4 , (3m+7)

4 , (3m+11)
4 , · · ·, m, 5(m+1)

4 ] will
produce MCGNDs for:

• v = 2ik + 2.

• v = 2ik1 + 2u1k2 + 2.

• v = 2ik1 + 2u1k2 + 2u2k3 + 2 and so on.

Proof: Let
S = 1 + 2 + · · ·+ (3m−1)

4 + (3m+7)
4 + (3m+11)

4 + · · ·+m+ 5(m+1)
4

= 1 + 2 + · · ·+ (3m−1)
4 + (3m+3)

4 + (3m+7)
4 + (3m+11)

4 + · · ·+m+ 5(m+1)
4 − (3m+3)

4

= [1 + 2 + · · ·+m] + (2m+2)
4

= m(m+1)
2 + 2(m+1)

4

= 2(m+1)(m+1)
4 , Since v = 2(m+ 1)

= v(m+1)
4 .

(m+1)
4 will be integer for m ≡ 3 (mod 4).

S (mod v) ≡ 0 if (m+1)
4 is integer. Hence proved.

4.1 MCGNDs in equal block sizes when m ≡ 3 (mod 4)

For the following cases, minimal CGNDs can be constructed in equal block sizes using i sets derived
from theorem 4.1.

(i) v = 2ik + 2, k = 5, 9, 13, · · ·, i = 3, 7, 11, · · ·

(ii) v = 2ik + 2, k = 7, 11, · · ·, i = 1, 5, 9, · · ·

Example 4.1

Following sets generate minimal CGND for v = 32 and k = 5 with En = 0.92.
S1 =[4,6,10,11], S2 =[5,7,8,9], S3 =[13,14,15,20]

4.2 MCGNDs in two different block sizes when m ≡ 3 (mod 4), through i sets for k1 and one for k2

For the following cases, MCGNDs can be obtained in two different block sizes from i sets for k1 and
one set for k2 derived from theorem 4.1.

(i) v = 2k1(i+ 1), k1 = 4l = k2 + 1, i & l integers.

(ii) v = 2k1(i+ 1), k1 = 4l + 2 = k2 + 1, i odd.

(iii) v = 2k1(i+ 1), k1 (odd) = k2 + 1 > 3, i ≡ 3 (mod 4).

(iv) v = 2k1(i+ 1)− 2, k1 ≡ 1 (mod 4) = k2 + 2, i ≡ 0 (mod 4).

(v) v = 2k1(i+ 1)− 2, k1 ≡ 3 (mod 4) = k2 + 2, i ≡ 2 (mod 4).

(vi) v = 2ik1 + 8, k1 = 4l, k2 = 3, i & l integers and m ≡ 3 (mod 4).

(vii) v = 2ik1 + 8, k1 = 4l + 2, k2 = 3, i even.
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(viii) v = 2ik1 + 8, k1 (odd) > 3, k2 = 3, i ≡ 0 (mod 4).

(ix) v = 2ik1 + 10, k1 ≡ 1 (mod 4) , k2 = 4, i ≡ 3 (mod 4).

(x) v = 2ik1 + 10, k1 ≡ 3 (mod 4), k2 = 4, i ≡ 1 (mod 4).

(xi) v = 2ik1 + 12, k1 = 4l + 2, k2 = 5, and i odd.

(xii) v = 2ik1 + 12, k1 = 4l + 2, k1 (odd) > 5, k2 = 5, i ≡ 2 (mod 4) and m ≡ 3 (mod 4).

Example 4.2

Following sets generate MCGND for v = 16, k1 = 4, k2 = 3 with En = 0.85.

S1 = [2,3,10], S2 = [5,4]

4.3 MCGNDs in two different block sizes when m ≡ 3 (mod 4) , through i sets for k1 and two for k2

For the following cases, MCGNDs can be obtained in two different block sizes using i sets for k1,
two for k2 derived from theorem 4.1.

