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Abstract

We define a  Dirac system in multiplicative calculus by some algebraic s t ructures. Asymptotic estimates 
for eigenfunctions of the multiplicative Dirac system are obtained. Eventually, some fundamental prop-
erties of the multiplicative Dirac system are examined in detail.
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1. Introduction
Multiplicative calculus was introduced by Grossman & Katz (Grossman, 1979; Grossman & Katz, 
1972) in 1967 as an alternative to classical calculus. This type of calculus is also known as non-
Newtonian because of its difference from classical calculus of Newton and Leibniz. Multiplicative cal-
culus is a useful supplement to classical calculus in that it is tailored to situations involving exponential 
functions in the same sense that classical calculus is tailored to situations involving linear functions. 
Multiplicative calculus moves the roles of subtraction and addition to division and multiplication. There 
are actually many reasons to study multiplication analysis. It improves the work of additive calculations 
indirectly. Problems that are difficult to solve in the classical case can be solved with incredible ease in 
here. Every property in the Newtonian case can be defined in multiplicative analysis within certain rules.

Many events in nature change exponentially. For example, the populations of countries, the mag-
nitude of an earthquake (Benford, 1938) are events that behave in this manner. For this reason, using 
multiplicative analysis instead of classical analysis allows a better physical evaluation of these types of 
events. This form of calculus also provides better results than the classical case in many fields s uch as 
finance, economics, biology and d e mographics. A  very l imited number of studies have been conducted 
on this analysis until the beginning of the 2000s. Recently, various studies have been carried out on it and 
quality and effective results have been obtained (see (Akkus & Kizilaslan, 2019; Bashirov & Riza, 2011; 
Bashirov et al., 2011; Boruah & Hazarika, 2018; Florack & Assen, 2012; Guenther, 1983; Slavı́k, 2007; 
Stanley, 1999; Yazlik et al., 2016)).

As known, a Dirac system is an efficient e quation s ystem i n m athematical p hysics i n t he classical 
case. A Dirac system, which contributes to the formulation of quantum mechanics for elementary par-
ticles with half a spin such as electrons, was proposed by Dirac to eliminate some of the problems in 
the Klein-Gordon equation (Dirac, 1928). The non-relativistic Schrödinger equation is not sufficient to 
explain experiments performed at energies much higher than the rest mass energy. For this, the solutions 
of the Dirac equation, one of the relativistic wave equations, are required. For all these reasons, the 
Dirac equation system has a very important place in quantum physics. Many studies have been carried 
out over the years on this system and many important results have been obtained for the classical case 
(see (Allahverdiev & Tuna, 2017; Bairamov et al., 2010; Gasymov & Levitan, 1966; Joa & Minkin, 
1997; Keskin & Ozkan, 2011; Levitan & Sargsjan, 1991; Ç öl & Mamedov, 2012; Moses, 1956; 
Prats & Toll, 1959; Sharma et al., 2011; Thaller, 1992; Verde, 1959; Weiss et al., 1972)). Hence, we 
want to examine a multiplicative Dirac system other than Newtonian calculus. Before moving on to the
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basic results, let us firstly express the concepts and important theorems of multiplicative analysis that we
will use in our study.

Definition 1.1. (Bashirov et al., 2008) Let f : A ⊂ R → R be differentiable in usual case and
f(t) > 0 for all t. If the below limit exists and positive

f∗(t) = lim
h→0

[
f(t+ h)

f(t)

] 1
h

,

f∗(t) is called ∗derivative of f at t.

Lemma 1.2. (Bashirov et al., 2008) Let f : A → R be positive and classical differentiable at t.
Then, there is following relation between classical and ∗derivatives.

f∗(t) = e(ln of)′(t).

