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Abstract

In recent times, the Bayesian approach to randomized response technique has been used for estimating 
the population proportion, especially of respondents possessing sensitive attributes such as induced 
abortion, tax evasion, and shoplifting. This is done by combining suitable prior information about an 
unknown parameter of the population with the sample information for the estimation of the unknown 
parameter. In this study, the possibility of using a transmuted Kumaraswamy prior is raised, yielding a 
new Bayes estimator for estimating the population proportion of sensitive attributes for Warner’s 
randomized response technique. Consequently, the proposed Bayes estimator with transmuted 
Kumaraswamy prior is compared with existing Bayes estimators developed with a simple beta and 
Kumaraswamy priors in terms of their mean square error. The proposed estimator competes well with 
the existing estimators for some values of population proportion π. The performances of Bayes 
estimators were also compared using some benchmark data.

Keywords: Bayesian estimation; mean square error; randomized response technique; sensitive 
attribute; transmuted Kumaraswamy prior

1. Introduction
In  a direct questioning approach regarding sensitive attributes, one gets at times untruthful responses. 
Estimates of response categories are usually biased. So many reasons may be responsible for this, which 
include the legal status of sensitive characteristics a question may carry. To circumvent this problem, 
Warner (1965) proposed a randomized response technique (RRT) to gather information regarding 
sensitive attributes by ensuring the confidentiality of the respondents. The RRT was designed to 
increase the frequency of truthful answers, and increase the cooperation of respondents on sensitive 
questions, among others. Chaudhuri & Mukerjee (1988) provided insightful discussions on the RRT. Up 
till now, Warner’s randomized response technique has been extended by many researchers. These 
include unrelated RRT (Horvitz et al., 1967; Greenberg et al., 1969), two alternative questions RRT 
(Folsom et al., 1973), improved versions of RRT (Mangat & Singh, 1990; Mangat, 1994), a generalized 
RRT (Christofides, 2003), a stratified RRT (Kim & Warde, 2004), a tripartite RRT ( Adepetun & 
Adebola, 2011), RRT for rare sensitive attributes (Singh & Tarray, 2014; Singh et al., 2020), partial 
RRM for a rare sensitive attribute using Poisson distribution (Narjis & Shabbir, 2021b) among others.

In estimating the parameters of the randomized response model, one may use the classical 
(frequentist) approach or the Bayesian approach. The classical approach makes use of methods of 
moments and maximum likelihood. However, the classical approach may yield an unsatisfactory 
estimator (Hussain et al, 2014). At times, prior information about the unknown parameter may be 
available and can be incorporated with the sample information to estimate the unknown parameter. 
This is referred to as the Bayesian technique of estimation. Bayesian approach is employed to improve
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the efficiency of the estimator of unknown population proportion of sensitive attribute from the 
respondent due to the availability of prior information (Winkler & Franklin, 1979).

Kumaraswamy distribution is a special form of beta distribution that is widely applicable to a 
number of hydrological problems and many natural phenomena whose process values are bounded on 
both sides. It is more flexible than the beta distribution (Kumaraswamy, 1980) in many applications. 
However, the transmuted Kumaraswamy distribution, on the other hand, is a generalization of the 
Kumaraswamy distribution which offers even more flexibility in statistical modeling and applications 
than the Kumaraswamy distribution whenever the value of the transmuting parameter in the distribution 
is varied considerably between a closed interval [-1,1] (Khan et al., 2016). In this paper, the possibility 
of using transmuted Kumaraswamy prior is raised. The primary focus of this paper is to propose 
Bayesian estimation of Warner’s randomized response technique of a population proportion of 
respondents possessing a sensitive attribute using transmuted Kumaraswamy prior. This study 
complements the work of Winkler & Franklin (1979), Spurrier & Padgett (1980), Pitz (1980), Migon, 
H. & Tachibana (1997), Bar-Lev et al. (2003), Kim et al. (2006), Barabesi & Marcheselli (2006),
Hussain & Shabbir (2009), Hussain et al. (2011), Hussain & Shabbir (2012), Hussain et al (2014),
(Adepetun & Adewara, 2017, 2018), Narjis & Shabbir (2021a), Ahmed et al. (2021) in the Bayesian
frameworks. The rest of the paper is arranged as follows. In Section 2, both the existing Bayesian
estimation of Warner’s randomized response technique and the proposed Bayesian estimator are
presented. In section 3, we present an efficiency comparison of the proposed estimator with the existing
ones at a fixed set of parameters in the prior distributions. Section 4 is the empirical applications while
section 5 contains concluding remarks.

2. Bayesian estimation of Warner’s randomized response technique
Prior information is of particular interest in the Bayesian randomized response sampling technique 
(Winkler & Franklin, 1979). Hussain & Shabbir (2009) argued that the Bayes estimator is more efficient 
than the maximum likelihood estimator due to the availability of prior information.

2.1 Warner’s Randomized Response Technique
Suppose X is a count of respondents who possess the sensitive attribute in a random sample of size 

n. Then, X is distributed as binomial with parameters n and φ. That is, X ∼ Bin(n, φ), where φ is the
probability of a yes response defined as

φ = pπ + (1− p) (1− π) , (1)

where p is the predetermined probability that the randomized device points to sensitive question (Warner,
1965). The parameter π is the true population proportion of respondents who possess the sensitive
attribute.

