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Abstract

In this study, we introduce the locating-dominating value and the location-domination polynomial of
graphs and location-domination polynomials of some families of graphs were identified. Locating-
dominating set of graph G is defined as the dominating set which locates all the vertices of G. And,
location-domination number G is the minimum cardinality of a locating-dominating set in G.
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1. Introduction

Let G be a simple undirected graph. If every pair of vertices in G has a path between them, then
G is said to be a connected graph, else, G is disconnected. Neighborhood of vertex v of G is set
N(v) = {u ∈ V (G) : u is adjacent to v}. The number of elements in N(v) is the degree of v,
denoted by dG(v). A vertex v with dG(v) = 0 is an isolated vertex. If every vertex of connected graph
G has two neighbors, then G is called a cycle. The girth of a graph G is the number of edges in its
shortest cycle. If two distinct vertices u and v of G have the property that N(u) − {v} = N(v) − {u},
then u and v are called twin vertices (or simply twins) in G. A set T ⊆ V (G) is said to be a twin-set
in G if every two elements of T are twin vertices of G. The complement of G, denoted by G, has the
same vertex set as G and x is adjacent to y in G if and only if x is not adjacent to y in G. For a graph
G, if V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called a subgraph of G. A non empty subset H of
a connected graph G is called an induced subgraph of G, if H contains all the edges uv ∈ E(G) with
u, v ∈ V (H). The component is the maximal connected subgraph of G.

A set D ⊆ V (G) is called dominating if for every vertex u ∈ V (G) \ D, N(u)
⋂
D 6= φ. A

set Ld of vertices of a graph G is called a locating-dominating set if, for every two distinct vertices
u, v ∈ V (G)− Ld, φ 6= N(u)

⋂
Ld 6= N(v)

⋂
Ld 6= φ. The location-domination number of a graph G,

denoted by LD(G), is the minimum cardinality of a locating-dominating set of G. Caceres et al. (2013),
showed that each locating-dominating set is both locating and dominating set. However, the converse is
not true in general.

The initial application of locating-dominating sets was fault-diagnosis in maintenance of multipro-
cessor systems (Karpovsky, Chakrabarty & Levitin, 1998). The purpose of fault detection is to test
the system and locate faulty processors. Locating-dominating sets have since been extended and ap-
plied. The decision problem for locating-dominating sets for directed graphs has been shown to be an
NP-complete problem (Charon, Hudry & Lobstein, 2002).

Balbuena et al. (2015), studied the locating-dominating sets of graphs containing no triangle. They
also gave upper bound on the smallest size of such sets in term of the order of the graphs. Blidia et
al. (2007), have worked on the location-domination number of trees. The study revealed upper and
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lower bounds of a tree graph of order greater than or equal to 3, in terms of leaves and support vertices.
And classify all the graphs satisfying the upper bound. Fazil et al. (2016) worked on the locationg-
dominating sets in hyper graph. Mphako-Banda & Ncambalala, 2019; Alaeiyan et al., 2014; Imran et
al., 2014; Bertrand et al., 2004; Honkala et al., 2004; Charon et al., 2003; Slater, 2002; Slater, 1988;
Colbourn et al., 1987; Finbow & Hartnell, 1987; Fall & Slater, 1984 came up with helpful results.

2. Location-domination polynomials and Locating-dominating values

In this section, we introduce two new graph invariants, ie., the location-domination polynomial of a graph
and the locating-dominating value of a vertex of a graph.

Initially recall some results on the location-domination number to proceed.

Proposition 2.1 (Murtaza, 2020). Suppose that u, v are twins in a connected graph G and Ld is a
locating-dominating set of G. Then either u or v is in Ld. Moreover, if u ∈ Ld and v 6∈ Ld, then
(Ld − {u}) ∪ {v} is a locating-dominating set of G.

Remark 2.2 (Murtaza, 2020). Let T ⊆ V (G) be a twin-set of order k ≥ 2. Then every locating-
dominating set Ld of G contains at least k − 1 vertices of T .

Lemma 2.3 (Balbuena, 2015). Let G be a graph of girth at least 5, and let C be a dominating set of G.
Let X = {x ∈ V (G) \ C : |N(x)

⋂
C| = 1}, then C is a locating-dominating set of G if and only if

there is an injective function f : X → C such that f(x) ∈ C
⋂
N(x) for all x ∈ X.

Akbari et al. (2010), introduced the concept of domination polynomial of G. This family is related
to all the dominating sets of G. Birkhoff (1912), introduced the concept of chromatic polynomial of
G, which is related to all the color classes of G. Heilmann & Lieb (1972) came up with the concept
of matching polynomial which corresponds to all the edges of G. Gutman & Harary (1983) introduced
the concept for the independent polynomial of G, which corresponds to all the independent sets of G.
Salman et al. introduced the concept for the resolving polynomial of G which corresponds to all the
resolving sets of G. Javaid et al. (2018) proposed the concept of fixing polynomial of the graph, defines
the fixing sets of G. In this paper, we studied the location-domination polynomial of the graph which
corresponds to all the locating-dominating sets of G.

