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The relation between parameter curves and lines of curvature on canal surfaces

Fatih Doğan1,*, Yusuf Yaylı2

1Dept. of Mathematics, Faculty of Science, Bartın University, Bartın, Turkey 
mathfdogan@hotmail.com

2Dept. of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey 
yayli@science.ankara.edu.tr

*Corresponding author: mathfdogan@hotmail.com

Abstract

A canal surface is the envelope of a moving sphere with varying radius, defined by the trajectory C(t) (spine curve) of 
its center and a radius function r(t). In this paper, we investigate the parameter curves which are also lines of curvature 
on the canal surface. Last of all, for special spine curves we obtain the radius functions of canal surfaces.

Keywords: Canal surface; generalized tube; line of curvature; parameter curve; spine curve.

1. Introduction

A canal surface is defined as the envelope of a family of 
one parameter spheres and is useful for representing long 
thin objects, e.g., pipes, poles, ropes, 3D fonts or intestines 
of body. Canal surfaces are also frequently used in solid 
and surface modelling for CAD/CAM. Representative 
examples are natural quadrics, tori, tubular surfaces and 
Dupin cyclides.

A curve on a surface, which has the property whose 
tangent at each of its points p coincides with a principal 
direction at p is called a line of curvature, in other words, 
for a line of curvature

where S is the shape operator of the surface and T is the 
tangent vector field and kn is the normal curvature along 
the curve on the surface, respectively.

Developable surfaces are ruled surfaces with zero 
Gaussian curvature. They are also characterized by the 
property that each ruling is a line of curvature except 
at umbilic points or singular points. Canal surfaces 
correspond to cylinders that are also developable ruled 
surfaces (Izumiya et al., 2007). Karadag et al. (2014) 
presented a method to be developable of a ruled surface 
in Minkowski 3-space. Lately, Dogan (2015) studied the 
relationship among characteristic curves on developable 
ruled surfaces.

Maekawa et al. (1998) researched necessary and 
sufficient conditions for the regularity of pipe (tube) 

surfaces. Then Xu et al. (2006) studied these conditions 
for canal surfaces and examined principle geometric 
properties of canal surfaces like computing the area and 
Gaussian curvature. Recently, Dogan & Yayli (2011; 
2012) and Dogan (2012) investigated tubular surfaces 
with Bishop and Darboux frames instead of Frenet frame 
and gave the characterizations for special curves on 
them, such as geodesic and asymptotic curves, or lines of 
curvature.

Gross (1994) gave the concept of generalized tubes 
(briefly GT) and classified them in two types as ZGT and 
CGT. Here, ZGT refers to the spine curve (the axis) that has 
torsion-free and CGT refers to tube that has circular cross 
sections. He investigated the properties of GT and showed 
that the parameter curves of a generalized tube are also 
lines of curvature if and only if the spine curve is planar. 
In this study, we examine s – and θ – parameter curves that 
are also lines of curvature on the canal surface.

Garcia et al. (2006) showed that immersed canal 
surfaces have at most two isolated periodic line of 
curvature by means of a connection of the differential 
equations for these curvature lines and real Riccati 
equations. Also, they showed that the maximal principal 
curvature lines are circles with the maximal principal 
curvature

This paper is organized as follows. In section 2, we 
introduce a canal surface and give basic notions about it. 
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Then we observe the parameter curves that are also lines 
of curvature on generalized tubes and study the same 
property on canal surfaces in section 3. Furthermore, we 
obtain the radius function of the canal surface whose s – 
parameter curves are also lines of curvature. In section 4, 
we conclude this paper.

2. Preliminaries

First of all, we give some coefficients of the first and second 
fundamental forms of a canal surface. Subsequently, 
we mention generalized tubes and prove the theorem 
characterizing the parameter curves are also lines of 
curvature on a surface.