Theorem 1.3. (Bashirov et al., 2008) Let f, h be ∗differentiable and p be classical differentiable at
t. The following equalities hold for ∗derivative.

i. (cf)∗ (t) = f∗(t),
ii. (fh)∗ (t) = f∗(t)h∗(t),
iii. (f/h)∗ (t) = f∗(t)/h∗(t),
iv. (fp)∗ (t) = f∗(t)p(t)f(t)p

′(t),

v. (fop)∗ (t) = f∗ (p(t))p
′(t) ,

vi. (f + h)∗ (t) = f∗(t)
f(t)

f(t)+h(t)h∗(t)
h(t)

f(t)+h(t) ,
where c is a positive constant.

The system of equations we will establish in our study will include the multiplicative derivative
defined above. Since the multiplicative integral will emerge while obtaining the eigenfunctions of the
multiplicative Dirac system, let us express the notion and basic properties of multiplicative integration.

Definition 1.4. (Bashirov et al., 2008) Let f be a positive bounded function on [a, b] where −∞ <
a < b < ∞. Consider the partition P = {x0, x1, ..., xn} of [a, b] and the numbers ξ1, ξ2, ..., ξn asso-
ciated with the partition P. f is said to be integrable in the multiplicative sense or ∗integrable if there
exists a number P having the property: for every ε > 0 there exists a partition Pε of [a, b] such that
|P (f,P)−P| < ε for every refinement P of Pε independently on selection of the numbers associated
with the partition P where

P (f,P) =

n∏
i=1

f (ξi)
(xi−xi−1) .

Then, the symbol
b∫
a
f(x)dx denotes multiplicative integral or ∗integral of f on [a, b]. By this definition,

if f is positive and Riemann integrable on [a, b], then it is ∗integrable on [a, b] and

b∫
a

f(x)dx = e

b∫
a
(ln of)(x)dx

.

Conversely, one can show that if f is Riemann integrable on [a, b], then

b∫
a

f(x)dx = ln

b∫
a

(
ef(x)

)dx
.
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Theorem 1.5. (Bashirov et al., 2008) Let f, h be positive bounded functions on [a, b] where −∞ <
a < b < ∞. If f, h are ∗integrable on [a, b], the following expressions hold:

i.
b∫
a
[f(x)p]dx =

[
b∫
a
f(x)dx

]p

, p ∈ R,

ii.
b∫
a
[f(x)h(x)]dx =

b∫
a
f(x)dx

b∫
a
h(x)dx,

iii.
b∫
a

[
f(x)
h(x)

]dx
=

b∫
a
f(x)dx

b∫
a
h(x)dx

,

iv.
b∫
a
f(x)dx =

c∫
a
f(x)dx

b∫
c
f(x)dx, a ≤ c ≤ b.

The main focus of this study is to redefine the classical Dirac system in the multiplicative case. The 
Dirac system will be considered from a different perspective and the results will be compared in classical 
and multiplicative calculi. In the following years, the theory of complex functions in multiplicative 
analysis which is necessary especially while dealing with multiplicative analysis in spectral theory was 
defined by (Bashirov & Norozpur, 2018). This is required in difficult applications of the Dirac system. 
The rest of this study is organized as follows: In the second section, we construct a multiplicative Dirac 
system by arithmetic operations. The asymptotic estimates for the eigenfunction of the multiplicative 
Dirac system is established. In the last section, some spectral properties of the multiplicative Dirac 
system are examined.

2. Multiplicative Dirac system

In this section, a multiplicative Dirac system is established by some algebraic structures and the eigen-
functions of the constructed problem are obtained. Accordingly, let us express multiplicative algebraic 
structures that we will encounter while establishing and solving the multiplicative Dirac system. Arith-
metic operations created with exponential functions are called multiplicative algebraic operations. Let’s 
show some properties of these operations with a multiplicative arithmetic table for x, y ∈ R+.

x⊖ y = x
y , x⊕ y = xy, x⊙ y = xln y = ylnx.

These operations create some algebraic structures. If ⊕ : A× A → A is an operation where A ̸= ϕ
and A ⊂ R+, the algebraic structure (A,⊕) is called multiplicative group. Similarly, (A,⊕,⊙) is
a multiplicative ring. This situation gives us the opportunity to use these processes easily and define
different structures. Also, multiplicative Dirac system includes multiplicative matrices. We overcome
many problems using the basic properties of these multiplicative matrices (Kadak and Gurefe, 2016;
Gurefe et al., 2016).