(i) v = 2k1(i+ 2)− 2, k1 = 5, 9, · · · , k1 = k2 + 1, i = 3, 7, 11, · · ·

(ii) v = 2k1(i+ 2)− 2, k1 = 7, 11, · · · , k1 = k2 + 1, i = 1, 5, 9, · · ·

(iii) v = 2k1(i+ 2)− 6, k1 = 5, 9, · · · , k1 = k2 + 2, i = 1, 5, 9, · · ·

(iv) v = 2k1(i+ 2)− 6, k1 = 7, 11, · · · , k1 = k2 + 2, i = 3, 7, 11, · · ·

(v) v = 2k1(i+ 2)− 10, k1 = 5, 9, · · · , k1 = k2 + 3, i = 3, 7, 11, · · ·

(vi) v = 2k1(i+ 2)− 10, k1 = 7, 11, · · · , k1 = k2 + 3, i = 1, 5, 9, · · ·

Example 4.3

Following sets generate minimal CGND for v = 40, k1 = 7 and k2 = 6 with En = 0.93.
S1 = [3,4,5,6,7,14], S2 = [10,11,12,13,25], S3 = [8,16,17,18,19]

4.4 MCGNDs in three different block sizes when m ≡ 3 (mod 4), through i sets for k1 and one set for
k2, one for k3

For the following cases, MCGNDs can be obtained in three different block sizes from i sets for k1,
one set for k2, one for k3 derived from theorem 4.1.

(i) v = 2k1(i+ 2)− 4, k1 = 4l + 2 = k2 + 1, k3 = k1 − 2, i odd.

(ii) v = 2k1(i+ 2)− 4, k1 = k2 + 1 > 3, k3 = k1 − 2, i ≡ 0 (mod 4).

(iii) v = 2k1(i+ 2)− 4, k1 ≡ 1 (mod 4)= k2 + 1, k3 = k1 − 3, i ≡ 1 (mod 4).

(iv) v = 2k1(i+ 2)− 6, k1 ≡ 3 (mod 4)= k2 + 1, k3 = k1 − 3, i ≡ 3 (mod 4).

(v) v = 2k1(i+ 2)− 8, k1 = 4l, l > 1, k2 = k1 − 2, k3 = k1 − 3, i, l integer and m ≡ 3 (mod 4).

(vi) v = 2k1(i+ 2)− 8, k1 = 4l + 2, k2 = k1 − 2, k3 = k1 − 3, i even, l integer, m ≡ 3 (mod 4).

(vii) v = 2k1(i+ 2)− 8, k1 > 5, k2 = k1 − 2, k3 = k1 − 3, i ≡ 2 (mod 4).

(viii) v = 2k1(i+ 1) + 6, k1 ≡ 1 (mod 4)= k2 + 1, k3 = 3, i ≡ 0 (mod 4).
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(ix) v = 2k1(i+ 1) + 6, k1 ≡ 3 (mod 4)= k2 + 1, k3 = 3, i ≡ 2 (mod 4).

(x) v = 2k1(i+ 1) + 8, k1 = 4l = k2 + 1, l > 1, k3 = 4.

(xi) v = 2k1(i+ 1) + 8, k1 = 4l + 2 = k2 + 1, k3 = 4, i odd.

(xii) v = 2k1(i+ 1) + 8, k1 = k2 + 1 > 5, k3 = 4, i ≡ 3 (mod 4).

(xiii) v = 2k1(i+ 1) + 10, k1 ≡ 1 (mod 4)= k2 + 1, k3 = 5, i ≡ 3 (mod 4).

(xiv) v = 2k1(i+ 1) + 10, k1 ≡ 3 (mod 4)= k2 + 1, k3 = 5, i ≡ 0 (mod 4).

(xv) v = 2k1(i+ 1) + 4, k1 = 4l + 2, l > 1, k2 = k1 − 2, k3 = 3, i even, m ≡ 3 (mod 4).

(xvi) v = 2k1(i+ 1) + 4, k1 > 5, k2 = k1 − 2, k3 = 3, i ≡ 1 (mod 4).

(xvii) v = 2k1(i+ 1) + 6, k1 ≡ 1 (mod 4)= k2 + 2, k3 = 4, i ≡ 0 (mod 4).

(xviii) v = 2k1(i+ 1) + 6, k1 ≡ 3 (mod 4)= k2 + 2, k3 = 4, i ≡ 2 (mod 4).

(xix) v = 2k1(i+ 1) + 8, k1 = 4l, l > 2, k2 = k1 − 2, k3 = 5, i integer and m (mod 4) ≡ 0.

(xx) v = 2k1(i+ 1) + 8, k1 = 4l + 2 = k2 + 2, k3 = 5, i odd.

(xxi) v = 2k1(i+ 1) + 8, k1 > 5, k2 = k1 − 2, k3 = 5, i ≡ 3 (mod 4).

(xxii) v = 2k1(i+ 1) + 2, k1 ≡ 1 (mod 4), k2 = k1 − 3, k3 = 3, i ≡ 2 (mod 4).

