Minimum total irregularity index of tricyclic graphs

Hassan Ahmed*, Akhlaq Ahmad Bhatti
Dept. of Sciences and Humanities
National University of Computer and Emerging Sciences, b-block, Faisal Town, Lahore, Pakistan
*Corresponding author: hassanms5664@gmail.com

Abstract

The quantitative characterization of the topological structures of irregular graphs has been demonstrated through several irregularity measures. In the literature, not only different chemical and physical properties can be well comprehended but also quantitative structure-activity relationship (QSPR) and quantitative structure-property relationship (QSAR) are documented through these measures. A simple graph $G=(V, E)$ is a collection of V and E as vertex and edge sets respectively, with no multiple edges or loops. Keeping in view the importance of various irregularity measures, in (Abdo et al., 2014a) the authors defined the total irregularity of a simple graph $G=G(V, E)$ as $$
\operatorname{irr}_{t}(G)=\frac{1}{2} \sum_{u, v \in V}\left|d_{G}(u)-d_{G}(v)\right|,
$$ where $d_{G}(u)$ indicates the degree of the vertex u, where $u \in V(G)$. In this paper, we have determined the first minimum, second minimum and third minimum total irregularity index of the tricyclic graphs on the n vertices.

Keywords: Irregularity; topological index; total irregularity index; λ-transformation; tricyclic graphs.

1. Introduction

Let $G=(V, E)$ be a graph with edge and vertex sets as denoted by E and V respectively. The number of edges attached on a vertex v of a graph G is the degree $d_{G}(v)$ of vertex v. If $V=\left\{v_{i}\right\}_{i=1}^{n}$, then sequence $\left(d_{1}, d_{2}, d_{3}, \ldots d_{n}\right)$ is called degree sequence of G (Bondy \& Murty, 1976), where d_{i} is the degree of $i^{\text {th }}$ vertex of G. We assume the sequence $\left(d_{G}\left(v_{i}\right)\right)_{i=1}^{n}$ is in decreasing order $i . e$. for $i<z,\left(d\left(v_{z}\right) \leq d\left(v_{i}\right)\right)$. For convenience, we will use $\mathcal{D S}$ as the notation for degree sequence of a graph G.
With recent advances in graph theory in different areas, chemical graph theory is one of the most active area of research. Chemical graph theory or the theory of chemical graphs is a sub-branch of mathematical chemistry that describes non-trivial graph theory applications for solving molecular problems where the chemical structure is transformed into a mathematical structure. A representation of an object only provides information on the number of elements it
comprises, and its connectivity is defined as the graph's topological representation.
A topological index is a numerical value that is used primarily for predicting chemical and physical properties of various compounds and structures. A molecular graph is called a topological representation of a molecule. Significant number of topological indices during the last two decades have been documented. Many existing topological indices based on degrees can be classified as BID index, whose general form is

$$
\begin{equation*}
B I D(G)=\sum_{u v \in E} f\left(d_{u}, d_{v}\right), \tag{1}
\end{equation*}
$$

where $u v$ is the edge connecting vertices u and v of the graph. There are numerous indices introduced such as the ABC index, Zagreb index, Randic index, etc. Some information can be found in the articles ((Akbar \& Akhlaq, 2016), (Akbar \& Akhlaq, 2017), (Hassan et al., 2019) cited therein. Currently, the study of such types of indices has become a very active research area in the theory of chemical graphs. One such area is the quantitative analysis of different topological structures of irregular graphs.
The graph that has the same degree of all its vertices is regular, otherwise, it is irregular. Several approaches have been proposed which characterize the irregularity of a graph. Albertson in (Albertson, 1997) introduced $\left|d_{G}(u)-d_{G}(v)\right|$ as an imbalance of an edge $e=u v \in E$ and defined

$$
\begin{equation*}
\operatorname{irr}(G)=\sum_{u v \in E}\left|d_{G}(u)-d_{G}(v)\right| \tag{2}
\end{equation*}
$$

as an irregularity of a graph G. More results about the above-mentioned concepts are mentioned in ((Dimitrov \& Skrekovski, 2015), (Abdo et al., 2014b), (L.H. You et al., 2014a), (L.H. You et al., 2014b), (Henning \& Rautenbach, 2007), (Albertson, 1997), (Hensen \& Mélot, 2005)). Taking inspiration from the structure and significance of Equation 2, a new irregularity measure was introduced by the authors in (Abdo et al., 2014a) termed the total irregularity index, defined as

$$
\begin{equation*}
i r r_{t}(G)=\frac{1}{2} \sum_{u, v \in V}\left|d_{G}(u)-d_{G}(v)\right| \tag{3}
\end{equation*}
$$

