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Abstract

In the transition to Industry 4.0, manufacturing systems need more intelligent devices that are capable 
of automation. Prognostic-aware robotic systems are one of the key components of automation in 
manufacturing. Furthermore, prognostics-aware route planning is essential for the success of multi-robot 
teams during long-term and uninterrupted operations, while also extending robot lifetime and reducing 
maintenance costs. In this study, a Prognostics-aware Multi-Robot Route Planning (P-MRRP) algorithm 
is proposed for extending the lifetime of the robot team. In the P-MRRP algorithm, first, r outes are 
obtained from the Route Set Construction algorithm, and the most reliable set of routes is selected by 
calculating the Probability of Route Completion (PoRC) according to the reliability of the robot team. 
The proposed algorithm also considers the effect of load on robots during the route. In this study, the 
reliability of the robot is updated considering the travelled distances and loads of the robot between 
pickup and delivery nodes. The results of the P-MRRP algorithm are compared with the results of 
classical MRRP, which reveals that the lifetime of a mobile robot team can be extended using the 
P-MRRP algorithm.

Keywords: Lifetime extension; performance evaluation; prognostics-aware multi-robot route planning; 
reliability; remaining useful life.

1. Introduction

Autonomous robots are useful instruments that can overcome the physical inadequacies of humans and 
perform monotonous and high-precision repetitive manufacturing tasks in smart factories (Kapanoglu 
et al., 2012). Smart factories will require more autonomous capabilities with the progress of Industry 
4.0 (Oztemel & Gursev, 2020). Long-term repetitive operations performed by a team of autonomous 
robots require further development of automation capabilities in intelligent manufacturing systems 
(Villani et al., 2018). Factory level autonomy with robot health management is necessary for intelligent 
manufacturing with almost no human intervention, which provides reduced maintenance costs, enhanced 
safety for humans, uninterrupted operations and more (Hossain & Muhammad, 2016). Enhanced 
autonomy can be achieved by considering the reliability (i.e., remaining useful life) (Kishorilal & 
Mukhopadhyay, 2018) of the autonomous robots during route planning. Reliability is an important metric 
for reducing the risk of failures for the team of robots.

The Prognostics-aware Multi-Robot Route Planning (P-MRRP) algorithm can be used to increase 
the lifetime of the mobile robot teams by considering reliability. Prognostics-aware planning aims to 
integrate the prognostics health information and the knowledge about the future operating conditions 
into the process of selecting subsequent actions for the system. Prognostics information can be used 
to predict the reliability of the system, and thus, promote the efficiency a nd l ifetime o f autonomous

Kuwait J.Sci., Vol.49, No.(4),October.2022,pp(1-20)

1



operations (Shah et al., 2020). Estimation of the reliability has been conducted to suppress the possible
faults of robotic systems and increase their success (Hossain & Muhammad, 2016).

In the literature, there are a few route planning studies for single mobile robotic systems that focus
on increasing the lifetime or health management of the system. Mimlitz et al. (Mimlitz et al., 2016)
present a Goal-Oriented, Risk Attitude-Driven Reward Optimization (GORADRO) method that increases
lifetime efficiency. GORADRO uses the local area and internal prognostics and health management
(PHM) information to determine system health and potential localized risks for planning routes. LeSage
and Longoria (LeSage & Longoria, 2015) measure the single mission feasibility for the mobile robotic
system and present a sequential method for forecasting the mission feasibility for the mobile robotic
system operating in risky environments. The method makes use of the marginal predictions required
to permit Bayesian correlation estimation and improved process characterization. On the other hand,
newly developed robots utilize health diagnostics for detecting possible faults inside the robot. In one
study (Balaban et al., 2013), a mobile robot platform is developed specifically for testing in failure
scenarios. Different failure modes are examined for electrical, mechanical, and power subsystems of the
mobile robot. In addition to the mobile robot, a software simulator has been developed for the validation
of Prognostics-enabled Decision-making (PDM) algorithms. In another study (Sweet et al., 2014), the
hardware platform is designed to inject the predefined failure modes to the mobile robot’s electrical power
subsystem. The PDM algorithms were adapted to the hardware platform, including the development of
a new route planner that replans the route based on faults in the mobile robot.

