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Generalized Bour’s theorem
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ABSTRACT

We give the classical isometric minimal helicoidal and rotational surfaces using generalized
Bour’s theorem in Euclidean 3-space. Furthermore, we investigate the minimality and have
same Gauss map of the surfaces.
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INTRODUCTION

Theory of surfaces in three dimensional Euclidean and Minkowskian spaces have been
studied for a long time and many examples of such surfaces have been discovered.
Many nice books have been published, such as Do Carmo (1976), and Kiihnel (2006).

In classical surface geometry in Euclidean space, it is well known that the right
helicoid (resp. catenoid) is the only ruled (resp. Rotational or surface of revolution)
surface which is minimal. If we focus on the ruled (helicoid) and rotational characters,
we have Bour’s theorem (Bour, 1862).

Ikawa (2000) determine pairs of surfaces by Bour’s theorem with the additional
condition that they have the same Gauss map in Euclidean 3-space. About helicoidal
surfaces in Euclidean 3-space, Do Carmo & Dajczer (1982), prove that, by using
a result of Bour (1862), there exists a two-parameter family of helicoidal surfaces
isometric to a given helicoidal surface.

Some relations among the Laplace-Beltrami operator and curvatures of the
helicoidal surfaces in Euclidean 3-space are shown by Giiler et a/. (2010). In addition,
they give Bour’s theorem on the Gauss map and some special examples.

Ji & Kim (2013) prove that, in Minkowski 3-space, a minimal helicoidal surface with
Gauss curvature K has an isometric minimal rotational surface ifand only if K <0. Moreover,
they show that a timelike right helicoid does not have an isometric minimal rotational
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surface. On another hand, Martinez et al. (2013) give a complete classification of the
helicoidal flat surfaces in the hyperbolic 3-space in terms of meromorphic data as well
as by means of linear harmonic functions.

In this paper, we give the generalized Bour’s theorem in Euclidean 3-space. In
the following section, we recall some basic notions of the Euclidean geometry and
the reader can find a definition of helicoidal surface. Isometric helicoidal surface and
rotational surface are obtained, and Gauss’Theorema Egregium is given in section
which follows next. In the last section, properties of the isometric surfaces, that have
the same Gauss map and the minimality, are investigated.

PRELIMINARIES

In the rest of this paper we shall identify a vector (a,b,c)' with its transpose. In this
section, we will obtain the rotational and helicoidal surfaces in Euclidean 3-space.The
reader can find basic elements of differential geometry in Do Carmo (1976).

Now, we define the rotational surface and helicoidal surface in [E3. For an open
interval ICR , let y : I>IT be a curve in a plane IT in R* , and let £ be a straight line
in [ . A rotational surface in E? is defined as a surface rotating a curve y around a line
£ (these are called the profile curve and the axis, respectively). Suppose that, when
a profile curve y rotates around the axis ¥, it simultaneously displaces parallel lines
orthogonal to the axis ¥, so that the speed of displacement is proportional to the speed
of rotation. Then the resulting surface is called the helicoidal surface with axis € and
pitch ae R\{0}.

We may suppose that ¢ is the line spanned by the vector. The orthogonal matrix
which fixes the above vector is

cosv —sinv 0
A(w) =|sinv cosv 0], vER
0 0 1

The matrix 4 can be found, by solving the following equations simultaneously:
Al = £, A'A = AAY =I5, detA = 1.

When the axis of rotation is #, there is an Euclidean transformation by which the
axis is ¢ transformed to the z-axis of R?. Parametrization of the profile curve is given by

y(u) = (f(w),0,d(u)),

where f(u), J(u): ICR—R are differentiable functions for all ue/ . A helicoidal surface
in 3-Euclidean space which is spanned by the vector with pitch, as follows:

H(u,v) = A(w) - y(u) + av(0,0,1).



Generalized Bour’s theorem  §]

When a=0, the surface is just a rotational surface as follows:
R(u,v) = (f(w)cos v, f(w)sin v, p(u)).
For a surface X(u,v), the coefficients of the first and second fundamental forms, the

Gauss map and the other objects are defined in Do Carmo (1976) and Kiihnel (2006).

GENERALIZED BOUR’S THEOREM

In this section, helicoidal and rotational surfaces are going to generalized surfaces, by
Bour’s theorem in three dimensional Euclidean space.