Even though both graph invariants compute irregularity, the irregularity is captured by one parameter, i.e. the vertex degree, but in some respects the later is preferable to the old one. For instance, equation (3) has the known characteristic of an irregularity computation that the graphs with identical total irregularity have the same $\mathcal{D S}$, whereas equation (2) does not possess this property. Clearly, equation (3) is an upper bound of equation (2). In (Dimitrov \& Skrekovski, 2015), the relationship between $\operatorname{irr}(G)$ and $\operatorname{irr}_{t}(G)$ for the connected graph on n vertices have been derived, that is, $\operatorname{irr}_{t}(G) \leq n^{2}\left\{\frac{\operatorname{irr}(G)}{4}\right\}$. Furthermore, for any tree, they also computed that $\operatorname{irr}_{t}(T) \leq(n-2) \operatorname{irr}(T)$. In (Abdo et al., 2014a) the bounds on $\operatorname{irr}_{t}(G)$ on cycle, path, and the star graph, denoted as C_{n}, P_{n}, and S_{n}, on the n vertices respectively, were computed. They also proved that the graph with maximal total irregularity on n vertices between all the trees is the star graph. Following result is due to (Abdo et al., 2014a).

Theorem 1.1. Let G be an n-vertex simple and undirected graph. Then
(i) $\operatorname{irr}_{t}(G) \leq\left(2 n^{3}-3 n^{2}-2 n+3\right)$.
(ii) $\operatorname{irr}_{t}(G) \leq(n-1)(n-2)$ if G is a tree, with equality iff $G \cong S_{n}$.

The authors in (L.H. You et al., 2014a) and (Hensen \& Mélot, 2005) examined the total irregularity of the unicyclic and bicyclic graphs and defined graphs with $n^{2}-n-6$ as maximum total irregularity among all the unicyclic graphs and graphs with $n^{2}+n-16$ as maximum total irregularity among all bicyclic graphs on n vertices respectively. By using the Gini index in (M. Eliasi, 2015), the author obtained the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices. Recently, the authors in (F. Gao et al., 2021) characterized trees T of order n and triangulation graphs with respect to difference of Mostar index and irregularity of graphs. For more related research, readers are requested to see (Xu \& Das, 2016).
In Section 2, we have described an important transformation in the current note to examine the minimum total irregularity of tricyclic graphs. We have also determined first, second and third minimum total irregularity of tricyclic graphs on n vertices in Section 3. Lastly, summary of the note is mentioned in Section 4.

2. λ-Transformation

An important transformation in this section is explained to explore the minimum total irregularity of graphs. Before introduction of transformation, let us define induced subgraph and hanging tree (Yingxue Zhu et al., 2014).
Let G be an n-vertex graph then a subset of the vertices of G having edges incident on the vertices in the subset as endpoints is known as vertex-induced or simply induced subgraph of G. Let T be induced sub-tree of G, if G can be obtained back by connecting T to a vertex of $G \backslash T$. Then T is a hanging tree of G. Now we introduce the λ-Transformation as:
λ-Transformation: Let G be a simple graph with at least two leaves. Let u be a vertex of $d_{G}(u) \geq 3$ and T be hanging tree of G connecting to u with $|V(T)| \geq 1$, and v be the leaf of G with $v \notin T$. By removing T from u and connecting it to the vertex v and the graph obtained be denoted as G^{*}. Then this transformation from vertex u to v is a λ-transformation on G (see Figure 1).

Fig. 1. G and G^{*} (obtained from λ-Transformation)
The following result is due to (Yingxue Zhu et al., 2014), after λ-Transformation and it will be used in the main results as it will help us to compute total irregularity index of tricyclic graphs.

Lemma 2.1. (Yingxue Zhu et al., 2014) Let G be an n - vertex graph then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(G^{*}\right)$, where G^{*} is the graph obtained from G, after λ-Transformation from u to v.

Proof. Let $G=(V, E)$, consider the vertex set $V=V^{1} \cup V^{2} \cup V^{3}$ such that

$$
\begin{gathered}
V^{1}=\left\{x \mid d_{G}(x) \geq d_{G}(u), x \in V\right\} \\
V^{2}=\left\{x \mid d_{G}(x)=1, x \in V\right\} \\
V^{3}=\left\{x \mid 2 \leq d_{G}(x)<d_{G}(u), x \in V\right\}
\end{gathered}
$$

Clearly, $u \in V^{1}, v \in V^{2}$. Let $\left|V^{1}\right|=j,\left|V^{2}\right|=k,\left|V^{3}\right|=l$, then $j \geq 1, k \geq 2$ and $j+k+l=n$. Note by λ-transformation, the degrees of v and u become $d_{G^{*}}(v)=d_{G}(v)+1=2, d_{G^{*}}(u)=$ $d_{G}(u)-1$ and $d_{G^{*}}(w)=d_{G}(w)$ for any $w \in V \backslash\{u, v\}$. Let $U=V \backslash\{u, v\}$. Then

$$
\begin{aligned}
& \qquad\left|d_{G^{*}}(u)-d_{G^{*}}(v)\right|-\left|d_{G}(u)-d_{G}(v)\right|=-2, \\
& \qquad \sum_{w \in U}\left(\left|d_{G^{*}}(u)-d_{G^{*}}(w)\right|-\left|d_{G}(u)-d_{G}(w)\right|\right)=(j-1)-(l+k-1)=j-l-k, \\
& \sum_{w \in U}\left(\left|d_{G^{*}}(v)-d_{G^{*}}(w)\right|-\left|d_{G}(v)-d_{G}(w)\right|\right)=-(j-1)-l+(k-1) \\
& =-j-l+k . \\
& \text { Thus, we have } \operatorname{irr}_{t}\left(G^{*}\right)-i r r_{t}(G)=-2+(j-l-k)+(-j-l+k)=-2 l-2<0 .
\end{aligned}
$$