The previous studies typically consider a single-robot planning problem. However, a multi-robot
route planning system appears to be more effective and adaptive to accomplish various complex tasks
(Arai et al., 2002). There are a few studies regarding the performance of the system that is required
for the given mission. One study presents the Active Mission Success Estimation algorithm, which
estimates real-time risks during a space mission by functional modelling and risk analysis techniques
based on PHM information (Short et al., 2018). The ASME algorithm provides a quick and effective
estimation of current mission success, and projections of possible total mission success based on potential
decisions. Another report proposes a method for developing safety indicators for the missions of
Autonomous Marine Systems (AMS) (Thieme & Utne, 2017). The results of safety indicators reflect
safety in the AMS mission and can help in planning. Additionally, a mission execution decision-making
approach is proposed based on the correlation between mission requirements and the health of the
system (Geng et al., 2016). This approach transforms the inherent health into mission health and
conducts correlation analysis, which provides quantitative implications for decision-making during the
given mission. However, there is no study that measures the performance of the robot team for the given
mission. In a study among the first few articles on MRRP considering the reliability of the robot team,
the Route Set Construction (RSC) and Route Set Analysis (RAS) algorithms are proposed (Yayan &
Yazici, 2019). The RSC algorithm is responsible for constructing route sets, and the RAS algorithm
analyses route sets while considering the reliability and PoRC for each route set. Although the effect of
the robot reliabilities on planned routes are shown, route planning and lifetime analysis are not given for
extending the lifetime.

In the current study, a Prognostics-aware Multi-Robot Route Planning (P-MRRP) algorithm is
proposed for increasing the number of completed tasks during the lifetime of the robot team. In
route planning of the robot team, the Vehicle Routing Problem with Backhauls (VRPB) (Deif &
Bodin, 1984, Koç & Laporte, 2018), which is one of the most common problems for in-plant logistics of
autonomous vehicles, is considered. Routes are obtained using the Simulated Annealing (SA) algorithm
(Van Laarhoven & Aarts, 1987) for the minimum distance objective function and minimum energy
objective function. Furthermore, routes are generated for various load combinations of robots in the
team. Thus, the proposed P-MRRP algorithm is analysed considering the effect of load. Moreover, the
Prognostics-aware Lifetime Analysis (PLA) algorithm is proposed to analyse the lifetime extension of
P-MRRP and classical MRRP algorithm for both the loaded and unloaded cases. The PoRC is calculated
for each route on the route set, and the most reliable route set is selected. The hazard rate of components
and the initial reliability of the robots are used in PoRC calculations. The results showed that the number
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of routes during the lifetime of the robot team is increased using the proposed P-MRRP algorithm. To
the best of our knowledge, there are no previous reports that utilize prognostics-aware MRRP to increase
the lifetime of a robot team by considering the loads of robots during tasks.

Definitions and preliminary descriptions are given in the following section. The P-MRRP algorithm
is introduced in the third section, and the test results are given in the fourth section. The last section
includes the conclusion and future works.

2. Definitions and preliminaries

The lifetime of the robot team may be increased if the team can know the health status of each robot and
make task assignment decisions accordingly. Thus, it is necessary to consider the effects of reliability
on the decision-making results in sustainable autonomous operations for the robot team (Fudzin &
Majid, 2015). System Health Management (SHM) of a robot depends on prognostics technology and
can be supported by diagnostics and health-based planning for a fully autonomous system. In the context
of SHM, the end-of-life, availability, and reliability of systems and components can be predicted (Okoh
et al., 2014).

Prognostics are the data that forecast when a component or system doesn’t satisfy desired operations.
Using this prognostics knowledge, the system can make more appropriate decisions, like changing the
component before it fails, prolonging component life by load reduction or task switching, and optimally
plan or replan a route. In this study, the reliability is used for informing the P-MRRP problem. The
PoRC is calculated considering the reliability value of each robot in the team.

Reliability is the probability that a piece of equipment operating under specified conditions can
perform satisfactorily for a given period (Dhillon, 2015). The reliability takes values between 0 and
1. Reliability models involve descriptions of how the hazard rate changes over time. The exponential
distribution model, with only one unknown parameter, is the simplest and most common model.
Additionally, the exponential model exhibits a constant failure rate property. Due to this property, the
exponential model is the perfect model for most of the components and systems that are used. Therefore,
in this study, an exponential distribution alias bathtub curve is used as a reliability model for analysis.
The bathtub curve has three distinct regions such as the infant mortality, useful life, and wear-out phases.
There are formulations required in the analysis of a robotic system’s reliability, which are shown below.

