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Abstract

The quantitative characterization of the topological structures of irregular graphs has been
demonstrated through several irregularity measures. In the literature, not only different chem-
ical and physical properties can be well comprehended but also quantitative structure-activity
relationship (QSPR) and quantitative structure-property relationship (QSAR) are documented
through these measures. A simple graph G = (V,E) is a collection of V and E as vertex and
edge sets respectively, with no multiple edges or loops. Keeping in view the importance of
various irregularity measures, in (Abdo et al., 2014a) the authors defined the total irregularity
of a simple graph G = G(V,E) as

irrt(G) = 1
2

∑
u,v∈V |dG(u)− dG(v)|,

where dG(u) indicates the degree of the vertex u, where u ∈ V (G). In this paper, we have
determined the first minimum, second minimum and third minimum total irregularity index of
the tricyclic graphs on the n vertices.

Keywords: Irregularity; topological index; total irregularity index; λ-transformation; tricyclic
graphs.

1. Introduction

Let G = (V,E) be a graph with edge and vertex sets as denoted by E and V respectively.
The number of edges attached on a vertex v of a graph G is the degree dG(v) of vertex v.
If V = {vi}ni=1, then sequence (d1, d2, d3, . . . dn) is called degree sequence of G (Bondy &
Murty, 1976), where di is the degree of ith vertex of G. We assume the sequence (dG(vi))

n
i=1

is in decreasing order i.e. for i < z, (d(vz) ≤ d(vi)). For convenience, we will use DS as the
notation for degree sequence of a graph G.
With recent advances in graph theory in different areas, chemical graph theory is one of the
most active area of research. Chemical graph theory or the theory of chemical graphs is a
sub-branch of mathematical chemistry that describes non-trivial graph theory applications for
solving molecular problems where the chemical structure is transformed into a mathematical
structure. A representation of an object only provides information on the number of elements it
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comprises, and its connectivity is defined as the graph’s topological representation.
A topological index is a numerical value that is used primarily for predicting chemical and
physical properties of various compounds and structures. A molecular graph is called a topo-
logical representation of a molecule. Significant number of topological indices during the last
two decades have been documented. Many existing topological indices based on degrees can
be classified as BID index, whose general form is

BID(G) =
∑
uv∈E

f(du, dv), (1)

where uv is the edge connecting vertices u and v of the graph. There are numerous indices
introduced such as the ABC index, Zagreb index, Randic index, etc. Some information can be
found in the articles ((Akbar & Akhlaq, 2016), (Akbar & Akhlaq, 2017), (Hassan et al., 2019)
cited therein. Currently, the study of such types of indices has become a very active research
area in the theory of chemical graphs. One such area is the quantitative analysis of different
topological structures of irregular graphs.
The graph that has the same degree of all its vertices is regular, otherwise, it is irregular. Several
approaches have been proposed which characterize the irregularity of a graph. Albertson in
(Albertson, 1997) introduced |dG(u) − dG(v)| as an imbalance of an edge e = uv ∈ E and
defined

irr(G) =
∑
uv∈E

|dG(u)− dG(v)| (2)

as an irregularity of a graphG. More results about the above-mentioned concepts are mentioned
in ((Dimitrov & Skrekovski, 2015), (Abdo et al., 2014b), (L.H. You et al., 2014a), (L.H. You
et al., 2014b), (Henning & Rautenbach, 2007), (Albertson, 1997), (Hensen & Mélot, 2005)).
Taking inspiration from the structure and significance of Equation 2, a new irregularity measure
was introduced by the authors in (Abdo et al., 2014a) termed the total irregularity index, defined
as

irrt(G) =
1

2

∑
u,v∈V

|dG(u)− dG(v)| (3)

Even though both graph invariants compute irregularity, the irregularity is captured by one
parameter, i.e. the vertex degree, but in some respects the later is preferable to the old one.
For instance, equation (3) has the known characteristic of an irregularity computation that the
graphs with identical total irregularity have the same DS, whereas equation (2) does not pos-
sess this property. Clearly, equation (3) is an upper bound of equation (2). In (Dimitrov &
Skrekovski, 2015), the relationship between irr(G) and irrt(G) for the connected graph on
n vertices have been derived, that is, irrt(G) ≤ n2{ irr(G)

4
}. Furthermore, for any tree, they

also computed that irrt(T ) ≤ (n − 2)irr(T ). In (Abdo et al., 2014a) the bounds on irrt(G)
on cycle, path, and the star graph, denoted as Cn, Pn, and Sn, on the n vertices respectively,
were computed. They also proved that the graph with maximal total irregularity on n vertices
between all the trees is the star graph. Following result is due to (Abdo et al., 2014a).

