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Abstract

The depth and pose information are the basic issues in the field of robotics, autonomous driving, 
and virtual reality, and are also the focus and difficult issues of computer vision research. The 
supervised monocular depth and pose estimation learning are not feasible in environments where 
labeled data is not abundant. Self-supervised monocular video methods can learn effectively only by 
applying photometric constraints without expensive ground true depth label constraints, which results in 
an inefficient training process and suboptimal estimation accuracy. To solve these problems, a 
monocular weakly supervised depth and pose estimation method based on multi-information fusion is 
proposed in this paper. First, we design a high-precision stereo vision method to generate a depth and 
pose data as the "Ground Truth" labels to solve the problem that the ground truth labels are 
difficult to obtain. Then, we construct a multi-information fusion network model based on the 
"Ground truth" labels, video sequence, and IMU information to improve the estimation accuracy. 
Finally, we design the loss function of supervised cues based on "Ground Truth" labels cues and self-
supervised cues to optimize our model. In the testing phase, the network model can separately 
output high-precision depth and pose data from a monocular video sequence. The resulting model 
outperforms mainstream monocular depth and poses estimation methods as well as the partial stereo 
matching method in the challenging KITTI dataset by only using a small number of real training 
data(200 pairs)

Keywords: Depth-pose estimation; "Ground Truth" labels; inertial measurement unit; multi-information 
fusion; weakly supervised learning

1. Introduction

In recent decades, science researchers have gradually shifted from the cognition of the 
computer’s two-dimensional plane image to the computer’s processing of the real three-dimensional 
world in the objective scene. How to reconstruct the three-dimensional information of the scene 
from single or multiple images, that is, image depth estimation is a very important basic 
topic in the current computer vision research. With the in-depth research in the field of computer 
vision, three-dimensional information such as the depth of images has gradually been applied to the 
fields of intelligent robots, intelligent medical care, unmanned driving, target detection, and 
tracking, face recognition, 3D video production, and object detection which has great social value 
and economic value (Albarqouni et al., 2016; Chen et al., 2017; Cunha et al., 2011; Cui et al., 
2018; Fang et al., 2002; Feng et al., 2017; Kao et al., 2016; Shotton et al., 2011; Sielhorst et al., 
2006; Zhou & Koltun, 2014; Xie et al., 2016; Zhou et al., 2021). Generally, the acquisition methods of 
depth information are mainly tackled with two types of technical methodologies namely active depth 
acquisition and passive depth acquisition. Active methods mainly include laser scanning (Biber et 
al., 2004), TOF (Time of Flight) camera (Foix et al., 2011; Zhu et al., 2010), and structured light 
camera (Han et al., 2013; Scharstein C Szeliski, 2003). However, these depth sensor devices often 
have certain limitations. For example, lidar is very expensive and the depth information collected is 
sparse and uneven (Scharstein & Szeliski, n.d.), while structured light and TOF cameras are 
subject to light (indoor only) and distance limitations (below 5m). While camera sensor is widely 
concerned because of its low cost, simple hardware setting, and long shooting distance. 
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The current image-based depth estimation methods are mainly tackled with two types of technical 
methodologies: stereo matching (Ladicky et al., 2014; Wu et al., 2011; Luo et al., 2016) and 
monocular vision(Saxena et al., 2008; Chen et al., 2016).

Since the stereo matching methods have high accuracy and a few assumptions about imaging 
equipment, it is currently the most widely used depth estimation algorithm. Recent advances in learning 
based methods (Kendall et al., 2017; Chang & Chen, 2018; Song et al., 2020; Zhang, Chen, Bai, Yu, 
Yu, Li & Yang, 2020; Shen et al., 2021) show that the estimation accuracy can be significantly 
improved by deep models trained with pre-trained data and finetuned on another dataset with a 
limited amount of ground truth data. However, the binocular methods need more expensive special 
stereo camera equipment and are prone to camera calibration error and synchronization problems. It 
is easy to be limited by the camera volume during the deployment process. In practical application, the 
monocular camera is more popular, but the accuracy of traditional monocular depth estimation is 
limited due to its ill-posed and geometrically ambiguous problem. It is a very challenging problem to 
estimate the depth of information of the scene in only one image.