Mobile robots have many critical modules and components, including communication, sensor,
battery, and mobility components. These components are used for the reliability estimation of mobile
robots. The reliability of the whole system is analysed with its components. First, all components’
reliabilities are calculated separately. Then, the reliability of the system is calculated as a combination
of all components’ reliability. For the calculation of reliability G and hazard rate of components, the
usage time of components t and system architecture (series or parallel) must be known. It is assumed
that the whole robot has a series configuration and constant hazard rate ht (failure/hour) according to the
reliability model, which is based on the bathtub curve model for unloaded cases.

Equation (1) and (2) for Gk(t), k=1...m shows how a robot reliability is calculated in the series
configuration. The reliability of a robot in a robot team can be calculated using the following Equation
(1). In Equation (1), t denotes usage time, and λ denotes the hazard rate of the robot, which is equal to
the summation of the hazard rates of each component.

Gk(t) = e−λt (1)

The hazard rate of a robot with multiple components can be calculated according to Equation (2).

λ =
c∑

q=1

λq (2)

Notably, it is assumed that each component in a robot is assumed to be in a series configuration. On
the other hand, if there are multiple robots in a team, then the reliability of a robot team can be calculated
using Equation (3).
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Gs(t) = G1(t)G2(t). . . ..Gc(t) =
c∏

q=1

Gk(t) (3)

Gs(t) denotes robot team reliability, which is equal to the product of each robot’s reliabilities in
Equation (3). In this study, reliability is updated using Equation (4).

Gs new = Gs olde
−λt (4)

Gs new denotes updated reliability, Gs old denotes the reliability of previous situation, and the rest
of the formula is necessary to calculate new reliability values Gs new according to the usage time t and
hazard rate λ.

Moreover, we are dealing with the mobility component of the mobile robot and we are calculating
the reliability of the robot using the hazard rate of the mobility component. The hazard rate depends on
several conditions, and one of them is the load on the bearing in the mobility component. In this study, we
analyse the effects of load on the reliability of the mobility component by estimating the reliability of the
bearings (Medjaher et al., 2012). Bearings are the most critical sub-component of the mobility system
in the mobile robot. In this study, the customized hazard rate is used for estimating the reliability of the
bearing in the robot’s mobility module. Although the reliability estimation of the bearing with a constant
initial hazard rate is assumed for robots in every route analysis, the hazard rate changes according to the
load and returns to the initial value. The relationship between the hazard rate and the load is shown in
Equation (5). In this study, the robot’s utilize ball bearings. In the literature, when ball bearings are used,
the power should be selected as ”3” in Equation (5) (Shanker & Kumar, 2020):

λload = λ0(
P

P0
)3 (5)

In Equation (5), λ0 denotes the initial hazard rate, and λload denotes the hazard rate that occurs when
the robot is loaded. P indicates the load carried by the robot, and P0 indicates the robot’s load capacity.
Equations (5) and (6) are used for analysing the load effect on the robot’s reliability.

Gs new = Gs olde
−λloadt (6)

In Equation (7), Gs and dtotal are the reliability of robot team and total distance traversed by the
robot team for a given route, respectively. In this study, the time is assumed to be proportional to the
travelled distance. The PoRC for all tasks PoRCs for the robot team is calculated using Equation (7).

PoRCs = Gs new
dtotal (7)

Reliability of robotic systems can be analysed in terms of the components of the systems. According
to the literature, Equation (1) can be used for the calculation of the hazard rate of any robot or component,
and then the robot’s reliability can be calculated using Equation (2). The reliability of the robot team can
be calculated using Equation (3). Overall, the reliability of the robot team can be updated using Equation
(4). If the effect of carrying a load is considered, then the reliability of the robot team could be updated
using Equations (5) and (6). Equation (7) can be used for the calculation of PoRC for any given mission.