Theorem 1.1. Let G be an n-vertex simple and undirected graph. Then

(i) irrt(G) ≤ (2n3 − 3n2 − 2n+ 3).

(ii) irrt(G) ≤ (n− 1)(n− 2) if G is a tree, with equality iff G ∼= Sn.
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The authors in (L.H. You et al., 2014a) and (Hensen & Mélot, 2005) examined the total irreg-
ularity of the unicyclic and bicyclic graphs and defined graphs with n2 − n − 6 as maximum
total irregularity among all the unicyclic graphs and graphs with n2 +n− 16 as maximum total
irregularity among all bicyclic graphs on n vertices respectively. By using the Gini index in (M.
Eliasi, 2015), the author obtained the ordering of the total irregularity index for some classes
of connected graphs, with the same number of vertices. Recently, the authors in (F. Gao et
al., 2021) characterized trees T of order n and triangulation graphs with respect to difference
of Mostar index and irregularity of graphs. For more related research, readers are requested to
see (Xu & Das, 2016).
In Section 2, we have described an important transformation in the current note to examine the
minimum total irregularity of tricyclic graphs. We have also determined first, second and third
minimum total irregularity of tricyclic graphs on n vertices in Section 3. Lastly, summary of
the note is mentioned in Section 4.

2. λ-Transformation

An important transformation in this section is explained to explore the minimum total irreg-
ularity of graphs. Before introduction of transformation, let us define induced subgraph and
hanging tree (Yingxue Zhu et al., 2014).
Let G be an n-vertex graph then a subset of the vertices of G having edges incident on the
vertices in the subset as endpoints is known as vertex-induced or simply induced subgraph of
G. Let T be induced sub-tree of G, if G can be obtained back by connecting T to a vertex of
G \ T . Then T is a hanging tree of G. Now we introduce the λ-Transformation as:
λ-Transformation: Let G be a simple graph with at least two leaves. Let u be a vertex of
dG(u) ≥ 3 and T be hanging tree of G connecting to u with |V (T )| ≥ 1, and v be the leaf of
G with v /∈ T . By removing T from u and connecting it to the vertex v and the graph obtained
be denoted as G∗. Then this transformation from vertex u to v is a λ-transformation on G (see
Figure 1).

Fig. 1. G and G∗(obtained from λ-Transformation)

The following result is due to (Yingxue Zhu et al., 2014), after λ-Transformation and it
will be used in the main results as it will help us to compute total irregularity index of tricyclic
graphs.

Lemma 2.1. (Yingxue Zhu et al., 2014) LetG be an n−vertex graph then irrt(G) > irrt(G
∗),

where G∗ is the graph obtained from G, after λ-Transformation from u to v.

Proof. Let G = (V,E), consider the vertex set V = V 1 ∪ V 2 ∪ V 3 such that

V 1 = {x|dG(x) ≥ dG(u), x ∈ V }

V 2 = {x|dG(x) = 1, x ∈ V }

V 3 = {x|2 ≤ dG(x) < dG(u), x ∈ V }
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Clearly, u ∈ V 1, v ∈ V 2. Let |V 1| = j, |V 2| = k, |V 3| = l, then j ≥ 1, k ≥ 2 and j+k+ l = n.
Note by λ-transformation, the degrees of v and u become dG∗(v) = dG(v) + 1 = 2, dG∗(u) =
dG(u)− 1 and dG∗(w) = dG(w) for any w ∈ V \ {u, v}. Let U = V \ {u, v}. Then

|dG∗(u)− dG∗(v)| − |dG(u)− dG(v)| = −2,∑
w∈U

(|dG∗(u)− dG∗(w)| − |dG(u)− dG(w)|) = (j − 1)− (l + k − 1) = j − l − k,

∑
w∈U

(|dG∗(v)− dG∗(w)| − |dG(v)− dG(w)|) = −(j − 1)− l + (k − 1)

= −j − l + k.
Thus, we have irrt(G∗)− irrt(G) = −2 + (j − l − k) + (−j − l + k) = −2l − 2 < 0.