(xxiii) v = 2k1(i+ 1) + 2, k1 ≡ 3 (mod 4), k2 = k1 − 3, k3 = 3, i ≡ 0 (mod 4).

(xxiv) v = 2k1(i+ 1) + 4, k1 = 4l + 2 = k2 + 3, k3 = 4, i even.

(xxv) v = 2k1(i+ 1) + 4, k1 > 5, k2 = k1 − 3, k3 = 4, i ≡ 1 (mod 4).

(xxvi) v = 2k1(i+ 1) + 6, k1 ≡ 1 (mod 4)= k2 + 3, k3 = 5, i ≡ 2 (mod 4).

Example 4.4

Following sets generate minimal CGND for v = 32, k1 = 6, k2 = 5 and k3 = 4 with En = 0.92.
S1 = [9,11,13,14,15], S2 = [6,7,8,10], S3 = [4,5,20]

4.5 MCGNDs in three different block sizes when m ≡ 3 (mod 4), through i sets for k1, one set for k2,
two for k3

For the following cases, MCGNDs can be obtained in blocks of three different sizes through i sets
for k1, one set for k2, two for k3 derived from theorem 4.1.

(i) v = 2k1(i+ 3)− 8, k1 = 4l = k2 + 1, k3 = k1 − 2.

(ii) v = 2k1(i+ 3)− 8, k1 = 4l + 2 = k2 + 1, k3 = k1 − 2, i odd.

(iii) v = 2k1(i+ 3)− 8, k1 (odd) > 3, k2 = k1 − 1, k3 = k1 − 2, i ≡ 1 (mod 4).

(iv) v = 2k1(i+ 3)− 12, k1 = 4l + 2 = k2 + 1, k3 = k1 − 3, i even.

(v) v = 2k1(i+ 3)− 12, k1 (odd ) > 3, k1 = k2 + 1, k3 = k1 − 3, i ≡ 3 (mod 4).

Example 4.5

Following sets generate minimal CGND for v = 32, k1 = 5, k2 = 4 and k3 = 3 with En = 0.85.
S1 = [3,5,9,14], S2 = [7,8,11], S3 = [10,20], S4 = [13,15]

6

An easy construction of generalized neighbor designs in minimal circular blocks



5. Minimal CGNDs for m ≡ 0 (mod 4)

Here, MCGNDs are generated for m (mod 4) ≡ 0, where m = v−2
2 .

Theorem 5.1

If m ≡ 0 (mod 4), sets obtained from B = [1, 2, · · ·, m] will produce proposed MCGNDs for:

• v = 2ik + 2.

• v = 2ik1 + 2u1k2 + 2.

• v = 2ik1 + 2u1k2 + 2u2k3 + 2, and so on.

Proof: Let
S = 1 + 2 + · · ·+m
= (m+1)m

2

= 2(m+1)m
4 = v.m4 Since v = 2(m+ 1)

m
4 will be integer for m ≡ 0 (mod 4).

S (mod v) ≡ 0 if m
4 is integer. Hence proved.

5.1 MCGNDs in equal block sizes when m ≡ 0 (mod 4)

For the following cases, minimal CGNDs can be constructed in equal block sizes using i sets derived
from theorem 5.1

(i) v = 2ik + 2, k = 4l, i, l integer and m ≡ 0 (mod 4).

(ii) v = 2ik + 2, k = 4l + 2, i even, l integer and m ≡ 0 (mod 4).

(iii) v = 2ik + 2, k (odd) > 3, i ≡ 0 (mod 4) and m ≡ 0 (mod 4).

Example 5.1

Following sets generate minimal CGND for v = 18 and k = 4 with En = 0.88.
S1 = [3, 4, 5], S2 = [1, 2, 7]

5.2 MCGNDs in two different block sizes when m ≡ 0 (mod 4) through i sets for k1 and one for k2

For the following cases, minimal CGNDs can be constructed in two different block sizes from i sets
for k1 and one for k2 derived from theorem 5.1.

(i) v = 2k1(i+ 1), k1 ≡ 1 (mod 4)= k2 + 1, i ≡ 0 (mod 4).

(ii) v = 2k1(i+ 1), k1 ≡ 3 (mod 4)= k2 + 1, i ≡ 2 (mod 4).

(iii) v = 2k1(i+ 1)− 2, k1 = 4l + 2 = k2 + 2, i even, l integer.

(iv) v = 2k1(i+ 1)− 2, k2 = k1 − 2, k1 (odd) > 3, i ≡ 1 (mod 4).

(v) v = 2ik1 + 8, k1 ≡ 1 (mod 4), k2 = 3, i ≡ 1 (mod 4).

