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Generalized Bour’s theorem
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ABSTRACT
We give the classical isometric minimal helicoidal and rotational surfaces using generalized 
Bour’s theorem in Euclidean 3-space. Furthermore, we investigate the minimality and have 
same Gauss map of the surfaces.
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INTRODUCTION

Theory of surfaces in three dimensional Euclidean and Minkowskian spaces have been 
studied for a long time and many examples of such surfaces have been discovered. 
Many nice books have been published, such as Do Carmo (1976), and Kühnel (2006).

In classical surface geometry in Euclidean space, it is well known that the right 
helicoid (resp. catenoid) is the only ruled (resp. Rotational or surface of revolution) 
surface which is minimal. If we focus on the ruled (helicoid) and rotational characters, 
we have Bour’s theorem (Bour, 1862).

Ikawa (2000) determine pairs of surfaces by Bour’s theorem with the additional 
condition that they have the same Gauss map in Euclidean 3-space. About helicoidal 
surfaces in Euclidean 3-space, Do Carmo & Dajczer (1982), prove that, by using 
a result of Bour (1862), there exists a two-parameter family of helicoidal surfaces 
isometric to a given helicoidal surface.

Some relations among the Laplace-Beltrami operator and curvatures of the 
helicoidal surfaces in Euclidean 3-space are shown by Güler et al. (2010). In addition, 
they give Bour’s theorem on the Gauss map and some special examples.

Ji & Kim (2013) prove that, in Minkowski 3-space, a minimal helicoidal surface with 
Gauss curvature K has an isometric minimal rotational surface if and only if  K ≤ 0. Moreover, 
they show that a timelike right helicoid does not have an isometric minimal rotational 
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surface. On another hand, Martinez et al. (2013) give a complete classification of the 
helicoidal flat surfaces in the hyperbolic 3-space in terms of meromorphic data as well 
as by means of linear harmonic functions.

In this paper, we give the generalized Bour’s theorem in Euclidean 3-space. In 
the following section, we recall some basic notions of the Euclidean geometry and 
the reader can find a definition of helicoidal surface. Isometric helicoidal surface and 
rotational surface are obtained, and Gauss’Theorema Egregium is given in section 
which follows next. In the last section,  properties of  the isometric surfaces, that have 
the same Gauss map and the minimality, are investigated.

PRELIMINARIES

In the rest of this paper we shall identify a vector (a,b,c)t with its transpose. In this 
section, we will obtain the rotational and helicoidal surfaces in Euclidean 3-space.The 
reader can find basic elements of differential geometry in Do Carmo (1976).

Now, we define the rotational surface and helicoidal surface in 𝔼3. For an open 
interval I⊂ℝ , let γ : I→П be a curve in a plane П in ℝ3 , and let ℓ be a straight line 
in ∏. A rotational surface in E³ is defined as a surface rotating a curve γ around a line  ℓ (these are called the profile curve and the axis, respectively). Suppose that, when 
a profile curve γ rotates around the axis ℓ, it simultaneously displaces parallel lines 
orthogonal to the axis ℓ, so that the speed of displacement is proportional to the speed 
of rotation. Then the resulting surface is called the helicoidal surface with axis ℓ and 
pitch a∈ℝ\{0}.

We may suppose that ℓ is the line spanned by the vector. The orthogonal matrix 
which fixes the above vector  is

���� � �
cos v �sin v 0
sin v cos v 0

0 0 1
� , � � �. 

The matrix A can be found, by solving the following equations simultaneously:

          �ℓ � ℓ, ��� � ��� � �₃, ���� � 1. 
When the axis of rotation is ℓ, there is an Euclidean transformation by which the 

axis is ℓ transformed to the z-axis of ℝ3. Parametrization of the profile curve is given by

     ���� � �����,0, �����, 

where  f(u), φ(u): I⊂ℝ→ℝ are differentiable functions for all u∈I . A helicoidal surface 
in 3-Euclidean space which is spanned by the vector  with pitch, as follows:

 ��, �� � ���� ! ���� " #��0,0,1�. 
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When a=0, the surface is just a rotational surface as follows:

$��, �� � �����%&' �, ����'() �, �����. 
For a surface X(u,v), the coefficients of the first and second fundamental forms, the 

Gauss map and the other objects are defined in Do Carmo (1976) and Kühnel (2006).

GENERALIZED BOUR’S THEOREM

In this section, helicoidal and rotational surfaces are going to generalized surfaces, by 
Bour’s theorem in three dimensional Euclidean space.

Theorem 1. (Generalized Bour’s Theorem). A helicoidal surface

                            ��, �� � �����%&' �, ����'() �, ���� " #��                        (1)

is locally isometric to a rotational surface
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where f and φ are differentiable functions, 0 ≤ v < 2π and u, a∈ℝ\{0} .