3. Proposed Prognostics-aware multi-robot route planning algorithm

In the factories, the transportation of all materials, parts, and finished products by robots are usually
repeated actions. Transportation of empty vehicles is called deadheading, and the corresponding distance
is denoted by deadhead distances (meters), which can be translated to an increase in cost. To reduce the
deadheading, after delivery activities, the vehicle visits the pickup points and picks up finished products
at these points to transport them to the depot. This process is called backhauling (Dolgui & Proth,
2010). For this type of repetitive task, P-MRRP becomes particularly useful. Although there are various
studies in this area, reliability-based multi-robot route planning is not considered in the literature, as
mentioned before. The proposed P-MRRP algorithm focuses on extending the lifetime of the robot
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team by considering the reliability and loads of the robots. In this study, the reliability of the robot is
updated considering both the travelled distances for the assigned route and the load of the robot between
pickup and delivery nodes. Moreover, the lifetime extension of the robot team can be analysed using
the proposed PLA algorithm. In the following subsections, the proposed P-MRRP algorithm and its
sub-algorithms are discussed. The route planning algorithm (SA) is used to construct the route sets for
pickup and delivery (P/D) problems. The PLA is used to analyse the lifetime of the robot team while
considering the PoRC value.

3.1 Proposed prognostics-aware multi-robot route planning algorithm
P-MRRP algorithm is proposed to increase the number of completed tasks during the lifetime of the

robot team. P-MRRP algorithm could be used with any route planning algorithm and could help to solve
any vehicle routing problem considering the lifetime extension of the robot team. In this case study,
the SA algorithm is used for RSC as given in Section 3.2. Steps of the P-MRRP algorithm are given in
Algorithm 1.

It is assumed that the robots know positions of nodes xi, yi, i=1,. . . ,n, required time to complete task
at nodes ti, i = 1, . . . , n, weight of loads at nodes wi, i=1,. . . ,n, relative distances dij between nodes,
and connections of the nodes. And robot positions xk, yk, k=1,. . . ,m, initial reliability Gk, k=1,. . . ,m of
each robot, hazard rates of components λq, q=1...c, nominal load capacity Pk, k=1...m, nominal speed
Sk, k=1...m, virtual capacity Vk cap have been known in advance. Eij indicates consumption of energy
for the travelling from node i to node j, and Ei, for i=1,. . . ,n, indicates required energy in performing its
task at the specified node. Robots Rk, k=1,. . . ,m have limited capacity of Ek cap, k=1,. . . ,m, according
to route plannig algorithm for constructing all the possible route combinations of robot team and case
study environment.

Algorithm 1. Prognostics-aware Multi-Robot Route Planning (P-MRRP) Algorithm.

Initialization Phase:
Step 1;Get all the information about environment and robots n, (xi, yi), dij , ti, wi, Ei; for i 6= j and i, j
= 1, . . . , n, m, (xk, yk), Ek cap; for k = 1, . . . , m, ∆Vcap, update distance matrix D,
Step 2;Run route planner algorithm for the robot team using pre-determined virtual capacities
Vk cap ∈ Vcap for k = 1, . . . , m, and save each constructed tour Rk tour and total traversed distances
dk total to the route set H.

Main Phase:
Step 1;Set r = 1
Step 2;Get initial reliability of robots Gk for k = 1, . . . , m, hazard rates of components belong to robots
λq, for q = 1...c
Step 3;Calculate PoRCs(r) using Equation (7). Note that the reliability of the robots is updated using
Equation (4) or (6) at each node of their tour.
Step 4;IF r < pm set r = r + 1 GOTO Step – 2 ELSE GOTO Step – 5
Step 5;Find the most reliable route set index Rk tour = H(r̂, :)

In the initialization phase of the P-MRRP algorithm, a route set H is constructed for the given problem
environment. To realize this, in the first step of the algorithm, the traversed distances dij and required
energiesEij for the robots between all pairs of nodes are calculated. In the second step, a virtual capacity
set Vcap is determined considering the objective functions of the route planning algorithm that is given in
the next subsection. Note that, the user may also consider workload balancing issues for selecting Vcap
for each of the robots in the team. For this study, the SA algorithm is used to find route sets considering
all possible variations of robots regarding the Vcap.