Remark. Let λ-transformation be performed on G from the vertex u to v and G∗ be the result-
ing graph. Then by λ-transformation and Lemma 2.1, we have dG∗(u) = dG(u) − 1 ≥ 2 and
dG∗(v) = dG(v) + 1 = 2. If dG∗(u) ≥ 3, G∗ has at least two leaves, and there’s a hanging
tree of G∗ connecting to vertex u, we can repeat λ-transformation from vertex u on G∗, till the
degree of u equals 2, or the resulting graph consists of just one leaf, or no hanging tree connects
to vertex u.

We can see from the above arguments that λ-transformation can be achieved on G iff three
conditions hold mentioned below:

(i) There exists a vertex u with degree greater or equal to 3;

(ii) There is a hanging tree of G, connecting to vertex u;

(iii) G has at least two leaves.

Following trivial result will be useful to establish our main results.

Lemma 2.2. ((Bondy & Murty, 1976)) Let G = (V,E) be a graph and |E| = m. Then∑
v∈V

dG(v) = 2m.

�

In the following section, we establish the main results by describing different classes in tricyclic
graphs on n vertices.

3. The Total Irregularity of Tricyclic Graphs

A connected (n,m) graph G is said to be a tricyclic graph if m = n + 2. Within this section,
the extremal graphs are described by computing, the first, second and third minimum total
irregularity of n-vertex tricyclic graphs.
Tricyclic graphs can be divided into three types: ξ − graph, Ω− graph, and ϑ− graph.
The class of ξ − graph, denoted by ξ(p, q, r, s, i) contains three types of tricyclic graphs (see
Figure 2). The first one is obtained from three cycles Cp, Cq, and Cr having one common vertex
(say u), between Cp and Cq, and one (say v), between Cq and Cr (i.e. having no paths between
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the cycles see Figure 2(a)). It is denoted by ξ1(p, q, r, s, i) = ξ1. The second is obtained having
one common vertex u between Cp and Cq a path between Cq and Cr to any vertex w ∈ V \ u
(see Figure 2(b). It is denoted by ξ2(p, q, r, s, i) = ξ2. Lastly, third is obtained by attaching
two disjoint paths Ps and Pi between Cp and Cq and one between Cq and Cr respectively (see
Figure 2(c)), where p, q, r ≥ 3. It is denoted by ξ3(p, q, r, s, i) = ξ3.

Fig. 2. Tricyclic graphs: (a) ξ1(p, q, r, s, i); (b) ξ2(p, q, r, s, i); (c) ξ3(p, q, r, s, i)

An Ω − graph denoted by Ω(p, q, r, s, i, y), contains four types of tricyclic graphs (see
Figure 3 and 4). The first graph, denoted by Ω1 = Ω1(p, q, r, s, i, y), with only one common
vertex, (say u), attached to Cp, Cq and Cr (see Figure 3(a)). The second graph, denoted by
Ω2 = Ω2(p, q, r, s, i, y) is obtained from Ω1 by attaching a path Py of length y ≥ 1 between
vertex u and Cr (see Figure 3(b)). The third graph, denoted by Ω3 = Ω3(p, q, r, s, i, y), obtained
from Ω2 by attaching a path Pi of length i ≥ 1 between vertex u andCq (see Figure 4(a)). Lastly,
the fourth graph, denoted by Ω4 = Ω4(p, q, r, s, i, y) is obtained from Ω3 by attaching a path Ps

of length s ≥ 1 between vertex u and Cp (see Figure 4(b)), where p, q, r ≥ 3.