Proof. We assume that the profile curve is

                  
�
�

��
�

� � ��
�

��
�

�,0, �
�

��
�

��. 

Since the helicoidal surface is given by rotating the profile curve γ around the axis ℓ= (0,0,1) and simultaneously displacing parallel lines orthogonal to the axis ℓ, so 
that the speed of displacement is proportional to the speed of rotation, we have the 
following representation of the helicoidal surface
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� " #�
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�,

where uH, a∈ℝ\{0} and 0≤ vH<2π. The line element of the helicoidal surface as above 
is given by

�'
�

� � ��
�

�� " �
�

�����
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� " 2#�
�

� ��
�
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�

" ��
�

� " #²���
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� .         �3� 
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Helices in H(uH,vH) are curves defined by uH=const., so curves in H(uH,vH) that are 
orthogonal to helices supply the orthogonality condition as follow

#�
�

� ��
�

" ��
�

� " #²���
�

� 0. 

Thus, we obtain
�
�

� � - #�
�

�

�
�

� " #�
��

�
" %, 

where c is constant. Hence if we put

�.
�

� �
�

" - #�
�

�

�
�

� " #�
��

�
, 

then curves orthogonal to helices are given by vH = const..Substituting the equation
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into the line element , we have
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(4) becomes

                                          �'
�

� � ��2
�

� " 5
�

� ��2
�

���.
�

� .                       (5)

On the other hand, the rotational surface
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has the line element
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then (6) becomes

                                              
�'

�

� � ��2
�

� " 5
�

���2
�

���.
�

�.     
                                  (7) 

Comparing (5) with (7), if we take  

�2
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� �2
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�, 
then we have an isometry between H(uH,vH) and R(uR,vR). Therefore, it follows that
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and we get
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this completes the proof.

Corollary 1. Let f(u) = u, φ(u)=0,  in generalized Bour’s theorem. It is easily seen the 
results of the isometric surfaces in Ikawa (2000).

Example 1. A helicoidal surface 

 ��, �� � ��²%&' �, �²'() �, �³ " #�� 

is isometric to the rotational surface
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�u⁴ � a² cos �v � � 3au²
u⁴ � a² du�

�u⁴ � a² sin �v � � 3au²
u⁴ � a² du�

� �4a²u² � 9u⁸
u⁴ � a² du

!
"
"
"
"
#

 

by generalized Bour’s theorem, where u, a ∈ ℝ\{0} and 0≤v<2π. Moreover, when 
a=0, these surfaces have the form of the rotational surface as follow

��²%&' �, �²'() �, �³�. 
Following theorem called “Theorema Egregium”(Latin: “Remarkable Theorem”) 

was published by German Mathematician C.F. Gauss in 1827. It is one of the great 
discoveries of nineteenth-century (Kühnel, 2006).
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Theorem 2. (Gauss’ Theorema Egregium). The Gaussian curvature K of a 
2-dimensional surface element  f:U→ ℝ 3 of class depend only on the first fundamental 
form (and is consequently an intrinsic quantity of the surface).

The mean curvature H does not depend only on the first fundamental form. For 
example, the cylinder and the plane have the same fundamental form, but have H≠ 0 
and H=0, respectively. Gauss ‘Theorema Egregium can be stated in the language of 
isometries:

Theorem 3. If  I:M→M*is an isometry (and surfaces are locally isometric), then the 
Gausssian curvatures at corresponding points are equal. That is,

;�<� � ;����<�� 

for all point p in M.

Therefore, we give an example for the truth of Theorem 1 as follows.

Example 2. Let f(u) = u and φ(u)=0 in Theorem 1, then the right helicoid

                                                                                                              ��, �� � ��%&' �, �'() �, #��                  �8� 

is isometric to the catenoid

$��, �� � >?�² " #² %&' �,   ?�² " #² '() �,   # @&A B� " ?�² " #²CD,     �9� 

where, a ∈ ℝ\{0}, 0≤v<2π. The coefficients of the first and second fundamental forms 
of these surfaces are

F
���,
�

� 1 � F
���,
�

, 
G
���,
�

� 0 � G
���,
�

, 
H
���,
�

� �² " #² � H
���,
�

, 
I
���,
�

� 0, J
���,
�

� � #
√�� " #�

, L
���,
�

� 0, 

I
���,
�

� � #
�� " #�

, J
���,
�

� 0, L
���,
�

� #. 

Hence, the surfaces have

IL � J� � � #�

�� " #�
. 