Let us consider the below multiplicative Dirac system

L [y] = (B ⊙ y∗(t))⊕ (Q(t)⊙ y(t)) = eλ ⊙ y(t), t ∈ [a, b], (1)

with the conditions

(eα ⊙ y1(a))⊕
(
eβ ⊙ y2(a)

)
= 1, (2)

(eγ ⊙ y1(b))⊕
(
eδ ⊙ y2(b)

)
= 1,

where
(
α2 + β2

) (
γ2 + δ2

)
̸= 1 and

B =

[
1 e

e−1 1

]
, Q(t) =

[
eq(t) 1

1 er(t)

]
.
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We assume that a = 1, b = e throughout this study without loss of generality. In fact, [a, b] is

mapped to [1, e] by means of the substitution x =
(
t
a

) 1

ln b
a . Here, λ is a spectral parameter and q, r are

real-valued, positive and ∗integrable functions. For the above system

y(t, λ) =
[
y1(t, λ) y2(t, λ)

]T
is the eigenfunction of the problem (1)-(2) corresponding to the eigenvalue λ where T denotes transpose
of the matrix and yj , j = 1, 2 are continuous and positive functions. If we expand and simplify this
system by using the properties of multiplicative calculus, the following multiplicative system is obtained.

y∗2 y
q(t)
1 = yλ1 ,

y∗1 y
−r(t)
2 = y−λ

2 ,

with the conditions
yα1 (a) y

β
2 (a) = 1,

yγ1 (b) y
δ
2(b) = 1.

In order to avoid any difficulties in expressing the main parts of the study, the inner product will be
defined and the spaces used throughout the study will be given in the multiplicative case.

Definition 2.1. Let X be a non empty set and <,>∗: X × X → R+ be a function such that the
below axioms hold for all x, y, z ∈ X

M1) < x, x >∗≥ 1,
M2) < x, x >∗= 1 if and only if x = 1,
M3) < x⊕ y, z >∗=< x, z >∗ ⊕ < y, z >∗,
M4) < eα ⊙ x, y >∗= eα⊙ < x, y >∗, α ∈ R
M5) < x, y >∗=< y, x >∗ .
Then, (X,<,>∗) is called ∗inner product space and <,>∗ is ∗inner product on X.

Lemma 2.2. The space

L∗
2[a, b] =

f :

b∫
a

[f(x)⊙ f(x)]dx < ∞


is an ∗inner product space with

<,>∗: L
∗
2[a, b]× L∗

2[a, b] → R+,

< f, h >∗=

b∫
a

[f(x)⊙ h(x)]dx ,

where f, h ∈ L∗
2[a, b] are positive functions.

Proof: The proof can be easily demonstrated using the properties of the multiplicative inner product
and the definition of the given space.

Lemma 2.3. (Kadak and Gurefe, 2016) Let f : [a, b] ⊂ R → R be ∗integrable, positive function and
h : [a, b] ⊂ R → R be differentiable, positive function. Then,

b∫
a

[
f∗(x)h(x)

]dx
=

f(b)h(b)

f(a)h(a)
1

b∫
a

[
f(x)h′(x)

]dx .
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This expression is known as ∗integration by parts formula. This lemma will have an important place
in the proof of the next theorem.

Theorem 2.4. The eigenfunction of the problem (1)-(2) have the following asymptotic estimates

y1(t, λ) = [y2(1)]
− sinλ(t−1) ⊕ [y1(1)]

cosλ(t−1) ⊕
t∫

1

[(
y
q(s)
1

)sinλ(t−s)
⊕
(
y
r(s)
2

)cosλ(t−s)
]ds

,

y2(t, λ) = [y1(1)]
sinλ(t−1) ⊕ [y2(1)]

cosλ(t−1) ⊕
t∫

1

[(
y
q(s)
1

)− cosλ(t−s)
⊕
(
y
r(s)
2

)sinλ(t−s)
]ds

,

where y(t, λ) =
[
y1(t, λ) y2(t, λ)

]T
.