For a graph G of order n and location-domination number LD(G), the location-domination polyno-
mialLD(G, x) is a generating polynomial for the locating-dominating sequence (lLD(G), lLD(G)+1, . . . , ln)
which helps in counting all the locating-dominating sets of cardinality j; LD(G) ≤ j ≤ n, for G. j-set
is the subset of the vertices of the graph G of cardinality j. Let L(G, j) denote the family of all the
locating-dominating sets of G which are j-sets. Let lj = |L(G, j)|.

Definition 2.4 LD(G, x) =
n∑

j=LD(G)
ljx

j , is defined as location-domination polynomial of G. Where,

lj = 0 iff j = LD(G) = 0 or j < LD(G).

Some properties related to location-domination polynomial LD(G, x) of graph G are listed below.

Properties 2.5 (1) l|G| = 1 and l|G|−1 = |G|.
(2) LD(G, x) is monic.
(3) Since li = 0 for j = LD(G) = 0 or j < LD(G), so LD(G, x) has no constant term.
(4) Each value of the locating-dominating sequence (lLD(G), lLD(G)+1, . . . , ln) is non-zero.
(5) For any a, á ∈ [0,∞) such that a < á, LD(G, a) < LD(G, á). It concludes that LD(G, x) is

strictly increasing function on [0,∞).
(6) If G1 is any subgraph of a graph G, then deg(LD(G, x)) ≥ deg(LD(G1, x)).

Proposition 2.6 Let G be a graph with t components G1, G2, ..., Gt, then LD(G, x) =
t∏

i=1
LD(Gi, x).
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Proof. Since all the components are disjoint, the locating-dominating sets of each component are
disjoint with other components. This implies that any locating-dominating set Ld of cardinality say r,
where LD(G) ≤ r ≤ |G|, there must exist t disjoint locating-dominating sets one from each Gi, 1 ≤
i ≤ t, such that Ld is the union of these t locating-dominating sets. Thus, the coefficient of xr in

both polynomials LD(G, x) and
t∏

i=1
LD(Gi, x) is the same. Hence the polynomials are identical and

completes the proof.

Proposition 2.7 Let G be the graph of order n ≥ 2 with t ≥ 2 isolated vertices. If LD(G, x) is the
location-domination polynomial of G, then t = n− ln−1.

Proof. Suppose A = {x ∈ V (G) : dG(x) = 0} and |A| = t. Then for any vertex u ∈ V (G) \ A,
the set V (G) \ {u} is a locating-dominating set of G. Also, for any locating-dominating set B and any
vertex v ∈ A, B \ {v} is not a locating-dominating set of G. Accordingly, the result follows.

Proposition 2.8 Let G be a graph of order n ≥ 2 with t ≥ 2 isolated vertices and G1 be a graph
induced by the set V (G) \ A, A is the set of isolated vertices (if n = 2, t = 2, then G1 is not a graph).
Then LD(G1, x) = LD(G,x)

xt .

Proof. LetG2 be a graph induced byA. SinceG1 is a subgraph induced by V (G)\A, soLD(G1, x) =
m∑

i=LD(G1)
lix

i, m = |V (G) \ A|. Because A has at least two isolated vertices, G2 must have two

components. Thus, G1 and G2 have at least three components. Applying Proposition 2.6, we have
LD(G, x) = LD(G1, x)xt, and then LD(G1, x) = LD(G,x)

xt .

Corollary 2.9 Let G be a graph of order n ≥ 2 with t ≥ 2 isolated vertices and G1 be its subgraph

induced by the set V (G) \ A, A is the set of t ≥ 2 isolated vertices. If LD(G, x) =
n∑

i=LD(G)
lix

i

and LD(G1, x) =
n−t∑

j=LD(G1)
ljx

j are location-domination polynomials of G and G1, respectively. Then

t = deg(LD(G, x))− deg(LD(G1, x)).

Consider the set G∗ which contains all locating-dominating sets of cardinality LD(G), then |G∗| =
lLD(G). The definition of locating-dominating value of each vertex of G as follows: for each vertex
v ∈ V (G), the locating-dominating value, LDV (v), is the total number of the elements of G∗ for which
v belongs.

Proposition 2.10 Let G be a graph, then
(1)

∑
v∈V (G)

LDV (v) = |G∗| · LD(G).

(2) If u and v are twin vertices in G, then LDV (u) = LDV (v).

(3) If G has t ≥ 2 components G1, G2, ..., Gt, then |G∗| =
t∏

i=1
|G∗i |. Further, for v ∈ V (G),

LDV (v) = LDV (Gi(v))
t∏

j=1j 6=i
|G∗j |.