The maximum likelihood estimator of π, denoted by π̂, is

π̂ =
φ̂− (1− p)

2p− 1
; provided p 6= 1

2
.

Warner (1965) has shown that π̂ is unbiased. The variance of π̂ is

V (π̂) =
π (1− π)

n
+

p (1− p)
n (2p− 1)2 provided p 6= 1

2
(2)

The mean square error of π̂ is equal to V (π̂) in (2).

2.2 The Existing Bayesian Estimators
Warner’s randomized response technique with a beta prior distribution for the estimation of popula-

tion proportion of sensitive attribute yields posterior distribution which is conjugate to the prior distribu-
tion. Winkler & Franklin (1979) proposed Bayes estimator using a simple beta prior defined as

fs (π, a, b) =
1

β (a, b)
πa−1 (1− π)b−1 ,
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0 < π < 1 and a, b > 0,

where the normalization constant β (a, b) = Γ(a)Γ(b)
Γ(a+b) and Γ (a) = (a− 1)!. The authors derived a Bayes

estimator using the probability of yes response in Warner’s randomized response technique given in (1)
as likelihood function. The Winkler and Franklin’s Bayes estimator of π, denoted by π̂SW , is:

π̂SW =

∑x
i=0

∑n−x
j=0

((
x
i

)(
n− x
j

)
fn−i−jβ (a+ i+ 1, b+ j)

)
∑x

i=0

∑n−x
j=0

((
x
i

)(
n− x
j

)
fn−i−jβ (a+ i, b+ j)

) (3)

where f = 1−p
2p−1 for p 6= 0.5. The mean square error of π̂SW is

MSE (π̂SW ) = E (π̂SW − π)2 =
n∑

x=0

(π̂SW − π)2 φx (1− φ)n−x (4)

Adepetun & Adewara (2017) proposed Bayes estimator using distribution proposed by Kumaraswamy 
(1980) as their alternative prior which was defined as:

fk (π, b, c) = bcπb−1(1 − πb)c−1

b, c > 0 ; 0 < π < 1.

With Kumaraswamy prior, a Bayes estimator (π̂KW ) of π and its corresponding mean square error are 
defined as:

π̂KW =

∑x
i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i+ 1, j + 1)

)
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

) (5)

and

MSE (π̂KW ) = E (π̂KW − π)2 =
n∑

x=0

(π̂KW − π)2 φx (1− φ)n−x (6)

respectively, where x is the number of respondents who have committed the sensitive attribute in a sample
of size n.

2.3 The Proposed Bayesian Estimator
Khan et al. (2016) proposed a new three-parameter distribution which is a generalized two- pa-

rameter Kumaraswamy distribution, called the transmuted Kumaraswamy distribution. The probability
density function of transmuted Kumaraswamy distribution is defined as

fTKw (π, b, c, λ) =bcπb−1
(

1− πb
)c−1 {

1− λ+ 2λ
(

1− πb
)c}

; (7)

b, c > 0; −1 ≤ λ ≤ 1

where λ is the transmuting parameter. The generalization was obtained by transforming the two param-
eter Kumaraswamy distribution through the quadratic rank transmuted map technique. The proposed
transmuted Kumaraswamy distribution led to a better fit than the Kumaraswamy distribution. By com-
bining the transmuted Kumaraswamy prior and the likelihood function of X , the joint distribution of X
and π is obtained as

fTKw (x, π) = fTKw (π, b, c, λ) f (x | π) . (8)
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The probability mass function of X | π is

f (x | π) =

(
n
x

)
φx (1− φ)n−x

=

(
n
x

)
(2p− 1)n

x∑
i=0

n−x∑
j=0

((
x
i

)(
n− x
j

)
× fn−i−jπi (1− π)j

)
(9)

for x = 0, 1, 2, . . . , n (Warner, 1965). The expression in (8) simplifies to

fTKw (x, π) =bcπb−1
(

1− πb
)c−1

{
1− λ+ 2λ

(
1− πb

)c}(n
x

)
(2p− 1)n

×
x∑

i=0

n−x∑
j=0

((
x
i

)(
n− x
j

)
fn−i−jπi (1− π)j

)
(10)

Using the expansion
(
1− πb

)c−1
=
∑c−1

k=0 (−1)k
(
c− 1
k

)(
πb
)k, The joint probability density function

can be obtained as

fTKw (x, π) =

(
bc
(
n
x

)
(2p− 1)n − λbc

(
n
x

)
(2p− 1)n + 2λbc

(
n
x

)
× (2p− 1)n

(
1− πb

)c)
×

x∑
i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)
×
(
c− 1
k

)
fn−i−jπb+bk+i−1 (1− π)j . (11)

The proposed Bayes estimator is given as

π̂TKw =

∫ 1

0
πfTKw (π|x) dπ

=

∑x
i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i+ 1, j + 1)

)
−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i+ 1, j + 1)

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i+ 1, j + 1)

)
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

)
−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i, j + 1)

)
(12)

Consequently, the mean square error (MSE) of the proposed Bayes estimator π̂TKw is

MSE (π̂TKw) = E (π̂TKw − π)2

=

n∑
x=0

(π̂TKw − π)2 φx (1− φ)n−x (13)

The detailed mathematical derivations of the proposed Bayes estimator are provided in the appendix.
It is noteworthy that the proposed transmuted Kumaraswamy Bayes estimator in (12) reduces to the

existing Bayes estimator given in (5) when the transmuting parameter λ is zero.
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3. Efficiency of the Proposed Estimator
In this section, the efficiency of the proposed Bayes estimator of π is presented based on the comparison 
of mean square error (MSE) of the proposed Bayes estimator and existing estimators of π through a 
simulation study. That is, MSE of π̂TKw, MSE of π̂Kw and MSE of π̂Sw will be compared for varying 
values of π.