Theorem 1. (Generalized Bour’s Theorem). A helicoidal surface

H(u,v) = (f(w)cos v, f(u)sin v, p(u) + av) (1)

is locally isometric to a rotational surface
ag’
Vf?+a?cos (v + mdu)
Jf2+a?sin v+fL¢),du
R(u,v) = 2 + a2 , (2)

f j(af’)z e

f2+a2

where f'and ¢ are differentiable functions, 0 < v < 2w and u, acR\{0} .

Proof. We assume that the profile curve is
Yu(uu) = (fu(un),0, ¢y (uy)).

Since the helicoidal surface is given by rotating the profile curve y around the axis
£=(0,0,1) and simultaneously displacing parallel lines orthogonal to the axis £, so
that the speed of displacement is proportional to the speed of rotation, we have the
following representation of the helicoidal surface

H(uy,vy) = (fu(ug)cosvy, fu(uy)sinvy, ¢y (uy) + avy),

where u,, acR\{0} and 0< v, <2m. The line element of the helicoidal surface as above
is given by

dsi = (fi? + ¢ip)duf + 2adyduydvy + (ff +a®dvi.  (3)
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Helices in H(u,,v,) are curves defined by u, =const, so curves in H(u,,

orthogonal to helices supply the orthogonality condition as follow
appduy + (ff +a®)dvy = 0.

Thus, we obtain

ady

vy = — duH+c

fif +

where ¢ is constant. Hence if we put
!
ady
f2

171.1 = UH duH,

v,,) that are

then curves orthogonal to helices are given by v, = const..Substituting the equation

agy

dUH = dﬁH —W

duy

into the line element , we have

fii pii
f2

dsh = < + >duH + (f# + a®)dvh.

Setting

fH

Uy: —f fiit fH duy, ky(uy):= "sz+a2,

(4) becomes

dsf = dud + ki (i) dvs.

On the other hand, the rotational surface

R(ug,vg) = (fr(ug)cosvy, fr(ug)sinvg, pr(ug)),

has the line element

dsi = (fg + ¢p)duf + fi dvg.

Again, setting

aR::f/ +¢ dug, kg(ug):= fr, Ug:i= Vg,

4)

®)

(6)
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then (6) becomes

ds = dub + ki (ug)dv3.
(7)
Comparing (5) with (7), if we take

Uy = uUg, Uy = Vg, kH(aH) = kR(ﬁR)r

then we have an isometry between H(u,,v,) and R(u,,v,). Therefore, it follows that

] duR;

N2 N2
[ i = [ [22GE7,,,

and we get

this completes the proof.

Corollary 1. Let f{u) = u, d(u)=0, in generalized Bour’s theorem. It is easily seen the
results of the isometric surfaces in Ikawa (2000).

Example 1. A helicoidal surface
H(u,v) = (u*cos v,u’sin v,u* + av)

is isometric to the rotational surface

— 3au®
vu*+a“cos|v+ | /——du

u“+a

ST s 3au®
Rwv) =| YW +a’sin{v+ ——du
4a”u” + 9u

u* + a®
| f 2u2 8 d |
————du
\ u* + a® /
by generalized Bour’s theorem, where u, a € R\{0} and 0<v<2m. Moreover, when
a=0, these surfaces have the form of the rotational surface as follow

(u*cos v, u?sin v, u).

Following theorem called “Theorema Egregium”(Latin: “Remarkable Theorem”)
was published by German Mathematician C.F. Gauss in 1827. It is one of the great
discoveries of nineteenth-century (Kiihnel, 2006).
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Theorem 2. (Gauss’ Theorema Egregium). The Gaussian curvature K of a
2-dimensional surface element f>U— R* of class depend only on the first fundamental
form (and is consequently an intrinsic quantity of the surface).

The mean curvature H does not depend only on the first fundamental form. For
example, the cylinder and the plane have the same fundamental form, but have H= 0
and H=0, respectively. Gauss ‘Theorema Egregium can be stated in the language of
isometries:

Theorem 3. If I:M—Mis an isometry (and surfaces are locally isometric), then the
Gausssian curvatures at corresponding points are equal. That is,

K@) = K"(I(p)

for all point p in M.
Therefore, we give an example for the truth of Theorem 1 as follows.
Example 2. Let f{u) = u and ¢(u)=0 in Theorem 1, then the right helicoid
H(u,v) = (ucos v,usin v, av) (8)

1s isometric to the catenoid

R(u,v):(\/u2+a2cosv, Jut+a?sinv, alog(u+ u2+a2)), 9

where, a € R\{0}, 0<v<27. The coefficients of the first and second fundamental forms
of these surfaces are

EH(u,v) =1= ER(u,v)'
FH(u,v) =0= FR(u,v)'

Gruwy = U2+ a* = Gpyw),

a

Ly =0,  Mpup = BN Nu@p) =0,
a

Lrauw) = T a Mpauwyy =0,  Npaw) = a

Hence, the surfaces have

a2

IN-M?= ———
u? + a?