Proof. By the given multiplicative Dirac system,

t∫
1

[(
y
q(s)
1

)sinλ(t−s)
⊕
(
y
r(s)
2

)cosλ(t−s)
]ds

= e

t∫
1

ln

[(
y
q(s)
1

)sinλ(t−s)(
y
r(s)
2

)cosλ(t−s)
]
ds

= e

t∫
1

[
ln y

q(s)
1 sinλ(t−s)+ln y

r(s)
2 cosλ(t−s)

]
ds
.

Then, after some computations,

t∫
1

[(
y
q(s)
1

)sinλ(t−s)
⊕
(
y
r(s)
2

)cosλ(t−s)
]ds

= e

t∫
1

−y′2
y2

sinλ(t−s)ds
e
λ

t∫
1

ln y1 sinλ(t−s)ds

= e

t∫
1

y′1
y1

cosλ(t−s)ds
e
λ

t∫
1

ln y2 cosλ(t−s)ds
.

(3)

Then, integration by parts method in multiplicative case yields

e

t∫
1

−y′
2

y2
sinλ(t−s)ds

=
[y2(1)]

sinλ(t−1)

e
λ

t∫
1

ln y2 cosλ(t−s)ds

, (4)

e

t∫
1

y′
1

y1
cosλ(t−s)ds

=
y1(t) [y1(1)]

− cosλ(t−1)

e
λ

t∫
1

ln y1 sinλ(t−s)ds

. (5)

By considering (4) and (5) in (3), we get

t∫
1

[(
y
q(s)
1

)sinλ(t−s)
⊕
(
y
r(s)
2

)cosλ(t−s)
]ds

=
1

[y2(1)]
− sinλ(t−1)

y1(t)

[y1(1)]
cosλ(t−1)

,

and

y1(t, λ) = [y2(1)]
− sinλ(t−1) ⊕ [y1(1)]

cosλ(t−1) ⊕
t∫

1

[(
y
q(s)
1

)sinλ(t−s)
⊕
(
y
r(s)
2

)cosλ(t−s)
]ds

.

Similarly, the second component of eigenfunction y(t, λ) can be obtained in the same way. It com-
pletes the proof.

The difference between the results obtained in the classical case and these results will create some
important differences in quantum physics. In the next section, some theorems that have a very important
place in explaining the physical properties of this system in relation to eigenfunctions are expressed and
proven.
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3. Some spectral properties of multiplicative Dirac system

In this section, we examine some properties of multiplicative Dirac system as reality, simplicity, orthog-
onality and self-adjointness.

Lemma 3.1. The eigenfunctions u(t) =
[
u1(t) u2(t)

]T and v(t) =
[
v1(t) v2(t)

]T corre-
sponding to the distinct eigenvalues λ1 and λ2 are orthogonal, i.e.

b∫
a

[
uT (t, λ1)⊙ v(t, λ2)

]dt
= 1.

Proof: The below equations can be written according to the definition of eigenfunctions

u∗2 u
q(t)
1 = uλ1

1 ,

u∗1 u
−r(t)
2 = u−λ1

2 ,

and

v∗2 v
q(t)
1 = vλ2

1 ,

v∗1 v
−r(t)
2 = v−λ2

2 .

Here, if circular sum and circular product operations are taken into account and applied to the above
equations, we get

(u∗2)
ln v1 u

q(t) ln v1
1 (v∗1)

lnu2 v
−r(t) lnu2

2

(u∗1)
ln v2 u

−r(t) ln v2
2 (v∗2)

lnu1 v
q(t) lnu1

1

=
(
uln v1
1 uln v2

2

)λ1−λ2

.