3.1 Simulation Study
It is important to note that the proposed estimator is derived from a three-parameter transmuted

Table 1. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 20, x = 9, p = 
0.2, p = 0.9 and the true prior distribution is Beta(2, 5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 7.11E-04 1.43E-03 1.35E-03 5.56E-19 7.54E-16 7.08E-16
0.15 2.56E-04 5.48E-04 5.12E-04 5.98E-17 3.65E-14 3.41E-14
0.2 8.71E-05 2.00E-04 1.86E-04 1.25E-14 8.92E-13 8.30E-13

0.25 2.78E-05 6.95E-05 6.42E-05 5.81E-13 1.34E-11 1.24E-11
0.3 8.22E-06 2.28E-05 2.09E-05 1.37E-11 1.38E-10 1.27E-10

0.35 2.22E-06 7.04E-06 6.41E-06 2.07E-10 1.06E-09 9.66E-10
0.4 5.37E-07 2.02E-06 1.82E-06 2.27E-09 6.42E-09 5.78E-09

0.45 1.12E-07 5.37E-07 4.78E-07 1.95E-08 3.16E-08 2.81E-08
0.5 1.91E-08 1.30E-07 1.14E-07 1.37E-07 1.30E-07 1.14E-07

0.55 2.32E-09 2.82E-08 2.41E-08 8.18E-07 4.52E-07 3.87E-07
0.6 1.28E-10 5.35E-09 4.45E-09 4.26E-06 1.34E-06 1.12E-06

0.65 1.28E-12 8.64E-10 6.86E-10 1.97E-05 3.38E-06 2.68E-06
0.7 1.35E-11 1.13E-10 8.31E-11 8.25E-05 7.03E-06 5.18E-06

0.75 8.95E-12 1.08E-11 6.89E-12 3.16E-04 1.13E-05 7.23E-06
0.8 3.18E-12 6.04E-13 2.59E-13 1.12E-03 1.16E-05 4.95E-06

0.85 7.69E-13 6.42E-15 4.12E-16 3.69E-03 2.52E-06 1.62E-07
0.9 1.33E-13 1.91E-15 5.99E-15 1.15E-02 1.81E-05 5.68E-05

0.95 1.63E-14 1.12E-15 1.89E-15 3.37E-02 3.21E-04 5.38E-04

Kumaraswamy distributed prior unlike the two existing estimators considered which were obtained from
two-parameter beta and Kumaraswamy distributed priors.

Since some of the parameters of these estimators are from the prior distributions, setting the same
values for the parameters of the three estimators might result in under or overestimation. This is bound
to affect the efficiencies and give a false impression that an estimator is better than others. To avoid
this situation, a simulation study is conducted for three cases to compare the efficiency of the proposed
estimator with the other two existing Bayes estimators.

In the first case, samples are generated from a beta distribution with a fixed parameter set. The
samples are then fitted separately with both Kumaraswamy and transmuted Kumaraswamy distributions.
This allows for the determination of the parameter sets for the two prior distributions which might be
considered to be equivalent to that of the fixed beta prior distribution. All other parameters are then set
to specific values.
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In the second and third cases, the process is repeated by generating samples from the Kumaraswamy
distribution and the transmuted Kumaraswamy distributions respectively. Sample sizes are set to 100 and
the process is replicated 2000 times for each case. All computations are executed using R development
software. The distributions are fitted using the AdequacyModel package of the software. Figure 1 shows
the plots of the fitted prior distributions and the simulated data from specific distributions which were
used in obtaining the equivalent parameter sets for other distributions.

Table 2. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 100, x =
42, p = 0.2, p = 0.9 and the true prior distribution is Beta(2, 5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 1.42E-15 4.96E-14 4.65E-14 1.45E-77 1.99E-75 1.87E-75
0.15 4.33E-17 6.91E-16 6.46E-16 2.34E-68 9.03E-67 8.44E-67
0.2 9.42E-19 7.98E-18 7.42E-18 8.63E-61 1.41E-59 1.31E-59