In the P-MRRP algorithm, the most reliable route set is selected among route set H. In the second
step of the main part, the initial reliability Gk values of robots and hazard rates of components λl belong
to robots are obtained. Note that, these values are kept the same for every route set of H. Then, PoRCs
value is calculated for the system using Equation (7). In this step, a variable reliability and hazard rate are
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used to calculate reliability for a given route. For a given robot, after completing a sub-route (i.e., arrived
at a node of the route) the robot’s initial hazard rate λl, l = 1 ... c and reliability values Gk are updated
using Equation (4) or (6), and these values are used for the remaining sub-route of the main route. In
Equation (6), the value of reliability is updated also considering carried load if it exists. Therefore, these
approaches not only consider travelling issues but also carried a load. The algorithm repeats PoRCs(r)
calculation until r := pm. In the last step of the P-MRRP algorithm the most reliable route set is selected
considering the values of PoRCs. The P-MRRP algorithm can be used to determine the most reliable
route set for a given robot team.

To analyse the effect of the algorithm on the lifetime extension following the PLA algorithm is
proposed in Section 3.3.

3.2 Route planning algorithm
P/D problems are common problems of in-plant transportation. VRPBs where all deliveries

have to be made for each route before the first pickup is one of the possible variants considered
in intralogistics (Koç & Laporte, 2018). The VRPB was introduced by Deif and Bodin (Deif &
Bodin, 1984). VRPBs increase efficiency by limiting the number of meters that is driven with an
empty vehicle after all deliveries have been made should be balanced with preceding pickups on every
route (Goetschalckx, 2011). Routing of robots and scheduling of P/D tasks are established using a
metaheuristic algorithm, the SA algorithm. The conventional routing and scheduling problem is known
as a combinational optimization problem, which is an NP-hard problem and cannot be solved by existing
exact algorithms in a reasonable time. Therefore, metaheuristic algorithms are generally used to solve
these kinds of problems (Sarıçiçek et al., 2022). The SA algorithm is one of them. It is widely used and
its performance is proven in the literature (Wu & Chen, 2003).

In our industrial environment (Figure 1), there are 12 workstations which have P/D points. Robots
take the parts from the raw material warehouse (depot 1) to the workstations, which request P/D tasks.
They also take the products or semi-products from the pickup points and deliver them to the finished
products warehouse (depot 2).

Fig. 1. The graph of the factory environment
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Table 1. An example of the P/D task list.

Number
of
Items

P/D
Point
number

Type of
the task
(P/D)

Item
Weight
(kg)

1 Item 25 Delivery C 20
1 Item 27 Delivery E 20
1 Item 29 Delivery E 20
1 Item 31 Delivery D 20
... ... ... ... ...
1 Item 30 Pickup F 20
1 Item 32 Pickup D 20
1 Item 34 Pickup E 20
1 Item 36 Pickup A 20
... ... ... ... ...

Table 2. Details of the Example Route Plan

Robot
(Virtual Capacity
(kg))

Robot 1
(40)

Robot 2
(40)

Robot 3
(80)

Robot 4
(80)

Point
(Weight)

Point
(Weight)

Point
(Weight)

Point
(Weight)

Delivery
tasks

43 (20)
41 (20)
-
-

35 (20)
33 (20)
-
-

25 (20)
27 (20)
29 (20)
31 (20)

45 (20)
37 (20)
39 (20)
47 (20)

Pickup
tasks

42 (20)
40 (20)
-
-

34 (20)
32 (20)
-
-

30 (20)
28 (20)
26 (20)
24 (20)

46 (20)
38 (20)
36 (20)
44 (20)

The P/D requests for workstations are listed in Table 1. The task scheduling and route planning are
established using a path planning algorithm.

In Figure 2, the number (-1) is a delimiter of the routes. According to the solution, the robot assigned
to the first route leaves depot 1 and brings the requested part to points 43 and 41, then goes to points 42
and 40 to take the load/product and to bring them to the depot 2. The same process is implemented for
route 2, 3 and 4. Each route is assigned to a robot in Figure 2. Therefore, four routes are assigned to four
robots.

Fig. 2. An example for route plan

In Table 2, the details of the example route plan are shown. Virtual capacity is used for generating
all possible route sets of a given environment and the robot team. For example, in this plan, the virtual
capacities for the loads of four robots are 40, 40, 80 and 80 kg. Furthermore, pickup and delivery tasks
are given in Table 2.