In recent years, deep learning technology has shown remarkable advantages in various fields, 
including natural language processing(Khan et al., 2016), image processing(Minaee et al., 2021), 
and computer vision(Al-Hmouz, 2020; Gao et al., 2018), etc. Researchers have begun to use learning-
based methods to solve the ill-posed monocular depth estimation problem(Liu et al., 2015, 2016). 
The current mainstream monocular depth estimation methods based on supervised and self-supervised 
learning generally have some problems. First of all, the supervised method to solve this depth 
prediction problem almost entirely relies on the semantic information of a single image, which direct 
matches it with the ground truth depth. However, it is difficult and impractical to obtain a large 
amount of high-quality ground truth depth data corresponding to the input image. Self-supervised 
methods (Zhan et al., 2018; Yang et al., 2017) usually train a deep network model to find the dense 
correspondence disparity field and then warps the source view into the target view to form the image 
alignment constraints by using the image wrap technique "spatial transformer" (Jaderberg et al., 2015). 
However, these learning methods (Garg et al., 2016; Godard et al., 2017) rely on a large amount of 
high-quality data and effective learning that are often ill-posed and geometrically ambiguous without 
ground truth labels in theory, so the result is usually suboptimal. Currently, the SFMlearner models 
(Zhou et al., 2017; Godard et al., 2019) are based on the traditional structure of the geometric 
principle of motion (SFM). This method not only follows the matching principle of stereo vision but 
also a single-view estimation model. Although the self-supervised SFMlearner model can achieve 
better results, it is only from photometric and temporal consistency between consecutive frames in 
monocular videos, which are prone to overly smoothed depth map estimations. We need more auxiliary 
constraint information to achieve higher precision depth and pose estimation.

To solve this problem, we propose a novel weakly supervised monocular depth and pose estimation 
model based on a multi-information fusion, which is illustrated as shown in Figure 1. Current learning-
based stereo matching uses the insights of decades of multi-view geometry research(Hernandez et al., 
2008) to guide modeling, rather than constructing a black box model(Cheng et al., 2018; Zhang, Chen, 
Bai, Yu, Yu, Li & Yang, 2020). This allows the network to learn the entire model end to end while 
leveraging our geometric knowledge of the stereo problem. What’s more, existing learning-based stereo 
matching models(Zhang et al., 2019; Zhang, Qi, Yang, Prisacariu, Wah & Torr, 2020) can effectively 
perform migration training by being pre-trained in the synthetic dataset(Mayer et al., 2016) and 
finetuning in the application dataset with limited ground truth depth data. Inspired by these ideas, we 
design a "Ground Truth" labels module based on a stereo matching model and pose method to generate a 
depth and pose data offline as weakly supervised labels. At the same time, based on the existing self-
supervised Depth and pose estimation model(Godard et al., 2019), we have improved the network model 
and added an inertial measurement unit data pose estimation module and introduced a multi-sensor 
information fusion module to synchronize motion information from visual perception and inertial data. 
Unlike SFM-Learner (Zhou et al., 2017), which only uses the temporal image loss of continuous 
monocular images, in the training phase, we also use the left and right stereo pairs of consecutive 
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Fig. 1. An overall overview of the proposed method. The overview is divided into two parts, namely the 
"Ground Truth" module, Depth VIO module. First, the "Ground Truth" module can generate "Ground 
Truth" labels as the weak supervision constraint of and the Depth-VIO network. Then, we input 
unlabeled left or right continuous multi-frame view data and IMU data into the proposed the 
Depth_VIO model to estimate depth information and pose information. In the testing phase, we can 
estimate the depth map or the pose data by inputting a single frame of data into the deep network or 
continuous frame data into the pose network.

multiple frames to construct the spatial image loss of the stereo image pairs and weakly supervised 
constraint to optimize the model. In the testing phase, we only use continuous monocular images as 
input data to estimate the scene depth and camera pose. We train and verify the correctness and 
advancement of the proposed method on the challenging autonomous driving data set KITTI(Geiger, 
2012). Through the data fusion training between the end-to-end visual pose and the pose of the inertial 
measurement unit, it is possible to eliminate the frequent manual synchronization and calibration of the 
time stamp between the camera and the IMU when processing the KITTI data set in the traditional 
method. Moreover, the "Ground Truth" labels are used to pre-train the visual-inertial odometry(VIO) 
network, which effectively solves the over-fitting problem in the training process of the CNN-LSTM 
hybrid network. In summary, our contributions are as follows:

(1) This paper proposes a weakly supervised monocular depth and poses an estimation method
based on multi-information fusion for improving estimation accuracy.