0.25 1.53E-20 7.50E-20 6.93E-20 2.40E-54 1.98E-53 1.83E-53
0.3 1.89E-22 5.62E-22 5.16E-22 9.92E-49 4.55E-48 4.18E-48

0.35 1.76E-24 3.28E-24 2.98E-24 9.48E-44 2.56E-43 2.33E-43
0.4 1.22E-26 1.45E-26 1.31E-26 2.83E-39 4.65E-39 4.19E-39

0.45 6.17E-29 4.70E-29 4.18E-29 3.26E-35 3.31E-35 2.95E-35
0.5 2.22E-31 1.07E-31 9.40E-32 1.71E-31 1.07E-31 9.40E-32

0.55 5.45E-34 1.65E-34 1.41E-34 4.61E-28 1.77E-28 1.51E-28
0.6 8.79E-37 1.60E-37 1.33E-37 7.05E-25 1.59E-25 1.32E-25

0.65 8.78E-40 9.11E-41 7.23E-41 6.57E-22 8.32E-23 6.61E-23
0.7 5.07E-43 2.72E-44 2.01E-44 3.99E-19 2.57E-20 1.90E-20

0.75 1.55E-46 3.62E-48 2.31E-48 1.66E-16 4.58E-18 2.93E-18
0.8 2.25E-50 1.56E-52 6.68E-53 4.91E-14 3.99E-16 1.71E-16

0.85 1.35E-54 6.30E-58 4.04E-59 1.08E-11 5.88E-15 3.77E-16
0.9 2.72E-59 3.01E-62 9.45E-62 1.80E-09 2.31E-12 7.23E-12

0.95 1.43E-64 9.76E-67 1.64E-66 2.36E-07 1.85E-09 3.10E-09

In the first case where data were simulated from Beta(2, 5), the Kumaraswamy distribution and
transmuted Kumaraswamy which can be considered to appropriately fit the data set areKum(1.74, 6.64)
and TKum(1.63, 5.57, 0.02) respectively as shown in Figure 1(a). In the second case, appropriate fits
were obtained by Beta(2.56, 4.42) and TKum(1.89, 4.70,−0.09) using data from Kum(2, 5) while
Beta(2.38, 5.11) and Kum(1.92, 6.47) appropriately fit data from TKum(2, 5, 0.5) in the third case as
shown in Figures 1(b) and (c) respectively.

3.2 Efficiency with Fixed Set of Parameters for Beta Prior

In ascertaining the performance of an estimator of a parameter, one may judge its performance based
on its mean square error (MSE) compared to the MSEs of other estimators of the same parameter. The
performance of the proposed estimator π̂TKw of π is compared with the performance of estimators π̂SW
and π̂KW based on their MSEs. Suppose the true prior distribution is Beta(2, 5), the equivalent Ku-
maraswamy distribution is Kum(1.74, 6.64) and the equivalent transmuted Kumaraswamy distribution
is TKum(1.63, 5.57, 0.02) as described in section (3.1). Using these prior distributions for correspond-
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Table 3. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 20, x =
0.9, p = 0.2, p = 0.9 and the true prior distribution is Kum(2, 5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 8.36E-04 1.05E-03 1.32E-03 3.93E-18 5.51E-16 6.94E-16
0.15 3.06E-04 3.91E-04 5.01E-04 2.17E-18 2.60E-14 3.34E-14
0.2 1.06E-04 1.39E-04 1.82E-04 3.94E-15 6.20E-13 8.10E-13

0.25 3.46E-05 4.67E-05 6.26E-05 3.11E-13 8.98E-12 1.20E-11
0.3 1.06E-05 1.47E-05 2.04E-05 8.89E-12 8.92E-11 1.23E-10

0.35 2.97E-06 4.34E-06 6.21E-06 1.49E-10 6.55E-10 9.37E-10
0.4 7.59E-07 1.18E-06 1.76E-06 1.74E-09 3.73E-09 5.59E-09

0.45 1.72E-07 2.89E-07 4.60E-07 1.56E-08 1.70E-08 2.70E-08
0.5 3.34E-08 6.33E-08 1.09E-07 1.13E-07 6.33E-08 1.09E-07

0.55 5.21E-09 1.19E-08 2.29E-08 6.92E-07 1.92E-07 3.68E-07
0.6 5.63E-10 1.84E-09 4.18E-09 3.67E-06 4.61E-07 1.05E-06

0.65 2.50E-11 2.08E-10 6.34E-10 1.72E-05 8.15E-07 2.48E-06
0.7 6.43E-13 1.31E-11 7.46E-11 7.29E-05 8.15E-07 4.66E-06

0.75 3.00E-12 4.37E-14 5.84E-12 2.82E-04 4.58E-08 6.12E-06
0.8 1.61E-12 2.28E-13 1.79E-13 1.01E-03 4.36E-06 3.43E-06

0.85 4.69E-13 1.51E-13 2.72E-15 3.35E-03 5.94E-05 1.07E-06
0.9 9.02E-14 4.04E-14 7.76E-15 1.05E-02 3.83E-04 7.36E-05

0.95 1.19E-14 6.35E-15 2.17E-15 3.09E-02 1.81E-03 6.19E-04

ing estimators, MSE of each estimator is computed for various values of π and some p.
Table 1 presents MSEs of π̂SW , π̂KW and π̂TKw for small sample size (n = 20) at some values of p 

and π. It is observed at p = 0.2 that the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.70 
while MSE of π̂TKw is less than MSE of π̂KW . However, Kumaraswamy beta estimator π̂KW achieves 
the least MSE when 0.90 ≤ π ≤ 1 while the proposed transmuted Kumaraswamy estimator π̂TKw

achieves the least MSE when 0.75 ≤ π ≤ 0.85. At p = 0.9, the estimator π̂SW achieves the least MSE 
when 0.10 ≤ π ≤ 0.45 while MSE of π̂TKw is less than MSE of π̂KW . The Kumaraswamy beta esti-
mator π̂KW achieves the least MSE when 0.90 ≤ π ≤ 1 while the proposed transmuted Kumaraswamy 
estimator π̂TKw achieves the least MSE when 0.50 ≤ π ≤ 0.85. The proposed estimator π̂TKw performs 
better than π̂KW and π̂SW in terms of MSE when the value of π is moderately large.