So, the Gaussian curvatures of the right helicoid and the catenoid are
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Cl2

KH(u,v) = - (uz + az)z = KR(u,v)-

Corollary 2. If 7:H(u,v)—R(u,v) is an isometry (and surfaces are locally isometric),
then the Gausssian curvatures at corresponding points are equal, and

¢¢Il
(u? + a® +uq,’)

KH(p) = 12)2 = KR(I(p))

for all p point in H.

THE GAUSS MAP

In this section, we prove the relations among the isometric surfaces by generalized
Bour’s theorem.

Theorem 4. Let a helicoidal and a rotational surface be isometrically related by
generalized Bour’s theorem. If these two surfaces have the same Gauss map, then a
pair of two surfaces is

H(u,v) = (f(w)cos v, f(u)sin v, p(u) + av) (10)

and
e e
R(u,v) = msin<v+ ]% > , (11)
where

B \/fz—a2+\/f2+a2—
¢(u) =+/b% —a?log e - Jras

b2_a2

a

—a arctan

f=f(u) is a differentiable function, u#,a,b € R\{0} and 0<v<2n.
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Proof. First we consider the helicoidal surface (10). Differentiating H and H , we

obtain
"cosv —f'sinv —fcosv
Huu = "sinv , Huv = f’cos v |, va = —fsin v |
¢II 0 0

By virtue of the first and second fundamental forms

Ey=f?+¢"? Fy=a¢d', Gy=f*+a’
fQ' "+ 19"

H:

P+ a2+ 42
af'’?
My = — ,
NGO IRy T
__ fie'
T+

the Gauss map and the mean curvature of the helicoidal surface are

ag'sinv — f¢' cosv

1 ' "o
RN Ty W r ey
®(u)
M = [T+ )

where

Pu): = (f2f2 = ff" —a*ff" +2a° )¢ + f9"° + (Ff + &ff)e".  (14)
Next, we calculate the Gauss map e, and the mean curvature H, of the rotational

surface (2). Since

ff' ag’ ag’
\/mcos (v + fz s du) f2 = a2 sin (v + ffz s du)
ff' ag’ ag’
R, = msm<v+ff2+a2du>+ + cos<v+ff2+a2du> ,

(af)* + (fe)?
f2 + a?
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/—Vf2+azsin<v+f]#¢)’azdu>\
Vf2+a2cos<v+fj#¢lazdu> '

0

R, =

the Gauss map of the rotational surface is

1
= 1 . 5
R radf T e ,/(af’)2+(f¢’)25m<v+f %‘@ "

ff

Using the coefficients of the second fundamental form, by the straight calculation, the
mean curvature of the rotational surface is

_ f2o' @)
2[(f2 +a®)f'2 + 20212/ + a?\[(af )2 + (fp))?

(16)

Hp

where @ (u) is the function in (14).
Now, suppose that the Gauss map e,, is identically equal to e, .

If ¢" = 0, then the helicoidal surface reduces to right helicoid and the mean
curvature of the rotational surface is identically zero. Hence, the rotational surface is
the catenoid and the function ¢,(u,) of (2) is ¢,(u,) =bargcosh(u—R) in (11) , where b is
a constant. Comparing this function and the third element of (257, we have

=

af’
bargcosh du.
/fZ + a2
By differentiating this equation, it follows that
bf

2 2 _ ;&
f +a“—»b

Therefore, we have a = b . Next, we suppose ¢'# 0. Comparing e, and e,, we have
ranh af’ ap’ p
argtan -— | = - au.
g fo' f?+a?
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Differentiating this equation, we obtain
(fo/Z _ f3fll _ afoll + 2a2f12)¢l + f2¢l3 + (f3fl + afol)¢ll =0. (17)

This equation means ®(u)=0 in (13) and (16). So, the helicoidal surface and the
rotational surface are minimal surfaces. Hence, again, the rotational surface reduces
to the catenoid. Then, it follows that

W) | (af )+ (@)

b B 2+ a?

b argcosh<

Using this eqution, we can find the profile curve ¢ of the helicoidal surface. Then, we have
Vb2 —a%\[f2 + a*f’
f / FZ + a? — b2 '

To solve this this differential equation, we put

¢’ =

f*+a? e
-, = —a°.
fA+a*—b?
Then, it folows that

tZ
| Feraa-o

This completes the proof.
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