(2) We designed a label generation model based on small sample data, which can generate "Ground
Truth" labels to solve the problem of difficult access to ground truth data.

(3) The paper designs a multi-network fusion model including a depth estimation network, visual
pose estimation network, IMU pre-integration network, and fusion network.

(4) This paper combines the cost of weak supervision and self-supervision to construct a new weak
supervision joint optimization loss function and adopts a stepwise optimization method to solve the 
problem that the CNN-LSTM network is difficult to train end-to-end.

The rest of the paper is organized as follows. In Sec. 2, the related work on depth estimation. In 
Sec. 3, the problem sets, network model, and loss function of the proposed method are introduced. In 
Sec. 4, the algorithm flow, experimental process, and test results of the proposed method are displayed. 
In Sec.5, the conclusion.
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2. Related work

2.1 Stereo matching
Depth estimation from stereo matching obeys geometric principles and has little assumption, so 

it is the most widely applicable technique in practical applications. Traditional stereo matching 
methods are usually divided into four steps by Scharstein and Szeliski (Scharstein & Szeliski, 2002): 
matching cost, cost aggregation, disparity calculation or optimization, and disparity refinement. In these 
four steps, cost aggregation is vital for eliminating ambiguity and mismatching, so many cost 
aggregation methods (Yang, 2012; Hosni et al., 2012; Mei et al., 2013) have been modified to refine the 
cost volume and achieve better estimates. In recent years, stereo matching models based on deep 
neural networks, especially the current end-to-end deep learning, have become very popular. In (Pang 
et al., 2017), authors proposed a different cascade of residual convolutional neural network 
architecture composed of two stages to tackle the problem that affects the estimation accuracy in ill-
posed regions. In (Kendall et al., 2017), the authors adopted a novel regressing stereo disparity model 
(GC-net) that incorporated contextual information by 3D convolutions over the cost volume, which 
was formed based on the problem’s geometry, and then used a differentiable argmin function to 
regress disparity values. In (Chang & Chen, 2018), the paper used a pyramid stereo matching network 
(PSM-Net) that included a spatial pyramid pooling module and 3D CNN modules to resolve the 
correspondence in ill-posed regions. In (Guo et al., 2019), the authors proposed a group correlation 
cost volume construction method to improve the estimation accuracy. In (Cheng et al., 2020), 
authors proposed the end-to-end hierarchical framework by incorporating the gold standard pipeline 
for deep stereo matching into the neural architecture search framework. In (Zhang, Chen, Bai, Yu, 
Yu, Li & Yang, 2020), the paper was based on the PSM-Net model to add constraints by filtering the 
unimodal distribution peak of the cost volume at the true disparities, thereby improving performance. 
To reduce the consumption of computational resources by 3D con-volution, researchers have 
gradually used some modules to reduce or replace 3D convolution. GA-net (Zhang et al., 2019) adds 
two new network layers, introducing semi-global cost aggregation and local cost aggregation into 
deep learning, making deep learning follow the traditional cost filtering strategy to refine the network 
structure, and can replace the 3D convolutional layer with high computing cost and memory 
consumption. In (Zhang, Qi, Yang, Prisacariu, Wah & Torr, 2020), the model was developed based 
on GA-Net by proposing a novel domain normalization approach and a trainable non-local graph-based 
filter for further performance improvement. In (Wang et al., 2019), the authors proposed a multi-
resolution parallax real-time stereo matching method based on a U-Net network. In (Tankovich et al., 
2021; Yee and Chakrabarti, 2020), papers followed this design idea to improve the DCNN inference 
speed. In (Wang et al., 2021), the models employ a recurrent unit to iteratively update disparity 
estimations at high resolution for achieving a trade-off between accuracy and efficiency. To reduce 
the dependence on ground truth disparity labels, few kinds of literature have proposed unsupervised 
stereo matching methods. In (Zhong et al., 2017), authors designed a self-supervised deep network 
based on GC-net (Kendall et al., 2017) with image warping error as the loss function to compute dense 
disparity maps directly. Reference(Chao et al., 2017) presented a deep unsupervised stereo matching 
framework to learn cost-volume with iteratively updating network parameters and guide the training 
by the left-right check. Then appropriate matches were selected as training data in future iterations. In 
(Zhang et al., 2018), the authors proposed the self-supervised active stereo matching method based on 
deep learning for the first time, which combines the cues of active lighting and passive light to improve 
the accuracy of depth prediction further. In (Liu et al., 2020), the model leverage the geometric 
constraints about stereo video sequences to perform disparity and optical flow estimation.