Remark. Let λ-transformation be performed on G from the vertex u to v and G^{*} be the resulting graph. Then by λ-transformation and Lemma 2.1, we have $d_{G^{*}}(u)=d_{G}(u)-1 \geq 2$ and $d_{G^{*}}(v)=d_{G}(v)+1=2$. If $d_{G^{*}}(u) \geq 3, G^{*}$ has at least two leaves, and there's a hanging tree of G^{*} connecting to vertex u, we can repeat λ-transformation from vertex u on G^{*}, till the degree of u equals 2 , or the resulting graph consists of just one leaf, or no hanging tree connects to vertex u.

We can see from the above arguments that λ-transformation can be achieved on G iff three conditions hold mentioned below:
(i) There exists a vertex u with degree greater or equal to 3;
(ii) There is a hanging tree of G, connecting to vertex u;
(iii) G has at least two leaves.

Following trivial result will be useful to establish our main results.
Lemma 2.2. ((Bondy \& Murty, 1976)) Let $G=(V, E)$ be a graph and $|E|=m$. Then $\sum_{v \in V} d_{G}(v)=2 m$.

In the following section, we establish the main results by describing different classes in tricyclic graphs on n vertices.

3. The Total Irregularity of Tricyclic Graphs

A connected (n, m) graph G is said to be a tricyclic graph if $m=n+2$. Within this section, the extremal graphs are described by computing, the first, second and third minimum total irregularity of n-vertex tricyclic graphs.
Tricyclic graphs can be divided into three types: $\xi-$ graph, $\Omega-$ graph, and $\vartheta-$ graph .
The class of ξ - graph, denoted by $\xi(p, q, r, s, i)$ contains three types of tricyclic graphs (see Figure 2). The first one is obtained from three cycles C_{p}, C_{q}, and C_{r} having one common vertex (say u), between C_{p} and C_{q}, and one (say v), between C_{q} and C_{r} (i.e. having no paths between
the cycles see Figure 2(a)). It is denoted by $\xi_{1}(p, q, r, s, i)=\xi_{1}$. The second is obtained having one common vertex u between C_{p} and C_{q} a path between C_{q} and C_{r} to any vertex $w \in V \backslash u$ (see Figure 2(b). It is denoted by $\xi_{2}(p, q, r, s, i)=\xi_{2}$. Lastly, third is obtained by attaching two disjoint paths P_{s} and P_{i} between C_{p} and C_{q} and one between C_{q} and C_{r} respectively (see Figure 2(c)), where $p, q, r \geq 3$. It is denoted by $\xi_{3}(p, q, r, s, i)=\xi_{3}$.

Fig. 2. Tricyclic graphs: (a) $\xi_{1}(p, q, r, s, i)$; (b) $\xi_{2}(p, q, r, s, i)$; (c) $\xi_{3}(p, q, r, s, i)$
An $\Omega-g r a p h$ denoted by $\Omega(p, q, r, s, i, y)$, contains four types of tricyclic graphs (see Figure 3 and 4). The first graph, denoted by $\Omega_{1}=\Omega_{1}(p, q, r, s, i, y)$, with only one common vertex, (say u), attached to C_{p}, C_{q} and C_{r} (see Figure 3(a)). The second graph, denoted by $\Omega_{2}=\Omega_{2}(p, q, r, s, i, y)$ is obtained from Ω_{1} by attaching a path P_{y} of length $y \geq 1$ between vertex u and C_{r} (see Figure 3(b)). The third graph, denoted by $\Omega_{3}=\Omega_{3}(p, q, r, s, i, y)$, obtained from Ω_{2} by attaching a path P_{i} of length $i \geq 1$ between vertex u and C_{q} (see Figure 4(a)). Lastly, the fourth graph, denoted by $\Omega_{4}=\Omega_{4}(p, q, r, s, i, y)$ is obtained from Ω_{3} by attaching a path P_{s} of length $s \geq 1$ between vertex u and C_{p} (see Figure 4(b)), where $p, q, r \geq 3$.