If we continue to use and edit the same properties,

[(u∗2 ⊙ v1)⊖ (u∗1 ⊙ v2)]⊕ [(v∗1 ⊙ u2)⊖ (v∗2 ⊙ u1)] = [(u1 ⊙ v1)⊕ (u2 ⊙ v2)]
λ1−λ2 ,

and
[(u2 ⊙ v1)⊖ (u1 ⊙ v2)]

∗
= [(u1 ⊙ v1)⊕ (u2 ⊙ v2)]

λ1−λ2 , (6)

are obtained. Now let’s make the proof of this last equation with multiplicative techniques.

[(u2 ⊙ v1) ⊖ (u1 ⊙ v2)]
∗ =

(
u2⊙v1
u1⊙v2

)∗
=

(u∗
2)

ln v1u

v
′
1

v1
2

(u∗
1)

ln v2u

v
′
2

v2
1

=

(
u
λ1−q(t)
1

)ln v1
u
ln v

r(t)−λ2
2

2(
u
r(t)−λ1
2

)ln v2
u
ln v

λ2−q(t)
1

1

= [(u1 ⊙ v1)⊕ (u2 ⊙ v2)]
λ1−λ2 .

Therefore, by taking ∗integral for both sides of (6) on [1, e], we get

e∫
1

{
[(u1 ⊙ v1)⊕ (u2 ⊙ v2)]

λ1−λ2

}dt
=

[(u2 ⊙ v1)⊖ (u1 ⊙ v2)] (e)

[(u2 ⊙ v1)⊖ (u1 ⊙ v2)] (1)
= 1,

and
e∫

1

[
uT (t, λ1)⊙ v(t, λ2)

]dt
= 1,
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where λ1 ̸= λ2. Here, we have used the below matrix circle product:

uT (t, λ1)⊙ v(t, λ2) =
(
u1(t, λ1)u2(t, λ1)

)
⊙
(

v1(t, λ2)
v2(t, λ2)

)
= [(u1(t, λ1)⊙ v1(t, λ2))⊕ (u2(t, λ1)⊙ v2(t, λ2))] .

Lemma 3.2. All eigenvalues of the multiplicative Dirac system (1)-(2) are real.
Proof: Let λ1 = u+ iv and λ1 = u− iv. By the definition of orthogonality, we can write

e∫
1

{[(
y1(x, λ1)⊙ y1(x, λ1)

)
⊕
(
y2(x, λ1)⊙ y2(x, λ1)

)]λ1−λ1
}dx

= 1.

Since λ1 ̸= λ1, we get

e∫
1

[(
y1(x, λ1)⊙ y1(x, λ1)

)
⊕
(
y2(x, λ1)⊙ y2(x, λ1)

)]dx
= 1. (7)

So, by using the circular product and conjugate operations,

e∫
1

[(
y1(x, λ1)⊙ y1(x, λ1)

)
⊕
(
y2(x, λ1)⊙ y2(x, λ1)

)]dx
= e

e∫
1

ln

(
y
ln y1(x,λ1)
1 y

ln y2(x,λ1)
2

)
dx

= e

e∫
1
(|ln y1|2+|ln y2|2)dx

.

By (7),
e∫

1

(
|ln y1|2 + |ln y2|2

)
dx = 0 ⇒ y1 = 1, y2 = 1.

This is a contradiction. It is due to our assumption. So the chosen eigenvalue is real. Since this eigenvalue
is arbitrary, all eigenvalues of the problem are real. We can prove this lemma with another method. Let’s
express this proof now.

Assume that λ0 is a complex eigenvalue corresponding eigenfunction (y1(x), y2(x))
T . By using the

properties of ∗derivative, we get

[(y2 ⊙ y1)⊖ (y1 ⊙ y2)]
∗ = [(y1 ⊙ y1)⊕ (y2 ⊙ y2)]

λ0−λ0 .

By ∗integration on [1, e], since

e∫
1

{
[(y1 ⊙ y1)⊕ (y2 ⊙ y2)]

λ0−λ0

}dx
= 1,

we have
e∫

1

(
|ln y1|2 + |ln y2|2

)
dx = 0 ⇒ y1 = 1, y2 = 1.