2.2 Monocular depth estimation
Due to volume, calibration errors, and synchronization problems that may exist in the 

deployment and the setting of binocular cameras, monocular cameras are still much more preferred in 
most scenarios. Therefore, a large number of researchers have currently devoted themselves to 
monocular depth estimation, and some research results have been achieved in the literature.

Traditional geometry-based methods mainly rely on correspondences search(Bian et al., 2017), model
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fitting(Bian e t a l., 2 019), a nd m ultiview t riangulation(Hernandez e t a l., 2 008). T herefore, t he model 
needs at least two views from different perspectives in the same scene as input to calculate depth. Before 
the emergence of learning-based methods, estimating depth from a single perspective was an inherent 
geometric ambiguity and an ill-posed problem. Generally, learning-based methods can be divided into 
two categories according to the presence or absence of ground truth labels: supervised depth estima-
tion, self-supervised depth estimation. The supervised depth estimation address this issue by utilizing 
the relationship between the input image and the corresponding ground truth depth data to fit the pre-
dictive model. References(Eigen et al., 2014; Eigen & Fergus, 2015) first used two convolutional 
neural networks(CNN) to integrate global and local information. In (Laina et al., 2016), authors pro-
posed an end-to-end deeper encoder-decoder hourglass network architecture based fully convolutional 
network(FCN)(Long et al., 2015) and used the reverse Huber loss to optimize the network model. Sub-
sequently, a lot of related works(Laina et al., 2016; Ummenhofer et al., 2017; Fu et al., 2018; Tang & 
Tan, 2018; Yin et al., 2019; Garg et al., 2019; Huynh et al., 2020; de Queiroz Mendes et al., 2021) began 
to appear. Supervised monocular depth estimation needs vast and expensive ground truth depth data, and 
the measure of depth maps is much sparser.

Fig. 2. Illustration of our model architecture. The model architecture mainly includes three parts: the left 
black box is the proposed Depth_VIO model; the right black box is the "Ground Truth" label generation 
model, and the middle red box is the loss function constructed by the left and right black boxes.

An alternative to the supervised depth estimation method is a self-supervised method that poses depth 
prediction as a view synthesis problem. In these methods, the loss of image reconstruction is taken as 
the primary model constraint to optimize the network. In (Xie et al., 2016), model trained a deep con-
volutional network to obtain a probability disparity-like map from a single left view for reconstructing 
the right view by using the image-based rendering algorithm. Reference(Garg et al., 2016) end-to-end 
trained the deep network model to predict the disparity map for synthesizing the right view. Besides, 
the loss function is linearized by the Taylor expansion method to make it fully differentiable. In (Go-
dard et al., 2017), authors used the same depth estimation idea but introduced a more sophisticated image 
reconstruction loss and left-right disparity consistency loss. To achieve a more accurate dense correspon-
dence depth estimation, reference(Kuznietsov et al., 2017) proposed a semi-supervised depth estimation 
method, which takes advantage of self-supervised dense matching and supervised unambiguous depth 
estimation. To make the training process respect the geometric principles, reference(Luo et al., 2018) 
decomposed the monocular depth estimation into a self-supervised view synthesis process and the super-
vised stereo matching process. Based on the traditional theory(Geiger et al., 2011; Leutenegger et al., 
2015; Mur-Artal & Tardós, 2017) of struct from motion or multi-view method, the literatures (Zhou et 
al., 2017; Vijayanarasimhan et al., 2017; Mahjourian et al., 2018; Yang et al., 2018; Zhou et al., 2019; 
Li et al., 2020; Poggi et al., 2020; Guizilini et al., 2020) adopt two CNN networks to end-to-end learning 
depth and pose separately by inputting image sequence at the same time. The pose network provides
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the relative camera transformation for the image warp technique to synthesis adjacent images sequence. 
Following this idea, researchers (Zhan et al., 2018; Li et al., 2018) combined spatial image losses of a 
stereo image pair and temporal image losses of consecutive monocular Images for further performance 
improvement. Since moving objects violate the assumption of a static world in-depth estimation, refer-
ence(Zhou et al., 2017; Godard et al., 2019) used a deep network to learn a mask to mask out the 
moving objects. Many subsequent methods either add optical flow networks(Zhichao & Jianping, 2018; 
Chen et al., 2019) or leverage semantic information(Casser et al., 2019; Huynh et al., 2020; Lee et al., 
2021) to detect moving objects. These methods require additional complex network training and related 
labels. CNN-SVO(Luo et al., 2019) and D3VO (Yang et al., 2020) also train depth and pose 
networks on the calibrated stereo videos by improving network and use geometric loss optimization 
to further improve performance. In (Bian et al., 2021), authors proposed a geometry consistency loss 
to penalizes the in-consistency of predicted depth and proposed a self-discovered mask to 
automatically localize moving objects. Most of the pose networks of the above methods adopt the 
PoseNet model(Kendall et al., 2015). Recent studies(Wang et al., 2017; Almalioglu et al., 2019; Zhan 
et al., 2020) on visual mileage show that recursive convolutional neural networks (RCNNs) are more 
accurate in estimating camera pose. In addition, performing data fusion(Clark et al., 2017; Shamwell et 
al., 2018; Li & Waslander, 2020) of visual odometry and inertial measurement unit data at the 
intermediate feature representation level can further improve the estimation accuracy.