Fig. 3. Tricyclic graphs: (a) Ω_{1}; (b) Ω_{2}
A ϑ - graph, denoted by $\vartheta(p, q, r, s, i)$ contains four types of tricyclic graphs (see Figure 5). The first graph, denoted by $\vartheta_{1}=\vartheta_{1}(p, q, r, s, i)$, is a graph with three cycles (namely, $\left.C_{p}, C_{q}, C_{r}\right)$ on $p+q+r-s-i$ vertices, having $(s+i)$ vertices as common with each other (see Figure 5(a)). In the second case, the graph denoted by $\vartheta_{2}=\vartheta_{2}(p, q, r, s, i)$, is obtained

Fig. 4. Tricyclic graphs: (a) Ω_{3}; (b) Ω_{4}
from ϑ_{1} by removing C_{r} from C_{q} and attaching it to one of the end vertices $\left\{f_{1}, f_{s}\right\}$ (see Figure $5(\mathrm{~b})$). In the third case, the graph is obtained from ϑ_{1} by attaching a path P_{r-i} from one of the end vertices $\left\{e_{1}, e_{p-s}, h_{1}, h_{i}\right\}$ with a vertex of disjoint cycle C_{r} (see Figure 5(c)), let it be denoted by $\vartheta_{3}=\vartheta_{3}(p, q, r, s, i)$. Lastly, the graph denoted by $\vartheta_{4}=\vartheta_{4}(p, q, r, s, i)$ is obtained by attaching a path between the cycle C_{r} and one of the end vertices $\left\{f_{1}, f_{s}\right\}$ (see Figure 5(d)), where $p, q, r \geq 3$ and $s, i \geq 2$.

Fig. 5. Tricyclic graphs: (a) ϑ_{1}; (b) ϑ_{2}; (c) ϑ_{3}; (d) ϑ_{4};

Let the set of all tricyclic graphs on n vertices be denoted by \mathcal{T}_{n}. As defined above \mathcal{T}_{n} is based on three types of graphs $\xi-$ graph, $\Omega-$ graphs, and $\vartheta-$ graph.

3.1. Graphs having minimum total irregularity in $\xi(p, q, r, s, i)$

In this section, we determine the minimum total irregularity of tricyclic graphs in $\xi(p, q, r, s, i)$. Let $\xi_{1}=\xi_{1}(p, q, r, s, i)$ having no paths (see Figure 2(a)), $\xi_{2}=\xi_{2}(p, q, r, s, i)$ with a one path P_{i} with length $i \geq 1$ (see Figure 2(b)) and $\xi_{3}=\xi_{3}(p, q, r, s, i)$ with two paths P_{s} and P_{i} with lengths $s, i \geq 1$ respectively (see Figure 2(c)).

Theorem 3.1. Let $n \geq 7, G \in \xi_{1}=\xi_{1}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-8$ and equality holds iff $(4,4,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(4,4,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-14$, with equality iff the $\mathcal{D S}$ of G is $(4,4,3,2,2, \ldots, 2,1)$.

Proof. We know that $\sum_{v \in V} d_{G}(v)=2(n+2)$ from Lemma 2.2. Let us divide the vertex set as follows,

$$
\begin{aligned}
j & =\left|\left\{x \mid d_{G}(x) \geq 3, x \in V\right\}\right|, \\
k & =\left|\left\{x \mid d_{G}(x)=1, x \in V\right\}\right|, \\
t & =\left|\left\{x \mid d_{G}(x)=\Delta_{G}, x \in V\right\}\right| .
\end{aligned}
$$

Since $G \in \xi_{1}=\xi_{1}(p, q, r, s, i)$, then $j \geq 2, k \geq 0,1 \leq t \leq j$ and $\Delta_{G} \geq 4$. Note $G \in \xi_{1}$ if $j=2, \Delta_{G} \geq 5$ or $j \geq 3$ so vertex u with $d_{G}(u) \geq 3$ exists and hanging tree of G which connects to u exists. We complete the proof by considering following cases:
Case 1. If $j=2$, then there are three subcases mentioned below:
Subcase (i): If $\Delta_{G}=4$, then $k=0$ and the $\mathcal{D S}$ is $(4,4,2,2, \ldots, 2)$ as $2(n+2)=\sum_{v \in V} d_{G}(v)=$ $8+2(n-2-k)+k$, then $\operatorname{irr}_{t}(G)=4 n-8$.
Subcase (ii): If $\Delta_{G}=5$, then $k=1$ and the $\mathcal{D S}$ is $(5,4,2,2, \ldots, 2,1)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v)=5+4+2(n-2-k)+k$, then $\operatorname{irr}_{t}(G)=6 n-10>6 n-14$.
Subcase (iii): If $\Delta_{G} \geq 6$, then $k \geq \Delta_{G}-4 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+4+$ $2(n-2-k)+k$ and λ-transformation can be done $(k-1)-$ times on G till the $\mathcal{D S}$ of the graph obtained becomes $(5,4,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{1}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{1}\right)=6 n-10>6 n-14$ by Lemma 2.1.
Case 2. Now if $j \geq 3$, then consider following subcases:
Subcase (i): If $j+\Delta_{G}=7$, then $j=3, \Delta_{G}=4,2 \leq t \leq 3$.
If $t=2$, then $k=1$ and the $\mathcal{D S}$ is $(4,4,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v)=$
$4+4+3+2(n-3-k)+k=11+2(n-3-k)+k$, so $\operatorname{irr}_{t}(G)=6 n-14$.
If $t=3$, then $k=2$ as $2(n+2)=\sum_{v \in V} d_{G}(v)=4 t+2(n-3-k)+k$, and λ-transformation can be done once on G so the $\mathcal{D S}$ of obtained graph is $(4,4,3,2,2, \ldots, 2,1)$. Let the obtained graph be denoted as F_{2}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{2}\right)=6 n-14$ by Lemma 2.1.
Subcase (ii): If $j+\Delta_{G} \geq 8$, then $k \geq \Delta_{G}+j-6 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$
$\Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)-$ times on G till the $\mathcal{D S}$ of graph obtained is $(4,4,3,2,2, \ldots, 2,1)$. Let the obtained graph be denoted as F_{3}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{3}\right)=6 n-14$ by Lemma 2.1.