So, the Gaussian curvatures of the right helicoid and the catenoid are
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;
���,
�

� � #�

��� " #��� � ;
���,
�

. 

Corollary 2. If I:H(u,v)→R(u,v) is an isometry (and surfaces are locally isometric), 
then the Gausssian curvatures at corresponding points are equal, and

;
�

�<� � �³�M�MM � #²
��² " #² " �²�M��� � ;

�
���<�� 

for all p point in H.

THE GAUSS MAP

In this section, we prove the relations among the isometric surfaces by generalized 
Bour’s theorem.

Theorem 4. Let a helicoidal and a rotational surface be isometrically related by 
generalized Bour’s theorem. If these two surfaces have the same Gauss map, then a 
pair of two surfaces is

    ��, �� � �����%&' �, ����'() �, ���� " #��                      (10)

and

 

      $��, �� �

N
OO
OO
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?�� " #� %&' /� " - #��

�� " #�
��0

?�� " #� '() /� " - #��
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Q #RA%&'S �?�� " #�

Q �
T
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V

,           (11)

where

     

���� � ��� � 	� log 
���� � 	� � ��� � 	� � ��
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�² � 	² � �²� � �,     

 f = f (u) is a differentiable function, u,a,b ∈ ℝ\{0} and 0≤v<2π.
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Proof.  First we consider the helicoidal surface (10). Differentiating  Hu and Hv , we 
obtain
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� W
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X ,    
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By virtue of the first and second fundamental forms
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 , 

the Gauss map and the mean curvature of the helicoidal surface are

  

              

�
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� 1
?��� " #����� " �����

W
#�� '() � � ��� %&' �

�#�� %&' � � ��� '() �
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              Y�
� Z���

[��� " #����� " �����\�/�  ,                              (13)

where

Z���: � ������ � ����� � #����� " 2#������M " �²��� " ��³�M " #²��M��MM.         �14�
�

Next, we calculate the Gauss map eR and the mean curvature HR of the rotational 
surface (2). Since
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the Gauss map of the rotational surface is

�
�

� 1
?��� " #����� " �����

N
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P
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��M T
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Using the coefficients of the second fundamental form, by the straight calculation, the 
mean curvature of the rotational surface is

 

    
Y

�
� ����Z���

2 [��� " #����� " �����\�?�� " #�?�#���� " ������  ,              �16� 

where Φ (u) is the function in (14).

Now, suppose that the Gauss map eH is identically equal to eR .

If φ' = 0, then the helicoidal surface reduces to right helicoid and the mean 
curvature of the rotational surface is identically zero. Hence, the rotational surface is 
the catenoid and the function φR(uR) of (2) is φR(uR)=bargcosh(�

�

) in (11) , where b is 
a constant. Comparing this function and the third element of (2), we have

Q#RA%&'S �?�² " #²
Q � � - #��

?�� " #�

��. 

By differentiating this equation, it follows that
Q�

?�² " #² � Q² � #. 

Therefore, we have a = b . Next, we suppose φ' ≠ 0. Comparing  eH and eR, we have

#RA�#)S /#��

���
0 � - #��

�� " #�
��. 
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Differentiating this equation, we obtain

��²��� � �³�MM � #²��MM " 2#²�����M " �²��� " ��³�M " #²��M��MM � 0.          �17� 

This equation means Φ(u)=0 in (13) and (16). So, the helicoidal surface and the 
rotational surface are minimal surfaces. Hence, again, the rotational surface  reduces 
to the catenoid. Then, it follows that

� ������	 
��² � �²
� � � � ������� � ������

�� � ��

��. 

Using this eqution, we can find the profile curve φ of the helicoidal surface. Then, we have

�� � √Q� � #�?�� " #���

�?�� " #� � Q�

. 

To solve this this differential equation, we put

�: � � �² � �²
�² � �² 	 
²  ,    
: � �
² 	 �². 

Then, it folows that

� � ���� ��
��²�² 	 
²��1 
 �²� ��. 

This completes the proof.
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تعميم مبرهنة بور 

*إرهان غولر ، **يوسف يالي
*قسم الرياضيات - كلية العلوم - جامعة بارتي - بارتي - تركيا
** قسم الرياضيات - كلية العلوم - جامعة أنقرة - أنقرة - تركيا

خلاصة
نقدم في هذا البحث السطوح الكلاسيكية المتقايسة الأصغرية اللولبية والدورانية، وذلك   
نقوم  ذلك،  على  زيادة  الأبعاد.  الثلاثي  الإقليدي  الفضاء  في  بور  لمبرهنة  تعميم  باستخدام 

بدراسة خاصة الأصغرية ونحصل على نفس تطبيق غاوس للسطوح.
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