The above-mentioned models(Almalioglu et al., 2019; Zhan et al., 2020; Li & Waslander, 2020) 
based on monocular visual odometry or fused inertial measurement unit data usually require ground 
truth pose data as a supervision label. The self-supervised visual odometry method combined with depth 
estimation only optimizes the pose and depth network through the loss of photometric consistency, which 
often makes the result sub-optimal. In this paper, a high-precision stereo vision odometry method is used 
to generate "Ground Truth" labels. At the same time, a multi-information fusion model based on vision 
and inertial measurement unit data is constructed to improve the estimation accuracy.

3 . Method
Here we describe our weakly supervised monocular depth estimation method for multi-information fu-
sion. We first i ntroduce t he i mplementation p rocess o f t his m ethod, t hen d escribe t he " Ground Truth" 
labels model, and finally, d escribe t he n etwork a nd l oss f unction o f t he w eakly s upervised monocular 
depth and pose estimation model of multi-information fusion.

3.1 Problem Setup
The proposed multi-information fusion weakly supervised monocular depth and pose estimation 

model architecture is shown in Figure 2. We denote the left and right training image sequences as
[Il 1, ..., I  ] and [I1

r , ..., Ik
r ] respectively, where the subsequent representation It is a target left or right im-

age, and It
s is a target stereo pair. The upper part is that we build a "Ground Truth" label generation mod-

ule based on the Guided Aggregation network(GA-Net)(Zhang et al., 2019) and the well-known Iterative
Closest Point (ICP)(Yang et al., 2015) algorithm. Input the left and right continuous video frames It

s to 
the model to generate depth map[D l

t ,  t
 ] and 6-DOF Lie algebra pose data [ρt ,φt ] as "Ground Truth" 

labels. The lower part is our multi-information fusion monocular weakly supervised depth and poses 
estimation model(depth-VIO). From the Figure 2, we can see that the model consists of depth estimation 
network, visual pose network, Imu pose network, and fusion network. We can input left or right view 
It to depth network and input left or right continuous video frames [..., It−1, It , It+1, ...] to visual pose 
network. At the same time, the inertial measurement unit(IMU) data([..., I MUt−1, I MUt , I MUt+1, ...]) 
is input into the IMU pose network. Finally, the depth network outputs left and right disparity maps 
[D̂ lt , ]. The fusion LSTM is used to integrate the visual pose feature and IMU pose feature to produce
the final 6-DoF relative pose(VIO-se3) [..., ε̂t−1, ε̂t , ε̂t+1), .... In the training phase, we can construct three
types of losses to optimize the model: weak supervision losses of the "Ground Truth" label, spatial im-
age losses of a stereo image pair, and temporal image losses of consecutive monocular images. The loss
function will be discussed in detail in section 2.4. In the testing phase, we can estimate the depth and
camera pose separately by inputting a monocular video sequence.
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3.2 "Ground Truth" Labels Model
Traditional semi-global matching (SGM)(Hirschmuller, 2007) and cost filtering(Hosni et al., 2012) 