In the route planning algorithm,
i, j: index for nodes,
k: index for robots,
dij : distance between node i and j,
ρ∗: energy spent when the robot is full-load,
ρ0: energy spent when the robot is no-load,
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Table 3. The comparison of costs for two solutions

Minimum Distance Objective
Function SA

Robot # Energy(kg*m) Distance(m) Time(s)
4 787840 4774 33.7

Minimum Energy Objective
Function SA

Robot # Energy(kg*m) Distance(m) Time(s)
4 785760 4898 34.9

RC: robot capacity,
decision variables
xijk: 1; robot k moves from node i to node j, 0; otherwise
and
yijk: load from node i to node j with robot k.
Objective functions for selecting routes are shown in Equations (8) and (9).
Objective function 1: Minimum distance;

Min z1 =
∑
k∈K

∑
i∈V

∑
j∈V

(dijxijk) (8)

Objective function 2: Minimum energy;

Min z2 =
∑
k∈K

∑
i∈V

∑
j∈V

dij(ρ0xijk + αyijk) (9)

where α = (ρ ∗ −ρ0)/RC (10)

The first objective function in Equation (8) is necessary to minimize the total distance travelled. In
Equation (9), minimization of energy depends on the transported load and the travelled distance between
nodes. Based on the number of robots, their starting positions, and the P/D requests, the assignment of
requests and appropriate routes for the robots are obtained to minimize the total energy consumed by
robots. Objective functions directly affect the lifetime of the robot team by selecting the tasks for the
robots. Thus, objective function selection is critically important in the lifetime of the robot team.

In Table 3, trade-offs between costs for the minimum distance objective function and the minimum
energy objective function can be seen. The total distance travelled and total energy consumption are
calculated as 4744 m and 787840 kg × m using the minimum distance model, respectively. On the other
hand, the values are 4898 m and 785760 kg × m for the minimum energy model, respectively.

3.3 Prognostics-aware Lifetime Analysis (PLA) algorithm
The PLA algorithm can be used for long-term reliability analysis of a routing strategy with different

performance measures. The steps of the algorithm are given in Algorithm 2.

Algorithm 2. Prognostics-aware Lifetime Analysis (PLA) Algorithm
Step 1. GET a user-specified threshold for PoRC (PoRCth) value and robot reliability values
Step 2. RUN the P-MRRP algorithm or classical MRRP algorithm for the defined mission
Step 3. For the routes, calculate PoRCs and update robot reliability values
Step 4. IF PoRCs < PoRCth terminate the algorithm otherwise GOTO Step – 2

In the first step of the PLA algorithm, a user-specific PoRCth value that defines termination
condition, and actual robot reliability values, are obtained. In the second step, a route set is constructed
using the determined performance measure. In this step, the P-MRRP algorithm or classical MRRP
algorithm can be used. In the third step, the PoRC values are calculated for the robot team and the
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Table 4. Test Setup Values

λl, for l = 1...c 5.07e−004

Sk, for k = 1...m 4.32 km/h
Pk, for k = 1...m 200 kg
PoRCth 0.1

reliability values are updated considering the nature of the mission (i.e., travelled times, carried loads).
If PoRCs < PoRCth, then the algorithm recalls the MRRP algorithms, otherwise it terminates. Thus,
the PLA algorithm can be used to assign the number of sequential missions for a given environment
and robot team. In this way, the lifetime extension characteristics of any MRRP algorithm, including
P-MRRP, can be determined.

4. Test results

The proposed approach is tested in the simulation environment in Figure 2, which includes 48 nodes.
Figure 3 gives the configuration space in the GAZEBOSim environment. Initially, all the robots are
assumed to be at node 21 of depot 2 (Figure 3).

Fig. 3. Gazebo simulation case study environment

The hazard rates of the robot components λl, l = 1...c, nominal speed of robots Sk, k = 1...m, nominal
load capacity of robots Pk, k = 1...m, and user-specified threshold value for PoRCth are given in Table
4. Initially, all parameters of the robots in the team are assumed to be identical to each other. In this
study, the autonomous mobile robot’s (IMTGD, 2021) datasheet is used as a base while configuring the
test setup values.