Fig. 3. Tricyclic graphs: (a) Ω1; (b) Ω2

A ϑ − graph, denoted by ϑ(p, q, r, s, i) contains four types of tricyclic graphs (see Figure
5 ). The first graph, denoted by ϑ1 = ϑ1(p, q, r, s, i), is a graph with three cycles (namely,
Cp, Cq, Cr) on p + q + r − s − i vertices, having (s + i) vertices as common with each other
(see Figure 5(a)). In the second case, the graph denoted by ϑ2 = ϑ2(p, q, r, s, i), is obtained
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Fig. 4. Tricyclic graphs: (a) Ω3; (b) Ω4

from ϑ1 by removing Cr from Cq and attaching it to one of the end vertices {f1, fs} (see Figure
5(b)). In the third case, the graph is obtained from ϑ1 by attaching a path Pr−i from one of
the end vertices {e1, ep−s, h1, hi} with a vertex of disjoint cycle Cr(see Figure 5(c)), let it be
denoted by ϑ3 = ϑ3(p, q, r, s, i). Lastly, the graph denoted by ϑ4 = ϑ4(p, q, r, s, i) is obtained
by attaching a path between the cycle Cr and one of the end vertices {f1, fs} (see Figure 5(d)),
where p, q, r ≥ 3 and s, i ≥ 2.

Fig. 5. Tricyclic graphs: (a) ϑ1; (b) ϑ2; (c) ϑ3; (d) ϑ4;
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Let the set of all tricyclic graphs on n vertices be denoted by Tn. As defined above Tn is
based on three types of graphs ξ − graph, Ω− graphs, and ϑ− graph.

3.1. Graphs having minimum total irregularity in ξ(p, q, r, s, i)
In this section, we determine the minimum total irregularity of tricyclic graphs in ξ(p, q, r, s, i).

Let ξ1 = ξ1(p, q, r, s, i) having no paths (see Figure 2(a)), ξ2 = ξ2(p, q, r, s, i) with a one path
Pi with length i ≥ 1 (see Figure 2(b)) and ξ3 = ξ3(p, q, r, s, i) with two paths Ps and Pi with
lengths s, i ≥ 1 respectively (see Figure 2(c)).

Theorem 3.1. Let n ≥ 7, G ∈ ξ1 = ξ1(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 8 and equality holds iff (4, 4, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 4, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 14, with equality iff the DS
of G is (4, 4, 3, 2, 2, . . . , 2, 1).

Proof. We know that
∑
v∈V

dG(v) = 2(n + 2) from Lemma 2.2. Let us divide the vertex set as

follows,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ1 = ξ1(p, q, r, s, i), then j ≥ 2, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4. Note G ∈ ξ1
if j = 2,∆G ≥ 5 or j ≥ 3 so vertex u with dG(u) ≥ 3 exists and hanging tree of G which
connects to u exists. We complete the proof by considering following cases:
Case 1. If j = 2, then there are three subcases mentioned below:
Subcase (i): If ∆G = 4, then k = 0 and the DS is (4, 4, 2, 2, . . . , 2) as 2(n+ 2) =

∑
v∈V

dG(v) =

8 + 2(n− 2− k) + k, then irrt(G) = 4n− 8.
Subcase (ii): If ∆G = 5, then k = 1 and the DS is (5, 4, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) = 5 + 4 + 2(n− 2− k) + k, then irrt(G) = 6n− 10 > 6n− 14.

Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G − 4 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G + 4 +

2(n − 2 − k) + k and λ-transformation can be done (k − 1)− times on G till the DS of the
graph obtained becomes (5, 4, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F1, then
irrt(G) > irrt(F1) = 6n− 10 > 6n− 14 by Lemma 2.1.
Case 2. Now if j ≥ 3, then consider following subcases:
Subcase (i): If j + ∆G = 7, then j = 3,∆G = 4, 2 ≤ t ≤ 3.
If t = 2, then k = 1 and the DS is (4, 4, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =

∑
v∈V

dG(v) =

4 + 4 + 3 + 2(n− 3− k) + k = 11 + 2(n− 3− k) + k, so irrt(G) = 6n− 14.
If t = 3, then k = 2 as 2(n + 2) =

∑
v∈V

dG(v) = 4t + 2(n− 3 − k) + k, and λ-transformation

can be done once on G so the DS of obtained graph is (4, 4, 3, 2, 2, . . . , 2, 1). Let the obtained
graph be denoted as F2, then irrt(G) > irrt(F2) = 6n− 14 by Lemma 2.1.
Subcase (ii): If j + ∆G ≥ 8, then k ≥ ∆G + j − 6 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥

Hassan Ahmed, Akhlaq Ahmad Bhatti
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∆G + 3(j−1) + 2(n− j−k) +k and λ-transformation can be done (k−1)−times on G till the
DS of graph obtained is (4, 4, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F3, then
irrt(G) > irrt(F3) = 6n− 14 by Lemma 2.1.