(vi) v = 2ik1 + 8, k1 ≡ 3 (mod 4), k2 = 3, i ≡ 3 (mod 4).

(vii) v = 2ik1 + 10, k1 = 4l, l > 1, k2 = 4, i integer.

(viii) v = 2ik1 + 10, k1 = 4l + 2, k2 = 4, i even.

(ix) v = 2ik1 + 10, k1 (odd) > 3, k2 = 4, i ≡ 0 (mod 4).
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(x) v = 2ik1 + 12, k1 ≡ 1 (mod 4), k2 = 5, i ≡ 3 (mod 4).

(xi) v = 2ik1 + 12, k1 ≡ 3 (mod 4), k2 = 5, i ≡ 1 (mod 4).

Example 5.2

Following sets generate MCGND for v = 18, k1 = 5, k2 = 3 with En = 0.88.

S1 = [2,4,5,6], S2 = [7,8]

5.3 MCGNDs in two different block sizes when m ≡ 0 (mod 4), through i sets for k1 and two for k2

For the following cases, minimal CGNDs can be constructed in two different block sizes from i sets
for k1, two for k2 derived from theorem 5.1.

(i) v = 2k1(i+ 2)− 2, k1 = 4l + 2 = k2 + 1, i odd.

(ii) v = 2k1(i+ 2)− 6, k1 = 4l = k2 + 2, i & l > 1.

(iii) v = 2k1(i+ 2)− 6, k1 = 4l + 2 = k2 + 2, i even.

(iv) v = 2k1(i+ 2)− 6, k2 = k1 − 2, k1 (odd) > 3, i ≡ 2 (mod 4).

(v) v = 2k1(i+ 2)− 10, k2 = k1 − 3, k1 = 4l + 2, i odd.

(vi) v = 2k1(i+ 2)− 10, k2 = k1 − 3, k1 (odd) > 3, i ≡ 0 (mod 4).

Example 5.3

Following sets generate MCGND for v = 34, k1 = 6 and k2 = 5 with En = 0.90.
S1 = [3,5,6,7,11], S2 = [4,8,9,12], S3 = [13,14,15,16]

5.4 MCGNDs in three different block sizes when m ≡ 0 (mod 4), through i sets for k1, one set for k2
and one for k3

For the following cases, MCGNDs can be obtained in blocks of three different sizes from i sets for
k1, one set for k2, one for k3 derived from theorem 5.1.

(i) v = 2k1(i+ 2)− 4, k1 ≡ 1 (mod 4)= k2 + 1, k3 = k1 − 2, i ≡ 1 (mod 4).

(ii) v = 2k1(i+ 2)− 4, k1 ≡ 3 (mod 4)= k2 + 1, k3 = k1 − 2, i ≡ 3 (mod 4).

(iii) v = 2k1(i+ 2)− 6, k1 = 4l, l > 4, k2 = k1 − 1 & k3 = k1 − 3, i, l integer.

(iv) v = 2k1(i+ 2)− 6, k1 = k2 + 1 = 4l + 2, k3 = k1 − 3, i even.

(v) v = 2k1(i+ 2)− 6, k1 > 5, k2 = k1 − 1 & k3 = k1 − 3, i ≡ 2 (mod 4).

(vi) v = 2k1(i+ 2)− 8, k1 (mod 4) ≡ 1, k2 = k1 − 2, k3 = k1 − 3, i ≡ 3 (mod 4).

(vii) v = 2k1(i+ 2)− 8, k1 (mod 4) ≡ 3, k2 = k1 − 2, k3 = k1 − 3, i ≡ 1 (mod 4).

(viii) v = 2k1(i+ 2) + 6, k1 = 4l + 2 = k2 + 1, l > 1, k3 = 3, i even.

(ix) v = 2k1(i+ 2) + 6, k1 = k2 + 1 > 5, k3 = 3, i ≡ 1 (mod 4).

(x) v = 2k1(i+ 1) + 8, k1 ≡ 1 (mod 4)= k2 + 1, k3 = 4, i ≡ 3 (mod 4).

(xi) v = 2k1(i+ 1) + 8, k1 ≡ 3 (mod 4)= k2 + 1, k3 = 4, i ≡ 2 (mod 4).
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(xii) v = 2k1(i+ 1) + 10, k1 = 4l, l > 1, k2 = k1 − 1, k3 = 5, i integer.

(xiii) v = 2k1(i+ 1) + 10, k1 = k2 + 1 = 4l + 2, k3 = 5, i odd.