Table 2 presents the MSEs of π̂SW , π̂KW & π̂TKw for large sample size (n = 100) at some values of p 
and π. It is observed at p = 0.2 that the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.40 
while MSE of π̂TKw is less than MSE of π̂KW . The proposed transmuted Kumaraswamy estimator 
π̂TKw achieves the least MSE when 0.45 ≤ π ≤ 0.85 while Kumaraswamy beta estimator π̂KW achieves 
the least MSE when 0.90 ≤ π ≤ 1. The results are similar for p = 0.9. These results confirm that the 
proposed estimator π̂TKw performs better than π̂KW and π̂SW in terms of MSE when the value of π is 
moderately large.

3.3 Efficiency with Fixed Set of Parameters for Kumaraswamy Prior

Suppose the true prior distribution is Kum(2, 5), the equivalent Beta distribution is Beta(2.56, 4.42)
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and the equivalent transmuted Kumaraswamy distribution is TKum(1.89, 4.70,−0.09) as described
in section 3.1. Using these prior distributions for corresponding estimators, MSE of each estimator is
computed for various values of π and some p.

Table (3) presents MSEs of π̂SW , π̂KW and π̂TKw for for small sample sample size (n = 20) at
some values of p and π when the true prior distribution is Kum(2, 5). It is observed at p = 0.2 that
the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.70. However, the estimator π̂KW

achieves the least MSE when 0.70 ≤ π ≤ 0.75 while the estimator π̂TKw achieves the least MSE when
0.80 ≤ π ≤ 1. At p = 0.9, the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.45. The
estimator π̂KW achieves the least MSE when 0.50 ≤ π ≤ 0.75 while the π̂TKw achieves the least MSE
when 0.80 ≤ π ≤ 1.

Table 4 presents the MSEs of π̂SW , π̂KW and π̂TKw for large sample sample size (n = 100) at
some values of p and π when the true prior distribution is Kum(2, 5). It is observed at p = 0.2 that
the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.25. The estimator π̂TKw achieves the
least MSE when 0.80 ≤ π ≤ 1 while Kumaraswamy beta estimator π̂KW achieves the least MSE when
0.30 ≤ π ≤ 0.75. At p = 0.9, the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.40. The
estimator π̂KW achieves the least MSE when 0.45 ≤ π ≤ 0.75 while the estimator π̂TKw achieves the
least MSE when 0.80 ≤ π ≤ 1.

Table 4. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 100, x =
42, p = 0.2, p = 0.9 and the true prior distribution is Kum(2, 5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 8.34E-15 3.62E-14 4.56E-14 1.05E-77 1.46E-75 1.83E-75
0.15 1.79E-16 4.93E-16 6.32E-16 1.96E-68 6.45E-67 8.26E-67
0.2 3.08E-18 5.54E-18 7.24E-18 7.64E-61 9.77E-60 1.28E-59

0.25 4.24E-20 5.04E-20 6.75E-20 2.19E-54 1.33E-53 1.78E-53
0.3 4.61E-22 3.63E-22 5.01E-22 9.21E-49 2.94E-48 4.06E-48

0.35 3.89E-24 2.02E-24 2.89E-24 8.91E-44 1.58E-43 2.26E-43
0.4 2.50E-26 8.42E-27 1.26E-26 2.68E-39 2.70E-39 4.05E-39

0.45 1.19E-28 2.53E-29 4.02E-29 3.11E-35 1.79E-35 2.84E-35
0.5 4.04E-31 5.23E-32 8.99E-32 1.64E-31 5.23E-32 8.99E-32

0.55 9.50E-34 6.98E-35 1.34E-34 4.44E-28 7.48E-29 1.44E-28
0.6 1.47E-36 5.50E-38 1.25E-37 6.81E-25 5.47E-26 1.24E-25

0.65 1.42E-39 2.20E-41 6.68E-41 6.37E-22 2.01E-23 6.10E-23
0.7 7.97E-43 3.15E-45 1.80E-44 3.87E-19 2.98E-21 1.70E-20

0.75 2.38E-46 1.46E-50 1.96E-48 1.61E-16 1.86E-20 2.48E-18
0.8 3.38E-50 5.89E-53 4.63E-53 4.79E-14 1.51E-16 1.18E-16

0.85 1.97E-54 1.48E-56 2.67E-58 1.05E-11 1.38E-13 2.49E-15
0.9 3.91E-59 6.38E-61 1.22E-61 1.76E-09 4.88E-11 9.37E-12

0.95 2.02E-64 5.51E-66 1.88E-66 2.31E-07 1.04E-08 3.56E-09

3.4 Efficiency with Fixed Set of Parameters for Transmuted Kumaraswamy Prior

Suppose the true prior distribution is TKum(2, 5, 0.5), the equivalent Beta distribution isBeta(2.38, 5.11)
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and the equivalent Kumaraswamy distribution is Kum(1.92, 6.47) as described in section 3.1. Using
these prior distributions for corresponding estimators, MSE of each estimator is computed for various
values of π and some p. Table 5 presents MSEs of π̂SW , π̂KW and π̂TKw for small sample size (n = 20)
at some values of p and π when the true prior distribution is TKum(2, 5, 0.5). It is observed at p = 0.2
that the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.65. However, the estimator π̂KW

achieves the least MSE when 0.80 ≤ π ≤ 1.00 while the estimator π̂TKw achieves the least MSE when
0.70 ≤ π ≤ 0.75. At p = 0.9, the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.40. The
estimator π̂KW achieves the least MSE when 0.80 ≤ π ≤ 1.00 while the π̂TKw achieves the least MSE
when 0.45 ≤ π ≤ 0.75.