Theorem 3.2. Let n ≥ 8, G ∈ ξ2 = ξ2(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. It is easy to see that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us divide the vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ2 = ξ2(p, q, r, s, i) then j ≥ 3, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4.
Note G ∈ ξ2 if j = 3, ∆G ≥ 4 or j ≥ 4 so there exists a vertex u with dG(u) ≥ 3 and
there exists a hanging tree of G which connects to u. We complete the proof by considering
following cases:

Case 1. If j = 3, then consider following subcases:
Subcase (i): If ∆G = 4, then k = 0 and theDS is (4, 3, 3, 2, 2, . . . , 2) as 2(n+2) =

∑
v∈V

dG(v) =

4 + 3 + 3 + 2(n− 3− k) + k, then irrt(G) = 4n− 10.
Subcase (ii): If ∆G = 5, then 1 ≤ t ≤ 3
If t = 1, then k = 1 and k = 2. For k = 1 the DS is (5, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3 + 3 + 2(n − 3 − k) + k and irrt(G) = 6n − 12 > 6n − 18. For

k = 2 λ-transformation can be done on G once and the DS of the graph obtained becomes
(5, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph denoted by F4, then irrt(G) > irrt(F4) =
6n− 12 > 6n− 18 from Lemma 2.1.
If t ≥ 2, then k ≥ 3 as 2(n+ 2) =

∑
v∈V

dG(v) ≥ 5 + 5 + 3 + 2(n− 3− k) + k λ-transformation

can be done (k − 1)−times on G till the DS of obtained graph becomes (5, 3, 3, 2, 2, . . . , 2, 1).
Let the obtained graph denoted by F5, then irrt(G) > irrt(F5) = 6n−12 > 6n−18 by Lemma
2.1.
Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n − j − k) + k and λ-transformation can be done (k − 1)−times on G till the
DS of obtained graph is (5, 4, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F6, then
irrt(G) > irrt(F6) = 6n− 10 > 6n− 14 by Lemma 2.1.
Case 2. If j ≥ 4, then consider following subcases:
Subcase (i): If j + ∆G = 8, then k = 1, and the DS of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 6n− 18.

Minimum total irregularity index of tricyclic graphs

8



Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of obtained graph is (4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F7,
then irrt(G) > irrt(F7) = 6n− 18 by Lemma 2.1.

Theorem 3.3. Let n ≥ 9, G ∈ ξ3 = ξ3(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n− 26, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. It is easy to see that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us divide vertex set as below,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ξ3 = ξ3(p, q, r, s, i) then j ≥ 4, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 3.
Note G ∈ ξ3 = ξ3(p, q, r, s, i) if j = 4, ∆G ≥ 3 or j ≥ 5 so there exists a vertex u with
dG(u) ≥ 3 and there exists hanging tree of G which connects to u. We have completed the
proof by considering the following cases:
Case 1. If j = 4, then consider following subcases:
Subcase (i): If ∆G = 3, then k = 0 and the DS is (3, 3, 3, 3, 2, 2, . . . , 2) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 4n− 16.

Subcase (ii): If ∆G = 4, then 1 ≤ t ≤ 4.
If t = 1, then k = 1. For k = 1 the DS is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =

∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 18 > 6n− 26.
If t ≥ 2, then k ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n − j − k) + k

and λ-transformation can be done (k − 1)−times on G till the DS of obtained graph becomes
(4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph denoted by F8, thus irrt(G) > irrt(F8) =
6n− 18 > 6n− 26 by Lemma 2.1.
Subcase (iii): If ∆G ≥ 5,
then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n − j − k) +

k and λ-transformation can be done (k − 1)−times on G till the DS of obtained graph is
(4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the obtained graph be denoted as F9, thus irrt(G) > irrt(F9) =
6n− 18 > 6n− 26 by Lemma 2.1.
Case 2. If j ≥ 5, then consider the following subcases:
Subcase (i): If j + ∆G = 8, then k = 1, and the DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 6n− 26.