Theorem 3.2. Let $n \geq 8, G \in \xi_{2}=\xi_{2}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-10$ and equality holds iff $(4,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(4,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-18$, with equality iff the $\mathcal{D S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$.

Proof. It is easy to see that $\sum_{v \in V} d_{G}(v)=2(n+2)$ from Lemma 2.2.
Let us divide the vertex set as,

$$
\begin{gathered}
j=\left|\left\{x \mid d_{G}(x) \geq 3, x \in V\right\}\right|, \\
k=\left|\left\{x \mid d_{G}(x)=1, x \in V\right\}\right|, \\
t=\left|\left\{x \mid d_{G}(x)=\Delta_{G}, x \in V\right\}\right| .
\end{gathered}
$$

Since $G \in \xi_{2}=\xi_{2}(p, q, r, s, i)$ then $j \geq 3, k \geq 0,1 \leq t \leq j$ and $\Delta_{G} \geq 4$.
Note $G \in \xi_{2}$ if $j=3, \Delta_{G} \geq 4$ or $j \geq 4$ so there exists a vertex u with $d_{G}(u) \geq 3$ and there exists a hanging tree of G which connects to u. We complete the proof by considering following cases:

Case 1. If $j=3$, then consider following subcases:
Subcase (i): If $\Delta_{G}=4$, then $k=0$ and the $\mathcal{D S}$ is $(4,3,3,2,2, \ldots, 2)$ as $2(n+2)=\sum_{v \in V} d_{G}(v)=$ $4+3+3+2(n-3-k)+k$, then $\operatorname{irr}_{t}(G)=4 n-10$.
Subcase (ii): If $\Delta_{G}=5$, then $1 \leq t \leq 3$
If $t=1$, then $k=1$ and $k=2$. For $k=1$ the $\mathcal{D S}$ is $(5,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3+3+2(n-3-k)+k$ and $\operatorname{irr}_{t}(G)=6 n-12>6 n-18$. For $k=2 \lambda$-transformation can be done on G once and the $\mathcal{D S}$ of the graph obtained becomes $(5,3,3,2,2, \ldots, 2,1)$. Let the obtained graph denoted by F_{4}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{4}\right)=$ $6 n-12>6 n-18$ from Lemma 2.1.
If $t \geq 2$, then $k \geq 3$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq 5+5+3+2(n-3-k)+k \lambda$-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of obtained graph becomes $(5,3,3,2,2, \ldots, 2,1)$. Let the obtained graph denoted by F_{5}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{5}\right)=6 n-12>6 n-18$ by Lemma 2.1.

Subcase (iii): If $\Delta_{G} \geq 6$, then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+$ $3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of obtained graph is $(5,4,2,2, \ldots, 2,1)$. Let the obtained graph be denoted as F_{6}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{6}\right)=6 n-10>6 n-14$ by Lemma 2.1.
Case 2. If $j \geq 4$, then consider following subcases:
Subcase (i): If $j+\Delta_{G}=8$, then $k=1$, and the $\mathcal{D S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, then $\operatorname{irr}_{t}(G)=6 n-18$.

Subcase (ii): If $j+\Delta_{G} \geq 9$, then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of obtained graph is $(4,3,3,3,2,2, \ldots, 2,1)$. Let the obtained graph be denoted as F_{7}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{7}\right)=6 n-18$ by Lemma 2.1.

Theorem 3.3. Let $n \geq 9, G \in \xi_{3}=\xi_{3}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-16$ and equality holds iff $(3,3,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(3,3,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-26$, with equality iff the $\mathcal{D S}$ of G is $(3,3,3,3,3,2,2, \ldots, 2,1)$.