This is also a contradiction as just happened. Therefore, the considered eigenvalue is real.
Now let us examine another important spectral property of this problem. The simplicity of eigen-

values is a very important feature in mathematical physics and there are many proof techniques for
simplicity. The algebraic multiplicity of an eigenvalue is the number of times it repeats as a root of the
characteristic polynomial. If the algebraic multiplicity of an eigenvalue is 1, that eigenvalue is called a
simple eigenvalue.
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Lemma 3.3. All eigenvalues of the multiplicative Dirac system (1)-(2) are simple.
Proof: Let λ, µ ∈ C and λ ̸= µ be eigenvalues of the given problem. Then, we get

{[y1 (x, λ)⊙ y2 (x, µ)]⊖ [y2 (x, λ)⊙ y1 (x, µ)]}∗ = {[y1 (x, λ)⊙ y1 (x, µ)]⊕ [y2 (x, λ)⊙ y2 (x, µ)]}µ−λ

By the ∗integration on [1, e] ,

e∫
1

{[(y1 (x, λ)⊙ y1 (x, µ))⊕ (y2 (x, λ)⊙ y2 (x, µ))]
µ−λ

}dx
= [y1 (e, λ)⊙ y2 (e, µ)]⊖[y2 (e, λ)⊙ y1 (e, µ)] ,

and after some adjustments are made here, we get

eµ−λ⊙
e∫

1

[(y1 (x, λ)⊙ y1 (x, µ))⊕(y2 (x, λ)⊙ y2 (x, µ))]
dx = [y1 (e, λ)⊙ y2 (e, µ)]⊖[y2 (e, λ)⊙ y1 (e, µ)] .

Here, if the integral to the left of the equation is left alone,

e∫
1

[(y1 (x, λ)⊙ y1 (x, µ))⊕ (y2 (x, λ)⊙ y2 (x, µ))]
dx = e

1
µ−λ⊙{[y1 (e, λ)⊙ y2 (e, µ)]⊖ [y2 (e, λ)⊙ y1 (e, µ)]} .

Then, if limit operation is applied to both sides of above relation as µ → λ, it yields

e

e∫
1
(|ln y1(x,λ)|2+|ln y2(x,λ)|2)dx

= e
∂ ln y2(e,λ)

∂λ
ln y1(e,λ)− ∂ ln y1(e,λ)

∂λ
ln y2(e,λ), (8)

by multiplicative L’Hopital’s rule. Hence,

Λ (λ) = [eγ ⊙ y1 (e, λ)]⊕
[
eδ ⊙ y2 (e, λ)

]
has only simple zeros. Indeed, conversely, assume that λ̃ is double-decker root of Λ (λ) . So,[

eγ ⊙ y1

(
e, λ̃

)]
⊕
[
eδ ⊙ y2

(
e, λ̃

)]
= 1. (9)

Here, the applying ∗partial derivative to both sides giveseγ ⊙ ∂∗y1

(
e, λ̃

)
∂λ

⊕

eδ ⊙ ∂∗y2

(
e, λ̃

)
∂λ

 = 1. (10)

So, from (9) and (10),y1 (e, λ̃)⊙
∂∗y2

(
e, λ̃

)
∂λ

⊖

y2 (e, λ̃)⊙
∂∗y1

(
e, λ̃

)
∂λ

 = 1. (11)

If the basic properties of multiplicative analysis are used in (11), we get

y1

(
e, λ̃

) ∂
∂λ

ln y2(e,λ̃)

y2

(
e, λ̃

) ∂
∂λ

ln y1(e,λ̃)
= 1,

and

∂ ln y2(e,λ)
∂λ ln y1(e, λ)− ∂ ln y1(e,λ)

∂λ ln y2(e, λ) = 0.
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By considering (8), since

e∫
1

(∣∣∣ln y1 (x, λ̃)∣∣∣2 + ∣∣∣ln y2 (x, λ̃)∣∣∣2) dx = 0,

we have
y1

(
x, λ̃

)
= 1 = y2

(
x, λ̃

)
,

for λ = λ̃. This is a contradiction. Therefore, Λ (λ) has only simple zeros. It completes the proof.