Hassan Ahmed, Akhlaq Ahmad Bhatti

9



Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of obtained graph is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as
F10, then irrt(G) > irrt(F10) = 6n− 26 by Lemma 2.1.

3.2. The graphs with minimum total irregularity in Ω− graph
In this section, we determine the first minimum, second minimum, and third minimum total

irregularity of tricyclic graphs in Ω(p, q, r, s, i, y).

Theorem 3.4. Let n ≥ 7, G ∈ Ω1 = Ω1(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 4 and equality holds iff (6, 2, 2, . . . , 2) is the DS of G.

(ii) If (6, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n− 8, with equality iff the DS of G
is (6, 3, 2, 2, . . . , 2, 1).

Proof. It is obvious that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Let us consider the vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,

t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ Ω1 = Ω1(p, q, r, s, i, y), then j ≥ 1, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 6.
Note G ∈ Ω1 if j = 1, ∆G ≥ 6 or j ≥ 2 so there exists a vertex u with dG(u) ≥ 3 and
there exists hanging tree of G which connects to u. We complete the proof by considering the
following cases:
Case 1. If j = 1, then consider the following subcases:
Subcase (i): If ∆G = 6, then k = 0 and the DS is (6, 2, 2, . . . , 2) as 2(n + 2) =

∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 4n− 4.
Subcase (ii): If ∆G = 7, then k = 1. For k = 1, DS is (7, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 6 > 6n− 8.

Subcase (iii): If ∆G ≥ 7, then k ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j −

k) + k and λ-transformation can be done (k − 1)−times on G till the DS of graph obtained
is (7, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F11, then irrt(G) > irrt(F11) =
6n− 6 > 6n− 8 by Lemma 2.1.
Case 2. If j ≥ 2, then consider the following subcases:
Subcase (i): If ∆G = 6, then 1 ≤ t ≤ 2,
If t = 1 then 1 ≤ k ≤ 3,. For k = 1 the DS of G is (6, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 8. For k ≥ 2 and we can

do λ-transformation (k − 1)−times on G till the DS of graph obtained is (6, 3, 2, 2, . . . , 2, 1).
Let the graph obtained be denoted as F12, then irrt(G) > irrt(F12) = 6n− 8 by Lemma 2.1.
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Subcase (ii): If ∆G ≥ 7, then 1 ≤ t ≤ 2 and k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
theDS of graph obtained is (6, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F13, then
irrt(G) > irrt(F13) = 6n− 8 by Lemma 2.1.

By following the same pattern as above we get the following results by direct calculations.

Theorem 3.5. Let n ≥ 8, G ∈ Ω2 = Ω2(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 6 and equality holds iff (5, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (5, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the DS
of G is (5, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.6. Let n ≥ 9, G ∈ Ω3 = Ω3(p, q, r, s, i, y) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.7. Let n ≥ 10, G ∈ Ω4 = Ω4(p, q, r, s, i, y)

(i) irrt(G) ≥ 4n− 16 and equality holds in case (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).

3.3. The graphs with minimum total irregularity in ϑ− graph
In this section, we have determined first minimum, second minimum, and third minimum

total irregularity of tricyclic graphs in ϑ(p, q, r, s, i).

Theorem 3.8. Let n ≥ 5, G ∈ ϑ1 = ϑ1(p, q, r, s, i)

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

Proof. We know that
∑
v∈V

dG(v) = 2(n+ 2) from Lemma 2.2.

Consider the following distribution of vertex set as,

j = | {x|dG(x) ≥ 3, x ∈ V } |,

k = | {x|dG(x) = 1, x ∈ V } |,
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t = | {x|dG(x) = ∆G, x ∈ V } |.