Proof. It is easy to see that $\sum_{v \in V} d_{G}(v)=2(n+2)$ from Lemma 2.2.
Let us divide vertex set as below,

$$
\begin{aligned}
j & =\left|\left\{x \mid d_{G}(x) \geq 3, x \in V\right\}\right|, \\
k & =\left|\left\{x \mid d_{G}(x)=1, x \in V\right\}\right|, \\
t & =\left|\left\{x \mid d_{G}(x)=\Delta_{G}, x \in V\right\}\right| .
\end{aligned}
$$

Since $G \in \xi_{3}=\xi_{3}(p, q, r, s, i)$ then $j \geq 4, k \geq 0,1 \leq t \leq j$ and $\Delta_{G} \geq 3$.
Note $G \in \xi_{3}=\xi_{3}(p, q, r, s, i)$ if $j=4, \Delta_{G} \geq 3$ or $j \geq 5$ so there exists a vertex u with $d_{G}(u) \geq 3$ and there exists hanging tree of G which connects to u. We have completed the proof by considering the following cases:
Case 1. If $j=4$, then consider following subcases:
Subcase (i): If $\Delta_{G}=3$, then $k=0$ and the $\mathcal{D S}$ is $(3,3,3,3,2,2, \ldots, 2)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, then $\operatorname{irr}_{t}(G)=4 n-16$.
Subcase (ii): If $\Delta_{G}=4$, then $1 \leq t \leq 4$.
If $t=1$, then $k=1$. For $k=1$ the $\mathcal{D S}$ is $(4,3,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$ and $\operatorname{irr}_{t}(G)=6 n-18>6 n-26$.
If $t \geq 2$, then $k \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of obtained graph becomes $(4,3,3,3,2,2, \ldots, 2,1)$. Let the obtained graph denoted by F_{8}, thus $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{8}\right)=$ $6 n-18>6 n-26$ by Lemma 2.1.
Subcase (iii): If $\Delta_{G} \geq 5$,
then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+$ k and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D} \mathcal{S}$ of obtained graph is $(4,3,3,3,2,2, \ldots, 2,1)$. Let the obtained graph be denoted as F_{9}, thus $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{9}\right)=$ $6 n-18>6 n-26$ by Lemma 2.1.
Case 2. If $j \geq 5$, then consider the following subcases:
Subcase (i): If $j+\Delta_{G}=8$, then $k=1$, and the $\mathcal{D S}$ of G is $(3,3,3,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, then $\operatorname{irr}_{t}(G)=6 n-26$.

Subcase (ii): If $j+\Delta_{G} \geq 9$, then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of obtained graph is $(3,3,3,3,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{10}, then $\operatorname{irr}_{t}(G)>\operatorname{irr} r_{t}\left(F_{10}\right)=6 n-26$ by Lemma 2.1.
3.2. The graphs with minimum total irregularity in $\Omega-$ graph

In this section, we determine the first minimum, second minimum, and third minimum total irregularity of tricyclic graphs in $\Omega(p, q, r, s, i, y)$.

Theorem 3.4. Let $n \geq 7, G \in \Omega_{1}=\Omega_{1}(p, q, r, s, i, y)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-4$ and equality holds iff $(6,2,2, \ldots, 2)$ is the $\mathcal{D} \mathcal{S}$ of G.
(ii) If $(6,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-8$, with equality iff the $\mathcal{D S}$ of G is $(6,3,2,2, \ldots, 2,1)$.

Proof. It is obvious that $\sum_{v \in V} d_{G}(v)=2(n+2)$ from Lemma 2.2.
Let us consider the vertex set as,

$$
\begin{aligned}
j & =\left|\left\{x \mid d_{G}(x) \geq 3, x \in V\right\}\right|, \\
k & =\left|\left\{x \mid d_{G}(x)=1, x \in V\right\}\right|, \\
t & =\left|\left\{x \mid d_{G}(x)=\Delta_{G}, x \in V\right\}\right| .
\end{aligned}
$$

Since $G \in \Omega_{1}=\Omega_{1}(p, q, r, s, i, y)$, then $j \geq 1, k \geq 0,1 \leq t \leq j$ and $\Delta_{G} \geq 6$.
Note $G \in \Omega_{1}$ if $j=1, \Delta_{G} \geq 6$ or $j \geq 2$ so there exists a vertex u with $d_{G}(u) \geq 3$ and there exists hanging tree of G which connects to u. We complete the proof by considering the following cases:
Case 1. If $j=1$, then consider the following subcases:
Subcase (i): If $\Delta_{G}=6$, then $k=0$ and the $\mathcal{D} \mathcal{S}$ is $(6,2,2, \ldots, 2)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$, thus $\operatorname{irr}_{t}(G)=4 n-4$.
Subcase (ii): If $\Delta_{G}=7$, then $k=1$. For $k=1, \mathcal{D S}$ is $(7,2,2, \ldots, 2,1)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$ and $\operatorname{irr}_{t}(G)=6 n-6>6 n-8$.
Subcase (iii): If $\Delta_{G} \geq 7$, then $k \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-$ $k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D} \mathcal{S}$ of graph obtained is $(7,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{11}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{11}\right)=$ $6 n-6>6 n-8$ by Lemma 2.1.
Case 2. If $j \geq 2$, then consider the following subcases:
Subcase (i): If $\Delta_{G}=6$, then $1 \leq t \leq 2$,
If $t=1$ then $1 \leq k \leq 3$, . For $k=1$ the $\mathcal{D S}$ of G is $(6,3,2,2, \ldots, 2,1)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, thus $\operatorname{irr}_{t}(G)=6 n-8$. For $k \geq 2$ and we can do λ-transformation $(k-1)$-times on G till the $\mathcal{D} \mathcal{S}$ of graph obtained is $(6,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{12}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{12}\right)=6 n-8$ by Lemma 2.1.