3. Location-domination polynomials and Locating-dominating values of some families of graphs

This section considers location-domination polynomials of various graph families, such as the complete
multipartite graphs, Petersen graph and lexicographic product of cycle graph of order n1 ≥ 3 with n2 ≥ 2
isolated vertices.

Let G be a complete multipartite graph and P1, P2, P3, ..., Pq be its q-partites. It is clear that each
partite is a twin set. Also, for any u ∈ Pq1 and any v ∈ Pq2 , q1 6= q2, N(u) 6= N(v). Thus, LD(G) =
q∑

j=1
|Pj | − q
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We prove the following theorem for |Pj | = nj , 1 ≤ j ≤ q, which describes the location-domination
polynomial of the complete multipartite graph.

Theorem 3.1 Let G = Kn1,n2,n3,...,nq be the complete multipartite graph with n1 ≥ n2 ≥ n3 ≥ .... ≥

nq, then for each nj ≥ 2, LD(G, x) = x|G| +
q∑

i=1
[

q∑
1=j1<j2<...<ji

(nj1nj2 . . . nji)x
|G|−i].

Proof. Since each partite Pj with |Pj | = nj , 1 ≤ j ≤ q, is in fact a twin set, therefore every mini-
mal locating-dominating set of G = Kn1,n2,n3,...,nq contains all but one vertex from each Pj . Apply-
ing Properties 2.5(1), we have l|G| = 1, l|G|−1 = |G|, and for l|G|−i, 2 ≤ i ≤ LD(G), we choose
all vertices of G except i vertices with one vertex from each Pj . It is possible to do this in exactly

q∑
1=j1<j2<...<ji

nj1nj2 . . . nji . This proves the result.

From Theorem 3.1, there are
q∏

j=1
nj locating-dominating sets of minimum cardinality, and each

locating-dominating set must contain all but one vertex from each partite, so we have the following
corollary:

Corollary 3.2 Let G = Kn1,n2,n3,...,nq be the complete multipartite graph with n1 ≥ n2 ≥ n3 ≥
.... ≥ nq and each nj ≥ 2, then for any v ∈ V (G), there is a partite Pk, 1 ≤ k ≤ q such that

LDV (v) =
q∏

j=1j 6=k
nj(nk − 1).

The Petersen graph G = P (5, 2) is the graph with the vertex set V (G) = {u1, u2, u3, u4, u5, v1, v2,
v3, v4, v5}, and the edge set E(G) = {uiu(i+1)mod5, viv(i+1)mod5, uiv(i+j)mod5, 1 ≤ i ≤ 5, j = i− 1},
with u0 = u5 and v0 = v5.

The following theorem points to the Petersen graph’s location-domination number.

Theorem 3.3 (Balbuena, 2015) Let G = P (5, 2) be the Petersen graph, then LD(G) = 4.

Following proposition gives the location-domination polynomial of Petersen graph.

Proposition 3.4 LetG = P (5, 2), thenLD(G, x) = x10+10x9+45x8+120x7+200x6+192x5+65x4.

Proof. Since the girth of Petersen graph G = P (5, 2) is 5. A dominating set D is also a locating if it
does not have two vertices that are each uniquely dominated by one vertex. Let V denotes the vertex set
of Petersen graph, D dominating set and E = V \D. Here are the cases for E.

1. When |E| = 0, 1, 2, or 3, then D is a dominating set because no vertex of E is isolated from the
set D. By Lemma 2.3, D is also a locating set, so lj=

(10
j

)
, for j = 7, 8, 9, 10.

2. When |E| = 4, then there exist 10 possibilities to chooseE with 1 vertex isolated fromD, so there
exist

(10
4

)
− 10 = 200 dominating sets of size 6. All of them are also locating, and l6 = 200.

3. When |E| = 5, then there exist 10 ∗ 6 possibilities to choose E with 1 vertex isolated from D, so
there exist

(10
5

)
− 60 = 192 dominating sets of size 5. All of them are also locating, and l5 = 192.

4. When |E| = 6, then there exist 10∗12 possibilities to chooseE with 1 vertex isolated fromD, and
15 possibilities to choose E with 2 vertices isolated from D. So there exist

(10
6

)
− 120− 15 = 75

dominating sets of size 4. A dominating set D is not locating if there exists a vertex v ∈ D with
two adjacent vertices u and w such that N [u]

⋃
N [w] \ {v} ⊂ V \D. In this case set E contains

another 4 vertices different from u and w. Vertices of D induce a star K1,3. There are 10 ways to
pick this star, so there are 10 different sets of dominating characteristics not located in the Petersen
graph. 65 of the remaining dominating sets are also locating and l4 = 65.
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Consequently, LD(G, x) = x10 + 10x9 + 45x8 + 120x7 + 200x6 + 192x5 + 65x4.