Since G ∈ ϑ1 = ϑ1(p, q, r, s, i, ) then j ≥ 3, k ≥ 0, 1 ≤ t ≤ j and ∆G ≥ 4.
Note G ∈ ϑ1 if j = 3, ∆G ≥ 4 or j ≥ 4 so there exists a vertex u with dG(u) ≥ 3 and there
exists hanging tree of G which connects to u. We prove by considering the following cases:
Case 1. If j = 3, then consider the following cases:
Subcase (i): If ∆G = 4,
then 1 ≤ t ≤ 3. If t = 1 then k = 0 and the DS is (4, 3, 3, 2, 2, . . . , 2) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, then irrt(G) = 4n− 10.

If t = 2 then k = 1 and the DS is (4, 4, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 14 > 6n− 18.
If t = 3 then k = 2 and λ-transformation can be done once on G s.t. the DS of graph obtained
is (4, 4, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted by F14, thus irrt(G) ≥ irrt(F14) =
6n− 14 > 6n− 18.
Subcase (ii): If ∆G = 5, then k = 1. For k = 1 DS is (5, 3, 3, 2, 2, . . . , 2, 1) as 2(n + 2) =∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k and irrt(G) = 6n− 12 > 6n− 18.

Subcase (iii): If ∆G ≥ 6, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥ ∆G +

3(j − 1) + 2(n − j − k) + k and λ-transformation can be done (k − 1)−times on G till the
DS of graph obtained is (5, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F15, then
irrt(G) > irrt(F15) = 6n− 12 > 6n− 18 by Lemma 2.1.
Case 2. If j ≥ 4, then consider the following subcases:
Subcase (i): If j + ∆G = 8, then k = 1. For k = 1 the DS of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1) as
2(n+ 2) =

∑
v∈V

dG(v) ≥ ∆G + 3(j − 1) + 2(n− j − k) + k, thus irrt(G) = 6n− 18.

Subcase (ii): If j + ∆G ≥ 9, then k ≥ ∆G + j − 7 ≥ 2 as 2(n + 2) =
∑
v∈V

dG(v) ≥

∆G + 3(j − 1) + 2(n− j − k) + k and λ-transformation can be done (k − 1)−times on G till
the DS of graph obtained is (4, 3, 3, 3, 2, 2, . . . , 2, 1). Let the graph obtained be denoted as F16,
thus irrt(G) > irrt(F16) = 6n− 18 by Lemma 2.1.

Similarly, by direct calculation, we have the following results.

Theorem 3.9. Let n ≥ 6, G ∈ ϑ2 = ϑ2(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 6 and equality holds iff (5, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (5, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 12, with equality iff the DS
of G is (5, 3, 3, 2, 2, . . . , 2, 1).

Theorem 3.10. Let n ≥ 7, G ∈ ϑ3 = ϑ3(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 6n − 26, with equality iff the
DS of G is (3, 3, 3, 3, 3, 2, 2, . . . , 2, 1).
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Theorem 3.11. Let n ≥ 7, G ∈ ϑ4 = ϑ4(p, q, r, s, i) then

(i) irrt(G) ≥ 4n− 10 and equality holds iff (4, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (4, 3, 3, 2, 2, . . . , 2) is not theDS of G, then irrt(G) ≥ 6n−18, with equality iff theDS
of G is (4, 3, 3, 3, 2, 2, . . . , 2, 1).

4. The graphs with minimum total irregularity in Tn

By section 3 we have determined first minimum, second minimum and the third minimum total
irregularity in Tn immediately.

Theorem 4.1. Let n ≥ 7, G ∈ Tn then

(i) irrt(G) ≥ 4n− 16 and equality holds iff (3, 3, 3, 3, 2, 2, . . . , 2) is the DS of G.

(ii) If (3, 3, 3, 3, 2, 2, . . . , 2) is not the DS of G, then irrt(G) ≥ 4n − 10, with equality iff the
DS of G is (4, 3, 3, 3, 2, 2, . . . , 2).

(iii) If neither (3, 3, 3, 3, 2, 2, . . . , 2) nor (4, 3, 3, 3, 2, 2, . . . , 2) is the DS of G, then irrt(G) ≥
6n− 26, with equality iff the DS of G is (3, 3, 3, 3, 2, 2, . . . , 2, 1).
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