Subcase (ii): If $\Delta_{G} \geq 7$, then $1 \leq t \leq 2$ and $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of graph obtained is $(6,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{13}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{13}\right)=6 n-8$ by Lemma 2.1.

By following the same pattern as above we get the following results by direct calculations.
Theorem 3.5. Let $n \geq 8, G \in \Omega_{2}=\Omega_{2}(p, q, r, s, i, y)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-6$ and equality holds iff $(5,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(5,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-12$, with equality iff the $\mathcal{D S}$ of G is $(5,3,3,2,2, \ldots, 2,1)$.

Theorem 3.6. Let $n \geq 9, G \in \Omega_{3}=\Omega_{3}(p, q, r, s, i, y)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-10$ and equality holds iff $(4,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(4,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-18$, with equality iff the $\mathcal{D} \mathcal{S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$.

Theorem 3.7. Let $n \geq 10, G \in \Omega_{4}=\Omega_{4}(p, q, r, s, i, y)$
(i) $\operatorname{irr}_{t}(G) \geq 4 n-16$ and equality holds in case $(3,3,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(3,3,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-12$, with equality iff the $\mathcal{D S}$ of G is $(3,3,3,3,3,2,2, \ldots, 2,1)$.
3.3. The graphs with minimum total irregularity in $\vartheta-$ graph

In this section, we have determined first minimum, second minimum, and third minimum total irregularity of tricyclic graphs in $\vartheta(p, q, r, s, i)$.

Theorem 3.8. Let $n \geq 5, G \in \vartheta_{1}=\vartheta_{1}(p, q, r, s, i)$
(i) $\operatorname{irr}_{t}(G) \geq 4 n-10$ and equality holds iff $(4,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(4,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-18$, with equality iff the $\mathcal{D} \mathcal{S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$.

Proof. We know that $\sum_{v \in V} d_{G}(v)=2(n+2)$ from Lemma 2.2.
Consider the following distribution of vertex set as,

$$
\begin{aligned}
& j=\left|\left\{x \mid d_{G}(x) \geq 3, x \in V\right\}\right| \\
& k=\left|\left\{x \mid d_{G}(x)=1, x \in V\right\}\right|
\end{aligned}
$$

$$
t=\left|\left\{x \mid d_{G}(x)=\Delta_{G}, x \in V\right\}\right| .
$$

Since $G \in \vartheta_{1}=\vartheta_{1}(p, q, r, s, i$,$) then j \geq 3, k \geq 0,1 \leq t \leq j$ and $\Delta_{G} \geq 4$.
Note $G \in \vartheta_{1}$ if $j=3, \Delta_{G} \geq 4$ or $j \geq 4$ so there exists a vertex u with $d_{G}(u) \geq 3$ and there exists hanging tree of G which connects to u. We prove by considering the following cases:
Case 1. If $j=3$, then consider the following cases:
Subcase (i): If $\Delta_{G}=4$,
then $1 \leq t \leq 3$. If $t=1$ then $k=0$ and the $\mathcal{D S}$ is $(4,3,3,2,2, \ldots, 2)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, then $\operatorname{irr}_{t}(G)=4 n-10$.
If $t=2$ then $k=1$ and the $\mathcal{D S}$ is $(4,4,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+$ $3(j-1)+2(n-j-k)+k$, thus $\operatorname{irr}_{t}(G)=6 n-14>6 n-18$.
If $t=3$ then $k=2$ and λ-transformation can be done once on G s.t. the $\mathcal{D S}$ of graph obtained is $(4,4,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted by F_{14}, thus $\operatorname{irr}_{t}(G) \geq \operatorname{irr}_{t}\left(F_{14}\right)=$ $6 n-14>6 n-18$.
Subcase (ii): If $\Delta_{G}=5$, then $k=1$. For $k=1 \mathcal{D S}$ is $(5,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=$ $\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$ and $\operatorname{irr}_{t}(G)=6 n-12>6 n-18$.
Subcase (iii): If $\Delta_{G} \geq 6$, then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+$ $3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of graph obtained is $(5,3,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{15}, then $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{15}\right)=6 n-12>6 n-18$ by Lemma 2.1.
Case 2. If $j \geq 4$, then consider the following subcases:
Subcase (i): If $j+\Delta_{G}=8$, then $k=1$. For $k=1$ the $\mathcal{D S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq \Delta_{G}+3(j-1)+2(n-j-k)+k$, thus $\operatorname{irr}_{t}(G)=6 n-18$.
Subcase (ii): If $j+\Delta_{G} \geq 9$, then $k \geq \Delta_{G}+j-7 \geq 2$ as $2(n+2)=\sum_{v \in V} d_{G}(v) \geq$ $\Delta_{G}+3(j-1)+2(n-j-k)+k$ and λ-transformation can be done $(k-1)$-times on G till the $\mathcal{D S}$ of graph obtained is $(4,3,3,3,2,2, \ldots, 2,1)$. Let the graph obtained be denoted as F_{16}, thus $\operatorname{irr}_{t}(G)>\operatorname{irr}_{t}\left(F_{16}\right)=6 n-18$ by Lemma 2.1.