Definition 1. A canal surface is defined as the envelope of 
a family of one parameter spheres. When   
the canal surface is regular and is parameterized as 
follows.

where C(t) is the spine curve, N and B are the principal 
normal and binormal of C(t), respectively. If the spine 
curve C(t) has arclength parameterization 
the canal surface is reparameterized as

where {T, N, B} is the Frenet frame of the spine curve 
(Gray, 1998). Some coefficients of the first and second 
fundamental forms of the canal surface are as follows (Xu 
et al., 2006).

where , , κ and τ 
are the curvature and the torsion of C(t), respectively. If 
the radius function r (s) = r is a constant, then the canal 
surface is called a tube or a pipe surface. It is written as

Definition 2.The parameterization of generalized tube 
around the spine curve Γ(s) is

where  and u is twice differentiable, 

 (Gross, 1994). Now, we give some 
coefficients of the first and second fundamental forms 
of a generalized tube. The normal vector field N of a 
generalized tube can be computed as the cross product of 
tangent vectors of θ – parameter curve and  s – parameter 
curve, or vice versa.

Then we have

Definition 3. Let M be a surface and let the curve 
. Then

is called as the differential equation of lines of curvature 
on M (do Carmo, 1976).

Theorem 1. A necessary and sufficient condition for the 
parameter curves of a surface to be lines of curvature in 
a neighborhood of a nonumbilical point is that F = f = 
0, where F and f are the respective the first and second 
fundamental coefficients (do Carmo, 1976).
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Proof. Weingarten equations are given by

where U is the unit normal vector, E, F, G and e, f, g are 
the coefficients of the first and second fundamental forms 
of the surface, respectively.

( ⇒ ) Assume that the parameter curves in a 
neighborhood of a nonumbilical point of the surface are 
also lines of curvature. From the Definition (3) and the 
Weingarten equations we get

In other words,

From this, we have F =  f  = 0.

( ⇐ ) Let F =  f  = 0 in a neighborhood of a nonumbilical 
point of a surface. By the Weingarten equations it follows 
that

According to the definition of the line of curvature, u – 
and v – parameter curves become lines of curvature.

Theorem 2. The parameter curves of a generalized tube 
are lines of curvature if and only if the axis Γ is torsion-
free, i.e.,  τ = 0 (Gross, 1994).

Proof. Let the spine curve Γ be a plane curve, that is, τ = 
0. Then, F =  f  = 0. Conversely, let the parameter curves 
be also lines of curvature. From Theorem (1) F =  f  = 0. 
Since F = u2τ = 0 and u > 0, we have τ = 0, i.e., Γ is a 
plane curve.

We give an important lemma as regards the regularity 
of a canal surface.

Lemma 1. When

, where

 and  (Xu et al., 2006).

Proof. Since  and  we 
obtain

If  , then

Since ,  This 
completes the proof.

Thus from Equation (2.2) and Lemma (1) it follows 
that . Then the canal surface is singular at the 
points , that is, when , 
the canal surface is regular.

Remark 1. Garcia et al. (2006) showed that the maximal 
principal curvature lines (θ – parameter curves) are circles 
with the maximal principal curvature

for immersed canal surfaces.

3. Some Characterizations for Lines of Curvature 
on Canal Surfaces

In this section, we investigate the parameter curves which 
are also lines of curvature and give some characterizations 
on canal surfaces around special spine curves.

Theorem 3. Let K(s,θ) be a regular canal surface and let F 
and f  be its the first and second fundamental coefficients, 
respectively. Then we have

Proof. Assume that F  = 0. Then by Equation (2.1) 
we have . Because , we get 

. If we substitute the last equality in the 
expression of f, we obtain

Since , it follows that  f = 0. On the 
contrary, assume that f = 0. In this case,
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If we arrange this equality, due to the fact that 
, it concludes

Since , we get . 
Thus from Equation (2.1)  F = 0.

Corollary 1. The parameter curves are also lines of 
curvature on a regular canal surface if and only if 

.

From this time, we will investigate the equation 
 which solves the problem that s – 

parameter curves of the canal surface are also lines of 
curvature. We will have a look at two different cases for 
this equation.