Tests are conducted with a specially developed GUI, which is shown in Figure 4. In this GUI, the
number of robots in the team, load case selection, PoRC or reliability threshold type and value can be
selected. Via the GUI, the user can select the threshold type as reliability or PoRC. This means that the
algorithm will stop after reaching the threshold for the reliability or PoRC value of the robot team. After
reaching the threshold value, the algorithm creates a report that contains the number of completed tasks
during the lifetime of the robot team. Furthermore, robots in the robot team can be configured according
to the initial hazard rate value, initial reliability value, robot maximum speed value and nominal capacity
value for each robot.
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Fig. 4. P-MRRP test GUI

The reliability of a robot team is highly related to the number of completed tasks during the operation
time. The P-MRRP algorithm chooses routes for the robot team according to the PoRC values. After
that, the proposed PLA algorithm is applied for the lifetime analysis of the robot team using the P-MRRP
algorithm. In this algorithm, the PoRC values are calculated, and the reliability values are updated
considering the nature of the mission (i.e., travelled times, carried loads) for the robot team. The
PLA algorithm continues to recall the MRRP algorithm as long as PoRCs < PoRCth, otherwise
it terminates. In the analysis, it is assumed that the user-specific value of PoRCth that defines the
termination condition is set to 0.1.

Furthermore, routes are obtained using two different objective functions. The energy minimization
or the distance minimization objective function is selected for creating route sets. The lifetime analysis
results of the proposed P-MRRP algorithm and classical MRRP are compared in terms of both load and
unload cases, and energy and distance-based objective functions. Notably, the classical MRRP-based
route sets are not changed in the lifetime of the robot team, i.e., the shortest distance route does not
change. Besides that, these route sets are created for 3, 4 and 6 robot team combinations. In the following,
firstly, MRRP with minimum distance objective function studies are analysed. Later, MRRP with
minimum energy objective function studies are given. Lastly, MRRP with prognostics-aware algorithm
results are compared among themselves, and the results are commented on.

4.1 MRRP with minimum distance objective function
First, the analysis is conducted for the route set of MRRP with minimum distance objective function.

In this analysis, it’s assumed that robots are homogeneous and have the same reliability value Gk = 1.0
k = 1, . . . , m and the loaded and unloaded cases are considered and configurations are given in Table
4. A comparison among the conducted tests are given in Table 5. In Table 5, the number of completed
tasks during the lifetime of the robot team is given according to robot team combination, load case and
objective function of route planning. The PLA comparison of the P-MRRP and classical MRRP for
different robot team combinations (3, 4, 6 robots) is realized. Unloaded and loaded cases of MRRP
with distance objective function-based route set are given in Figure (5a) and Figure (5b) respectively. As
demonstrated in Table 5 and Figure 5, the robot team with the P-MRRP algorithm has completed more
tasks than classical MRRP algorithms with minimum distance-based MRRP during the lifetime of the
robot team.
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Table 5. Lifetime Analysis for MRRP with Minimum Distance Objective Function

Load
Case

Robot
Team

Objective
function
of Route
planning

The num of
comp. tasks
during
lifetime
of
robot
team

Loaded

3 Robots

Distance
based
P-MRRP

1367

Minimum
Distance
Based
MRRP

1204

4 Robots

Distance
based
P-MRRP

1836

Minimum
Distance
Based
MRRP

1244

6 Robots

Distance
based
P-MRRP

2332

Minimum
Distance
Based
MRRP

1634

Unloaded

3 Robots

Distance
based
P-MRRP

3302

Minimum
Distance
Based
MRRP

2836

4 Robots

Distance
based
P-MRRP

3899

Minimum
Distance
Based
MRRP

2882

6 Robots

Distance
based
P-MRRP

4192

Minimum
Distance
Based
MRRP

3236
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(a)Unloaded

(b)Loaded

Fig. 5. Lifetime analysis for MRRP with minimum distance objective function
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(a)Unloaded

(b)Loaded

Fig. 6. Lifetime analysis for MRRP with minimum energy objective function

In Figure 5 (a) and (b), the load effect can be seen clearly. In the loaded case, the completed tasks of
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Table 6. Lifetime Analysis for MRRP with Minimum Energy Objective Function

Load
Case

Robot
Team

Objective
function
of Route
planning

The num of
comp. tasks
during
lifetime
of
robot
team

Loaded

3 Robots

Energy
based
P-MRRP

1563

Minimum
Energy
Based
MRRP

1331

4 Robots

Energy
based
P-MRRP

1826

Minimum
Energy
Based
MRRP

1667

6 Robots

Energy
based
P-MRRP

2375

Minimum
Energy
Based
MRRP

1871

Unloaded

3 Robots

Energy
based
P-MRRP

3349

Minimum
Energy
Based
MRRP

3010

4 Robots

Energy
based
P-MRRP

3920

Minimum
Energy
Based
MRRP

3189

6 Robots

Energy
based
P-MRRP

4182

Minimum
Energy
Based
MRRP

3380
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the robot team are approximately half of the unloaded case without distinction of robot team combination.
Moreover, as shown in Figure 5 (a) and (b), as the number of robots in the robot team increases, the
number of completed tasks during the lifetime also increases.