Definition 3.5 Lexicographic product between the graphs G and Ǵ, denoted by G[Ǵ], is the graph with
vertex set V (G) × V (Ǵ) = {(u, v) : u ∈ V (G), v ∈ V (Ǵ)} and (u1, v1) is adjacent to (u2, v2) if
u1 = u2 and v1 is adjacent to v2, or u1 is adjacent to u2.

Here is the result for a graph G which is the lexicographic product of a cycle graph with n1 nodes
and the complement of a complete graph with n2 nodes.

Theorem 3.6 Let G be the graph Cn1 [Kn2 ] with n1 ≥ 3 and n2 ≥ 2, then

LD(G) =

{
n1(n2 − 1) when n1 6= 4,
n1(n2 − 1) + 2 when n1 = 4.

Proof. Let V (G) = {(ui, vj); 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}, where ui ∈ V (Cn1) and vj ∈ V (Kn2).

Then for each i, where 1 ≤ i ≤ n1, the set Ti =
n2⋃
j=1
{(ui, vj)} is a twin set. Since there are n1 twin sets

and each twin set is of cardinality n2. Thus, every locating-dominating set of the minimum cardinality
contains at least n1(n2 − 1) vertices, and hence LD(G) ≤ n1(n2 − 1).

Consider the set Ld =
n1⋃
i=1

n2−1⋃
j=1
{(ui, vj)}. Then for each i, 1 ≤ i ≤ n1 and j = n2,

N(ui, vj)
⋂
Ld =

n1⋃
k1=1(k1 6=i)

n2−1⋃
k2=1

{(uk1 , vk2)}.

This implies that all the remaining vertices (ui, vj) /∈ Ld, 1 ≤ i ≤ n1 and j = n2, have different
non-empty neighborhoods in Ld. Thus, the set Ld is a locating-dominating set of cardinality n1(n2− 1).
Hence, LD(G) = n1(n2 − 1) for n1 ≥ 3, n1 6= 4 and n2 ≥ 2.

Further, for n1 = 4 and n2 ≥ 2, the set L∗d =
n1⋃
i=1

n2−1⋃
j=1
{(ui, vj)} does not form a locating-dominating set

becauseN(ui, vn2) = N(uj , vn2), 1 ≤ i ≤ 2, j = i+2.However, the setL∗d
2⋃

i=1
{(ui, vn2)} is a locating-

dominating set of the minimum cardinality. Thus, for n1 = 4 and n2 ≥ 2, LD(G) = n1(n2 − 1) + 2.

Theorem 3.7 Let G = Cn1 [Kn2 ], then for n1 6= 4 ≥ 3, n2 ≥ 2,

LD(G, x) =
n1∑
j=0

(
n1
j

)
nn1−j
2 xn1(n2−1)+j .

And, for n1 = 4, n2 ≥ 2,

LD(G, x) = x4n2 + 4n2x
4n2−1 + 4n22x

4n2−2.

Proof. Note that there are n1 twin-sets of cardinality n2 in G. From these n1 twin-sets, we can
choose k twin-sets from which we will choose all the n2 vertices, and this can be done in

(n1

k

)
different

ways. From the remaining n1− k twin-sets, we can choose n2− 1 vertices out of n2 vertices, which can
be done in nn1−k

2 ways. This implies that

LD(G, x) =
n1∑
j=0

(
n1
j

)
nn1−j
2 xn1(n2−1)+j .

Now, for n1 = 4 and n2 ≥ 2, LD(G) = n1(n2− 1) + 2, so l4n2 = 1 and l4n2−1 = 4n2. In this case, we

notice that V (G) = T1
⋃
T2, where T1 =

n2⋃
j=1
{(u1, vj), (u3, vj)} and T2 =

n2⋃
j=1
{(u2, vj), (u4, vj)} are

the twin sets. Since |T1| = |T2| = 2n2, therefore l4n2−2 = 4n22, and hence, the result holds.

From Theorem 3.7, we have the following corollary:

5

Muhammad Fazil, Iffat Fida Hussain, Ateqa Akbar, Usman Ali



Corollary 3.8 Let G = Cn1 [Kn2 ], n1 ≥ 3, n2 ≥ 2, and T1, T2,...,Tt are the twin sets of G such that

V (G) =
t⋃

i=1
Ti, then for any v ∈ Tk, 1 ≤ k ≤ t, LDV (v) =

t∏
i=1i6=k

|Ti|(|Tk| − 1).

4. Conclusion

The location-domination polynomial of a graph is a new concept within graph theory. This article in-
troduces the location-domination polynomial of a graph G and discusses its properties. Additionally,
location-dominating value has also been introduced. Our research also computed the location-domination
numbers and polynomials of several families of graphs.
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