Similarly, by direct calculation, we have the following results.
Theorem 3.9. Let $n \geq 6, G \in \vartheta_{2}=\vartheta_{2}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-6$ and equality holds iff $(5,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(5,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-12$, with equality iff the $\mathcal{D S}$ of G is $(5,3,3,2,2, \ldots, 2,1)$.

Theorem 3.10. Let $n \geq 7, G \in \vartheta_{3}=\vartheta_{3}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-16$ and equality holds iff $(3,3,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(3,3,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-26$, with equality iff the $\mathcal{D S}$ of G is $(3,3,3,3,3,2,2, \ldots, 2,1)$.

Theorem 3.11. Let $n \geq 7, G \in \vartheta_{4}=\vartheta_{4}(p, q, r, s, i)$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-10$ and equality holds iff $(4,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(4,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 6 n-18$, with equality iff the $\mathcal{D S}$ of G is $(4,3,3,3,2,2, \ldots, 2,1)$.

4. The graphs with minimum total irregularity in \mathcal{T}_{n}

By section 3 we have determined first minimum, second minimum and the third minimum total irregularity in \mathcal{T}_{n} immediately.

Theorem 4.1. Let $n \geq 7, G \in \mathcal{T}_{n}$ then
(i) $\operatorname{irr}_{t}(G) \geq 4 n-16$ and equality holds iff $(3,3,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G.
(ii) If $(3,3,3,3,2,2, \ldots, 2)$ is not the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq 4 n-10$, with equality iff the $\mathcal{D S}$ of G is $(4,3,3,3,2,2, \ldots, 2)$.
(iii) If neither $(3,3,3,3,2,2, \ldots, 2)$ nor $(4,3,3,3,2,2, \ldots, 2)$ is the $\mathcal{D S}$ of G, then $\operatorname{irr}_{t}(G) \geq$ $6 n-26$, with equality iff the $\mathcal{D S}$ of G is $(3,3,3,3,2,2, \ldots, 2,1)$.

References

Abdo, H., Cohen, N., Dimitrov, D. (2014a) The total irregularity of a graph, Discrete Mathematics and Theoretical Computer Science. 16(1), 201-206.

Abdo, H., Cohen, N., Dimitrov, D. (2014b) Bounds and computation of irregularity of a graph, arXiv:1207.4804 [cs.DM].

Albertson, M.O. (1997) The total irregularity of a graph, Ars Combination. 46, 219-225.
Akbar, A., Bhatti, A. A. (2016) A note on the augmented Zagreb index of cacti with fixed number of vertices and cycles, Kuwait J. Sci. 43 (4) pp. 11-17.

Akbar, A., Bhatti, A. A. (2017) A note on the minimum reduced reciprocal Randić index of n - vertex unicyclic graphs, Kuwait J. Sci. 44 (2)pp. 27-33.

Bondy, J.A. and Murty, U.S. (1976) Graph Theory and its Applications, The Macmillan Press, London.

Dimitrov, D., Skrekovski, R. (2015) Comparing the irregularity and the total irregularity of graphs, Ars. Math. Contemp. 9, 45-50.

Eliasi, M. (2015) The Maximal Total Irregularity of Some Connected Graphs, Iranian Journal of Mathematical Chem. 6 no. 2, 121-128.

Gao, F., Xu, K., Došlić, T. (2021) On the difference of Mostar index and irregularity of graphs, Bulletin of the Malaysian Mathematical Sciences Society, 44 905-926.

Hassan, A., Bhatti, A. A., Ali, A. (2019) Zeroth-order general Randić index of cactus graphs, AKCE International Journal of Graphs and Combinatorics 16, 182-189

Henning, M.A., Rautenbach, D. (2007) On the irregularity of bipartite graphs, Discrete Math. 307 1467-1472.

Hansen, P., Mélot, H., (2005) Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 253-264.

Xu, K., Das, K. C. (2016) Some extremal graphs with respect to inverse degree, Discrete Appl.Math. 203171183.

You,L.H., Yang, J.S. and You, Z.F. (2014a) The maximal total irregularity of unicyclic graphs, Ars Comb., 114 153-160.

You, L.H., Yang, J.S., Zhu, Y.X. and You, Z.F. (2014b) The maximal total irregularity of bicyclic graphs, J. Appl. Math. 1-9, DOI: 10.1155/2014/785084.

Zhu, Y., You, L., Yang, J. (2016) The minimal total irregularity of some classes of graphs, Filomat 30 no. 5, 1203-1211.

Submitted: 20/03/2021
Revised: 23/12/2021
Accepted: 29/12/2021
DOI: 10.48129/kjs. 13063