Lemma 3.4. The multiplicative Dirac operator L in (1) is formally self-adjoint on L∗
2[1, e].

Proof: Let us use the definition of inner product on L∗
2[1, e] and ∗integration.

< Lu, v >∗=
e∫
1

[
(Lu)T ⊙ v

]dt
=

e∫
1

[(
u∗2u

q(t)
1 (u∗1)

−1 u
r(t)
2

)
⊙
(

v1
v2

)]dt
=

e∫
1

[((
u∗2u

q(t)
1

)
⊙ v1

)
⊕
((

(u∗1)
−1 u

r(t)
2

)
⊙ v2

)]dt
= e

e∫
1

ln

[(
u∗
2u

q(t)
1

)ln v1
(
(u∗

1)
−1

u
r(t)
2

)ln v2
]
dt

= e

e∫
1

[
ln(u∗

2) ln v1+ln v1 lnu
q(t)
1 −ln(u∗

1) ln v2+ln v2 lnu
r(t)
2

]
dt
.

If the integration by parts formula and the relation between multiplicative and usual derivatives are
considered some basic features of multiplicative calculus are used after some algebraic operations and
simplifications, it yields

< Lu, v >∗ = eln[((u2⊙v1)⊖(u1⊙v2))(e)⊖((u2⊙v1)⊖(u1⊙v2))(1)]

= e

e∫
1

ln

[(
v∗2v

q(t)
1

)lnu1
(
(v∗1)

−1
v
r(t)
2

)lnu2
]
dt

= e
ln[Wm(u,v)(e)⊖Wm(u,v)(1)]+

e∫
1

ln[(Lv)T⊙u]dt

= Wm(u, v)(e)⊖Wm(u, v)(1)⊕
e∫
1

[
(Lv)T ⊙ u

]dt
=< u,Lv >∗,

where Wm(u, v) = (u2 ⊙ v1)⊖ (u1 ⊙ v2). It completes the proof.
Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics

their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical
observables such as position, momentum, angular momentum and spin are represented by self-adjoint
operators.

Example 3.5. Let us consider the below multiplicative Dirac system

y∗2 y
c
1 = yλ1 ,

y∗1 y
−d
2 = y−λ

2 ,
(12)

which is obtained by setting q(t) = c ∈ R, r(t) = d ∈ R in (1) with the initial conditions

y1(0) = eα, y2(0) = eβ. (13)

The system (12) is actually equivalent to the below non-linear system

y′2 + cy2 ln y1 = λy2 ln y1,
−y′1 + dy1 ln y2 = λy1 ln y2

(14)
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in usual case.

y1(t) =


e
α cos

√
kt−β(λ−d)√

k
sin

√
kt
, k > 0

eα−β(λ−d)t, k = 0

e
α cosh

√
−kt−β(λ−d)√

−k
sinh

√
−kt

, k < 0

and

y2(t) =


e

α(λ−c)√
k

sin
√
kt+β cos

√
kt
, k > 0

eα(λ−c)t+β, k = 0

e
α(λ−c)√

−k
sinh

√
−kt+β cosh

√
−kt

, k < 0

are the eigenfunctions of the problem (12)-(13) where k = (λ − c) (λ − d). It can be easily shown 
that these solutions also coincide with the solutions of the problem (14)-(13). This example shows how 
effective multiplicative analysis is in solving problems in the classical case.

4. Conclusion

In this study, we defined a multiplicative Dirac system and obtained the eigenfunctions of the problem. 
Later, we examined this important problem in the multiplicative case in terms of spectral analysis. We 
think that this system, which is extremely important for quantum physics and effective in the classical 
case, will make great contributions to mathematical physics in the multiplicative case. In fact, this 
equation, which we examined in the multiplicative case, corresponds to an equation that is much more 
difficult and tiring to analyze in classical a nalysis. This situation increases the importance of the results 
we obtained and the different analysis we used.
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