Table (6) presents the MSEs of π̂SW , π̂KW and π̂TKw for large sample size (n = 100) at some
values of p and π when the true prior distribution is TKum(2, 5, 0.5). It is observed at p = 0.2 that the
estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.25. The estimator π̂TKw achieves the least
MSE when 0.30 ≤ π ≤ 0.75 while Kumaraswamy beta estimator π̂KW achieves the least MSE when
0.80 ≤ π ≤ 1. At p = 0.9, the estimator π̂SW achieves the least MSE when 0.10 ≤ π ≤ 0.35. The
estimator π̂KW achieves the least MSE when 0.80 ≤ π ≤ 1 while the estimator π̂TKw achieves the least
MSE when 0.40 ≤ π ≤ 0.75.

Table 5. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 20, x =
0.9, p = 0.2, p = 0.9 and the true prior distribution is TKum(2, 5, 0.5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 7.25E-04 1.42E-03 9.41E-04 2.03E-18 7.48E-16 4.95E-16
0.15 2.62E-04 5.43E-04 3.48E-04 7.23E-18 3.62E-14 2.32E-14
0.2 8.92E-05 1.98E-04 1.22E-04 7.20E-15 8.84E-13 5.45E-13

0.25 2.85E-05 6.88E-05 4.06E-05 4.23E-13 1.32E-11 7.81E-12
0.3 8.47E-06 2.26E-05 1.26E-05 1.09E-11 1.37E-10 7.63E-11

0.35 2.30E-06 6.96E-06 3.64E-06 1.74E-10 1.05E-09 5.49E-10
0.4 5.61E-07 2.00E-06 9.61E-07 1.97E-09 6.34E-09 3.05E-09

0.45 1.19E-07 5.30E-07 2.28E-07 1.73E-08 3.12E-08 1.34E-08
0.5 2.06E-08 1.28E-07 4.75E-08 1.24E-07 1.28E-07 4.75E-08

0.55 2.59E-09 2.77E-08 8.29E-09 7.48E-07 4.44E-07 1.33E-07
0.6 1.62E-10 5.24E-09 1.12E-09 3.93E-06 1.31E-06 2.81E-07

0.65 1.80E-13 8.42E-10 9.64E-11 1.83E-05 3.29E-06 3.77E-07
0.7 1.11E-11 1.09E-10 2.11E-12 7.72E-05 6.79E-06 1.32E-07

0.75 8.10E-12 1.03E-11 5.49E-13 2.97E-04 1.08E-05 5.76E-07
0.8 2.97E-12 5.55E-13 7.49E-13 1.06E-03 1.06E-05 1.43E-05

0.85 7.31E-13 4.62E-15 2.85E-13 3.50E-03 1.81E-06 1.12E-04
0.9 1.28E-13 2.28E-15 6.23E-14 1.09E-02 2.16E-05 5.91E-04

0.95 1.58E-14 1.21E-15 8.83E-15 3.21E-02 3.44E-04 2.52E-03

3.5 Effect of Transmuting Parameter on the Efficiency of the Estimates with Transmuted Kumaraswamy
Prior

It is pertinent to examine the effect of transmuting parameter on the estimator π̂TKw. Consider an
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Table 6. Comparison of MSE of π̂SW , π̂KW and π̂TKw at varying values of π when n = 100, x =
42, p = 0.2, p = 0.9 and the true prior distribution is TKum(2, 5, 0.5)

π

p = 0.2 p = 0.9

MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw) MSE(π̂SW ) MSE(π̂KW ) MSE(π̂TKw)

0.1 5.18E-15 4.92E-14 3.25E-14 1.19E-77 1.98E-75 1.31E-75
0.15 1.19E-16 6.85E-16 4.39E-16 2.09E-68 8.96E-67 5.74E-67
0.2 2.17E-18 7.91E-18 4.88E-18 7.99E-61 1.39E-59 8.60E-60