The Case 1. If s – parameter curves θ0 = 0 and θ0 = π which 
are also lines of curvature are replaced in   
it follows gτ = 0. Since g ≠ 0, we have τ = 0, i.e., the spine 
curve C(s) is planar.

The Case 2. We go over s – parameter curves which are 
also lines of curvature except for θ0 = 0,π. If we substitute  

 and  in , we obtain

                    (3.1)

If we take square of both sides in Equation (3.1) and 
then arrange it, we get the radius function of the canal 
surface as follows.

          (3.2)

Corollary 2. (1) Let the spine curve C(s) be a general 
helix.

Then s – parameter curves of the canal surface are 
also lines of curvature if and only if the canal surface 
is generated by a moving sphere with the linear radius 
function

(2) Let the spine curve C(s) be a circular helix. For 
s – parameter curves which are also lines of curvature, the 
canal surface is generated by a moving sphere with the 
linear radius function

Proof. (1) By Equation (3.2) we have

Since the spine curve C(s) is a general helix, the ratio 
of its curvatures   is a constant. Because θ is also 

a constant, we obtain the radius function r (s) as below.

Then the radius function have the linear equation like 
, where

(2) If the spine curve C(s) is a circular helix, it can be 
parameterized as

where , ,  . Because 

of the fact that the curvatures  and , from 

Equation (3.2) it concludes

The following example can be given for Corollary 2.

Example 1. For the circular helix  

,  and . Then 

. From Equation (3.2) the linear radius function 

of the canal surface is obtained as , 

where  c and θ are constants.

Salkowski (1909) studied a family of space curves with 
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constant curvature and non-constant torsion (Salkowski 
curves). Then Monterde (2009) characterized them as the 
space curves whose normal vectors make a constant angle 
with a fixed line. According to this, the curvature and the 

torsion of a Salkowski curve can be given as  and 

, where  and  is the angle 

between the principal normal of the curve and the fixed 
line.

Corollary 3. Let the spine curve C(s) be a Salkowski 
curve. Then s–parameter curves (θ = const.) on the canal 
surface are also lines of curvature if and only if the canal 
surface is generated by a moving sphere with the radius 
function

Proof. Suppose that the spine curve C(s) is a Salkowski 
curve. Then  and  . By using 
Equation (3.2) we obtain the radius function as

If we make the changing of variable , it 
concludes

For the changing of variable  we get

Eventually,

Then the radius function of the canal surface which is 
generated by the Salkowski curve is

Corollary 4. Let s– parameter curves be also lines of 
curvature on the regular canal surface K(s,θ). If r (s) is an 
increasing function, then we have

where κ  and τ are the curvature and torsion of the spine 
curve C(s), respectively.

Proof. Assume that s – parameter curves are also 
lines of curvature. Then from Corollary (1) we have 

. For the regular canal surface, . If 
we leave alone sin θ in Equation (3.1), we get

Because r (s) is an increasing function,    

So, it concludes  . If we take absolute value 

of the above equation and use the last inequality, we reach 

. Therefore, we obtain .

An example for s – parameter curves that are also lines 
of curvature on the canal surface can be given as follows.

Example 2. Vessiot (1919) showed that one family of lines 
of curvature on the canal surface is

             (3.3)

From the above equation it follows   

Furthermore, if  and   
are substituted in , we obtain

          (3.4)

By Equation (3.3) and Equation (3.4) we get

At last, we view that one family of lines of curvature 
given in Equation (3.3) coincides with one family of s – 
parameter curves (θ = const.) on the canal surface for our 
main equation .

4. Conclusions

In this paper, we observed the parameter curves which are 
also lines of curvature on generalized tubes and then we 
researched this property for canal surfaces. Afterwards, 
by taking special spine curves we obtained the radius 
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function of a moving sphere which generates the canal 
surface and showed that one family of lines of curvature 
concurs with one family of s –parameter curves on canal 
surfaces.
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