4.2 MRRP with minimum energy objective function
Second, analysis is conducted for the route set of MRRP with energy objective function. In this

analysis, all configurations and test scenarios are the same as in Section 4.1. In Table 6, lifetime analysis
results of MRRP with minimum energy objective function are given.

The comparison of Tables 5 and 6 show that the MRRP algorithm with minimum energy objective
function completes slightly more than the MRRP algorithm with minimum distance-based objective
function. This means that MRRP with the minimum energy objective function route set is more suitable
for lifetime extension than MRRP with the minimum distance objective function route set.

When the unloaded case is compared with that loaded one in Figure 6, the load effect in the number
of completed tasks during the lifetime of the robot team could be seen. Besides, the number of robots in
the team is another crucial factor in extending the lifetime of the robot team.

4.3 MRRP with the Prognostics-aware algorithm
P-MRRP algorithm results are analysed depending on the number of robots in the team. In Tables 5

and 6, P-MRRP algorithm test results for a different number of robots can be analysed.
The lifetime of the robot team is extended when the number of robots is increased in the P-MRRP

algorithm for the loaded and unloaded cases. For example, the difference between three robots and four
robots in terms of the number of completed tasks is approximately 500 tasks for the loaded case and 600
tasks for the unloaded case. The situation is roughly the same for a four-robot team and six-robot team,
with 500 tasks for the loaded case and 300 tasks for the unloaded case.

From Table 6, the P-MRRP algorithm analysis with energy objective function route set is shown.
The lifetime is extended according to the number of robots in the team.
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(a)Unloaded

(b)Loaded

Fig. 7. Robot Number Analysis for P-MRRP with Minimum Distance Objective Function
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(a)Unloaded

(b)Loaded

Fig. 8. Robot Number Analysis for P-MRRP with Energy Objective Function

In Figure 8, comparing the unloaded case with the loaded one, the number of completed tasks during
the lifetime of the robot team is approximately similar to the minimum energy objective function-based
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route set test results (see Figure 7). However, the minimum energy objective function-based route set 
has a higher number of completed tasks than the minimum distance objective function-based route set 
cases. On the other hand, the route planning strategy is very important for the robot team when loaded 
and unloaded cases are compared, and the load effect is clearly seen for the lifetime of the robot team. 
Significantly, the experiments show that the P-MRRP algorithm is capable of extending the lifetime of 
the system. 

5. Conclusion

In Industry 4.0 era, long-term repetitive operations are an important application of autonomous 
multi-robot teams in manufacturing facilities. The transportation of parts to the workstations from the 
depot and transportation of the finished products to the depot are repetitive tasks that affect the lifetime 
of autonomous robots. The lifetime of the robot team is increased if the team can know the reliability 
values of each robot in the team and plan routes accordingly. In this study, a P-MRRP algorithm is 
proposed for extending the lifetime of the robot team. Using reliability-based route planning enables 
long-term autonomous operations of the robot team. Moreover, the P-MRRP algorithm can consider 
the carried loads of robots in the environment, and the PLA algorithm results show the extension of 
robot lifetime by comparing P-MRRP with the classical MRRP (specifically, their minimum distance 
and energy objective functions) in loaded and unloaded scenarios. The proposed P-MRRP algorithm 
outperforms the classical MRRP algorithm, especially in the loaded case. The P-MRRP algorithm 
can be used for lifetime planning, reduction of the maintenance cost, sustaining autonomy and more. 
Therefore, it is preferable for fully autonomous systems considering long-term strategic planning. 
In the future, the reliability analysis of robots will be extended to include other components such as 
communication, sensors, batteries and electronics. Furthermore, the optimum number of robots could 
be estimated with the P-MRRP algorithm for the given test environments. 
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