0.25 3.11E-20 7.43E-20 4.38E-20 2.26E-54 1.96E-53 1.15E-53
0.3 3.49E-22 5.56E-22 3.11E-22 9.46E-49 4.51E-48 2.52E-48

0.35 3.02E-24 3.24E-24 1.69E-24 9.11E-44 2.53E-43 1.32E-43
0.4 1.98E-26 1.43E-26 6.88E-27 2.73E-39 4.59E-39 2.21E-39

0.45 9.59E-29 4.64E-29 2.00E-29 3.16E-35 3.27E-35 1.41E-35
0.5 3.32E-31 1.06E-31 3.93E-32 1.67E-31 1.06E-31 3.93E-32

0.55 7.91E-34 1.62E-34 4.86E-35 4.50E-28 1.73E-28 5.20E-29
0.6 1.24E-36 1.57E-37 3.36E-38 6.89E-25 1.56E-25 3.34E-26

0.65 1.21E-39 8.87E-41 1.02E-41 6.44E-22 8.10E-23 9.28E-24
0.7 6.85E-43 2.63E-44 5.09E-46 3.92E-19 2.49E-20 4.82E-22

0.75 2.06E-46 3.44E-48 1.84E-49 1.63E-16 4.36E-18 2.33E-19
0.8 2.95E-50 1.43E-52 1.93E-52 4.83E-14 3.67E-16 4.95E-16

0.85 1.73E-54 4.53E-58 2.80E-56 1.06E-11 4.22E-15 2.61E-13
0.9 3.46E-59 3.60E-62 9.83E-61 1.78E-09 2.76E-12 7.53E-11

0.95 1.80E-64 1.05E-66 7.66E-66 2.33E-07 1.98E-09 1.45E-08

experiment where the prior is assumed to be distributed as TKum(2, 5, λ) and the transmuting 
parameter λ is varied on {−1, 1]. Using these priors, different estimates are obtained using the estimators 
π̂TKw and the corresponding MSEs are computed. The result obtained is shown in Figure (2). From the 
result, it is clear that the MSE reduces for all value of p when λ ≥ −0.5. The greatest value of the MSE is 
obtained when λ = −0.6. The MSE increases as the λ increases from −0.8 to 0.6 but decreases with 
increase in λ every other interval.

4. Empirical applications
The study adopted benchmark data obtained by administering survey questionnaires on abortion and the 
use of contraceptives by some women in Akure metropolis, Nigeria (Adepetun and Adewara, 2017). A 
total of 300 questionnaires were administered with 279 returned. Generally, most single women in 
Nigeria avoid answering questions related to their sexual lives and such question as “have you 
committed abortion?” and “do you use a contraceptive during sex?”. The questions are considered 
sensitive.

4.1 Abortion data

The data contains 275 valid responses with 113 of the respondents agreeing to have committed abortion. 
Having assumed priors of the Beta, Kumaraswamy and Transmuted Kumaraswamy distributed forms, the 
parameters of the distributions are obtained through bootstrapping. A random sample of size 50 is 
selected from the 275 observations and the proportion of respondents with the positive responses is 
determined. This process is repeated 2000 times. This is done to generate the best fit for the prior 
distributions.
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Descriptive statistics of sample proportions obtained are presented in Table (7). The parameters

Table 7. Descriptive statistics of proportions of respondents with positive response to abortion questions

Mean Median Variance Max Min

0.4102 0.4000 0.00395 0.6400 0.2000

of the prior distributions are determined by fitting the prior distributions to the estimated sample pro-
portions. The priors which best fit the data for the distributions considered are Beta(24.594, 35.235),
Kum(5.595, 99.930) and Tkum(7.283, 240.510, 0.800) respectively as shown in Figure (3). Using
these fitted prior distributions, the MSE for the three estimators are obtained as shown in Table (8). It is
observed from the table that mean square errors of the three estimators are very small. They are almost
zero for each value of p. However, the estimator π̂SW achieves the least MSE. The low performance of
π̂TKw can be attributed to the fact that estimated mean proportion is less than 0.50 as shown in Table (7)

Table 8. Comparison of MSE of π̂SW , π̂KW and π̂TKw when n = 275 , x = 113 at varying values of p
for the abortion data

p MSE MSE MSE

0.7 1.41E-93 7.93E-93 8.10E-93
0.75 7.90E-96 3.85E-95 3.93E-95
0.8 3.81E-98 1.68E-97 1.72E-97

0.85 1.60E-100 6.60E-100 6.74E-100
0.9 5.91E-103 2.31E-102 2.36E-102

4.2 Contraceptive data
The data was obtained by asking the respondents the question “Do you use a contraceptive 

during sex?” and 259 valid responses with 125 admitting to not using contraceptives. A procedure 
similar to what was carried out in section 4.1 was also employed in obtaining the parameters of the 
priors for the contraceptive data. Descriptive statistics of sample proportions obtained are presented in 
Table 9.

Table 9. Descriptive statistics of proportions of respondents with positive response to use of 
contraceptive

Mean Median Variance Max Min

0.4848 0.4800 0.0039 0.7200 0.2800

Using these fitted prior distributions, shown in Figure 4, MSEs for the three estimators are obtained
as shown in Table 10. It is observed from the table that all the three estimators perform well in terms of
their MSEs. Their MSEs are infinitesimal, almost zero for each value of p. However, the estimator π̂SW
achieves the least MSE. The low performance of π̂TKw can also be attributed to the fact that estimated
mean proportion is less than 0.50 as shown in Table 9.

5. Conclusion

A Bayes estimator is proposed in this study for estimating population proportion of sensitive attribute
with transmuted Kumaraswamy prior adopting Warner’s randomized response technique. Efficiency of
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Table 10. Comparison of MSE of π̂SW , π̂KW and π̂TKw when n = 259 , x = 125 at varying values of
p for the Contraceptive data

p MSE MSE MSE

0.7 1.79E-81 6.24E-81 7.50E-81
0.75 8.58E-82 2.50E-81 3.01E-81
0.8 3.87E-82 1.00E-81 1.20E-81

0.85 1.68E-82 3.98E-82 4.78E-82
0.9 7.15E-83 1.58E-82 1.90E-82

the proposed Bayesian estimator is considered with the existing Bayesian estimators developed with 
simple beta and Kumaraswamy priors through both simulation study and real life data on abortion and 
use of contraceptives among some women at varying values of fixed set of parameters in the priors and 
sample sizes. Findings from this study show that the proposed estimator is highly efficient at some high 
values of pi. At small values of π, the proposed estimator competes well with other estimators. 
Efficiency of the proposed estimator for fixed set of parameters in each prior was determined. Similarly, 
the effect of varying the values of the transmuting parameter of the newly introduced transmuted 
Kumaraswamy prior to mean square errors was also established as seen in Figure 2. Consequently, the 
proposed estimator is considered suitable for survey sampling of respondents with respect to sensitive 
attributes. Also, the mean square errors of the three competing Bayesian estimators are almost zero for 
the two benchmark real examples.
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Appendix