(xiv) v = 2k1(i+ 1) + 10, k1 = k2 + 1 > 5, k3 = 5, i ≡ 3 (mod 4).

(xv) v = 2k1(i+ 1) + 4, k1 ≡ 1 (mod 4) , k2 = k1 − 2, k3 = 3, i ≡ 2 (mod 4).

(xvi) v = 2k1(i+ 1) + 4, k1 ≡ 3 (mod 4), k2 = k1 − 2, k3 = 3, i ≡ 2 (mod 4).

(xvii) v = 2k1(i+ 1) + 6, k1 = k2 + 2 = 4l + 2, k3 = 4, i even.

(xviii) v = 2k1(i+ 1) + 6, k1 > 7, k2 = k1 − 2, k3 = 4, i ≡ 1 (mod 4).

(xix) v = 2k1(i+ 1) + 8, k1 ≡ 1 (mod 4), k2 = k1 − 2, k3 = 5, i ≡ 0 (mod 4).

(xx) v = 2k1(i+ 1) + 8, k1 ≡ 3 (mod 4) , k2 = k1 − 2, k3 = 5, i ≡ 2 (mod 4).

(xxi) v = 2k1(i+ 1) + 2, k1 = 4l, l > 1, k2 = k1 − 3, k3 = 3, i integer.

(xxii) v = 2k1(i+ 1) + 2, k1 = 4l + 2, l > 1, k2 = k1 − 3, k3 = 3, i odd.

(xxiii) v = 2k1(i+ 1) + 2, k1 > 5, k2 = k1 − 3, k3 = 3, i ≡ 3 (mod 4).

(xxiv) v = 2k1(i+ 1) + 4, k1 ≡ 1 (mod 4), k2 = k1 − 3, k3 = 4, i ≡ 2 (mod 4).

(xxv) v = 2k1(i+ 1) + 4, k1 ≡ 3 (mod 4), k2 = k1 − 3, k3 = 4, i ≡ 0 (mod 4).

(xxvi) v = 2k1(i+ 1) + 6, k1 = 4l + 2 = k2 + 3 > 5, k3 = 5, i even, l integer.

(xxvii) v = 2k1(i+ 1) + 6, k1 > 5, k2 = k1 − 3, k3 = 5, i ≡ 2 (mod 4).

Example 5.4

Following sets generate minimal CGND for v = 26, k1 = 5, k2 = 4 and k3 = 3 with En = 0.87.
S1 = [3,5,7,9], S2 = [4,10,11], S3 = [8,12]

5.5 MCGNDs in three different block sizes when m ≡ 0 (mod 4), from i sets for k1, one set for k2 and
two for k3

For the following cases, MCGNDs can be obtained in blocks of three different sizes through i sets
for k1, one set for k2 and two for k3, derived from theorem 5.1.

(i) v = 2k1(i+ 3)− 8, k1 ≡ 1 (mod 4)= k2 + 1, k3 = k1 − 2, i ≡ 2 (mod 4).

(ii) v = 2k1(i+ 3)− 8, k1 ≡ 3 (mod 4)= k2 + 1, k3 = k1 − 2, i ≡ 0 (mod 4).

(iii) v = 2k1(i+ 3)− 12, k1 ≡ 3 (mod 4)= k2 + 1, k3 = k1 − 3, i ≡ 2 (mod 4).

(iv) v = 2k1(i+ 3)− 14, k1 (odd ) > 3, k2 = k1 − 2, k3 = k1 − 3, i ≡ 1 (mod 4).

Example 5.5

Following sets generate minimal CGND for v = 42, k1 = 5, k2 = 4 and k3 = 3 with En = 0.88.
S1 = [3,4,14,20], S2 = [7,8,9,12], S3 = [10,13,17], S4 = [15,16], S5 = [18,19]
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6. Discussion and conclusion

Neighbor effects may arise in experiments of serology for virus research and in agriculture experiments,
due to nature of plots, etc. In the presence of neighbor effects, misleading conclusions may be drawn in
the variety competition experiments. Minimal NBDs are available in literature to neutralize these effects
economically for v odd.
To overcome this problem for v even, complete solution is given in this article to construct proposed
MCGNDs. For v even, our proposed designs have been proved efficient mathematically and logically
to reduce the bias due to neighbor effects, therefore, practitioners are recommended to implement these
designs in their experiments where neighbor effects may arise. With the collaboration of practitioners in
future research, author(s) will apply these designs on their relevant experiments and then give numerical
results for further recommendations.
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