Derivations of the proposed Bayes estimator

Let y = bc

(
n
x

)
(2p− 1)n, the expression in (11) yields

fTKw (x, π) =
(
y − λy + 2λy

(
1− πb

)c) x∑
i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jπb+bk+i−1 (1− π)j

= y

( x∑
i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jπb+bk+i−1 (1− π)j

− λ
x∑

i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jπb+bk+i−1 (1− π)j

+ 2λ
x∑

i=0

n−x∑
j=0

c−1∑
k=0

c∑
l=0

(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jπb+bk+bl+i−1 (1− π)j

)
(14)

The marginal distribution of X is obtained from fTKw (x, π) by integrating it with respect to π as

fTKw (x) =

∫ 1

0
fTKw (x, π) dπ

= y

x∑
i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

− λ
x∑

i=0

n−x∑
j=0

c−1∑
k=0

(−1)k
(
x
i

)(
n− x
j

)(
c− 1
i

)
fn−i−jβ (b+ bk + i, j + 1)

+ 2λ

x∑
i=0

n−x∑
j=0

c−1∑
k=0

c∑
l=0

(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i, j + 1)

(15)

where ∫ 1

0
πb+bk+i−1 (1− π)j dπ = β (b+ bk + i, j + 1) =

Γ(b+ bk + i)Γ(j + 1)

Γ(b+ bk + i+ j + 1)
(16)

and ∫ 1

0
πb+bk+bl+i−1 (1− π)j dπ = β (b+ bk + bl + i, j + 1) =

Γ(b+ bk + bl + i)Γ(j + 1)

Γ(b+ bk + bl + i+ j + 1)
(17)

The posterior distribution of π given X is derived as

fTKw (π|x) =
fTKw (x, π)

fTKw (x)

=

∑x
i=0

∑n−x
j=0

∑c−1
k=0 (−1)k U1 (n, x, b, c, i, j, k)

−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0 (−1)k U1 (n, x, b, c, i, j, k)

+2λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0 (−1)k+l U2 (n, x, b, c, i, j, k, l)∑x

i=0

∑n−x
j=0

∑c−1
k=0 (−1)k T1 (n, x, b, c, i, j, k)

−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0 (−1)k T1 (n, x, b, c, i, j, k)

+2λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0 (−1)k+l T2 (n, x, b, c, i, j, k, l)

(18)
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where

U1

(
n, x, b, c, i, j, k

)
=

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jπb+bk+i−1 (1− π)j ,

U2

(
n, x, b, c, i, j, k, l

)
=

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jπb+bk+bl+i−1 (1− π)j ,

T1

(
n, x, b, c, i, j, k

)
=

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

and

T2

(
n, x, b, c, i, j, k, l

)
=

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i, j + 1) .

The proposed Bayes estimator with transmuted Kumaraswamy prior is defined as

π̂TKw =

∫ 1

0
πfTKw (π|x) dπ

=

∑x
i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−j

∫ 1
0 π

b+bk+i (1− π)j dπ

−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−j

∫ 1
0 π

b+bk+i (1− π)j dπ

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−j

∫ 1
0 π

b+bk+i (1− π)j dπ

)
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−j

∫ 1
0 π

b+bk+i (1− π)j dπ

)
−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−j

∫ 1
0 π

b+bk+i (1− π)j dπ

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ

∫ 1
0 π

b+bk+i (1− π)j dπ

)
(19)

Evaluating the integral in (19) yields

π̂TKw = ∑x
i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i+ 1, j + 1)

)
−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i+ 1, j + 1)

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i+ 1, j + 1)

)
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

)
−λ
∑x

i=0

∑n−x
j=0

∑c−1
k=0

(
(−1)k

(
x
i

)(
n− x
j

)(
c− 1
k

)
fn−i−jβ (b+ bk + i, j + 1)

)
+2λ

∑x
i=0

∑n−x
j=0

∑c−1
k=0

∑c
l=0

(
(−1)k+l

(
x
i

)(
n− x
j

)(
c− 1
k

)(
c
l

)
fn−i−jβ (b+ bk + bl + i, j + 1)

)
(20)
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(a) Data Simulated from beta(2, 5) (b) Data Simulated from Kum(2, 5)

(c) Data Simulated from TKum(2, 5, 0.5)

Fig. 1. Plots of fitted prior distributions and simulated data from (a) beta(2, 5), (b) Kum(2, 5) and (c)
Transmuted Kum(2, 5, 0.5).
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(a) π̂TKw for λ ∈ [−1, 1]
(b) π̂TKw for λ ∈ [−1,−0.7]

(c) π̂TKw for λ ∈ [−0.5, 1]

Fig. 2. Plot of MSE of π̂TKw for various values of λ
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Fig. 3. Plot of the proportion of positive response obtained through bootstrapping and the fitted distribu-
tions for abortion data.

Fig. 4. Plot of the proportion of positive response obtained through bootstrapping and the fitted distribu-
tions for contraceptive data.
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