are all robust and efficient c ost a ggregation m ethods t hat h ave b een w idely u sed i n m any industrial 
products. GA-Net(Zhang et al., 2019) introduces a semi-global guided aggregation layer (SGA) which 
implements a differentiable approximation of semi-global matching (SGM) and aggregates the matching 
cost in different directions over the whole image. This makes the learning-based stereo matching method 
more follow the traditional geometric process, improve the accuracy of disparity estimation. The bad 
pixels average percentage of 200 test images in the KITTI2015 dataset is shown in Table 1. According to 
the benchmark test(Menze and Geiger, 2015), we believe that the disparity error is less than 3 pixels, then 
the estimation of this pixel is correct. We have compared the performance on four evaluation indexes 
of "D1-bg", "D1-fg", "D1-all", and "Runtimes". Therefore, we adopt the GA-Net(Zhang et al., 2019) 
network model to estimate the left and right disparity from left-right stereo pairs, thereby generating 
depth maps and 3D point cloud data. Then, we calculate the relative pose(Stereo-se3) of 6-DoF from 
the point cloud sequence by the well-known Iterative Closest Point (ICP) method (Yang et al., 2015). 
Here we will not introduce the network model of GA-Net, but mainly introduce the generation of the 
subsequent depth map, point cloud and pose data.

Table 1. The bad pixels average percentage. Among them, "D1" refers to the percentage of outliers in 
the first frame of stereo disparity, "bg" refers to the average percentage of outliers only in the background 
area, "fg" refers to the average percentage of outliers only in the foreground area and "all" refers to the 
average percentage of outliers only in the ground truth pixels.

Depth Labels: GA-Net output the left disparity map D l
t and right disparity map D t

r of the target 
view from stereo pairs. According to the epipolar geometry theorem, we can calculate the depth Zt of 
the scene, as shown in Eq. 1.

Zt = f ∗b

D l
t

= f ∗b

xl −xr
(1)

where f denotes the focal length of the binocular camera, and B denotes the baseline of the binocular
camera. Ideally, we can also get the same depth map Zt from the estimated right disparity Dr

t .
At the same time, we also show the qualitative results on Figure3 about "Ground Truth" labels.
Pose Labels: We use the traditional ICP(Iterative Closest Point) algorithm to obtain pose labels.

First, we need to calculate the 3D point cloud data c based on the obtained depth map D l
t or Dr

t . To
reduce the depth estimation error from the GA-Net network, we set the depth value range to 0-80m. If
the estimated depth value is lower than the lowest value or higher than the highest value, we set the value
to the nearest or farthest depth value. The 3D point cloud ct of the view at time t is calculated as Eq.2.

ct (xc , yc , zc ) = K−1Zt [xu , yv ]T (2)

where K is the intrinsic parameter of the left camera.
Then we can use the ICP algorithm to obtain the transformation matrix SE(3) from t −1 frame to t

frame based on the calculated 3D point cloud ct . SE(3) contains the rotation matrix R ∈ SO(3) and the
transformation vector t ∈R3.

SE(3) = IC P (ct−1,ct )

=
{

T =
[

R t
0 1

]
∈R4×4

} (3)

Error D1-bg(%) D1-fg(%) D1-all(%)
All / All 1.48 3.46 1.81
All / Est 1.48 3.46 1.81
Noc / All 1.34 3.11 1.63
Noc / Est 1.34 3.11 1.63
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Fig. 3. The qualitative results of "Ground Truth" depth. Above, (a) is the left or right input images, (b)
is the estimated result, (c) is the error map, and (d) is the depth map.

SO(3) = {
R ∈R3×3|RRT = I,det (R = 1)

}
(4)

However, for a 3-DOF rotation, the expression of SO(3) in nine quantities is too redundant and too
restrictive, so we convert the transformation matrix T into Lie Algebra se(3), which includes a three-
dimensional rotation vector φ and a three-dimensional translation vector ρ .

se(3) = log (T )

=
{
ε=

[
ρ

φ

]
∈R6,ρ ∈R3,φ ∈R3

} (5)

3.3 Depth_VIO Network
Our Depth_VIO network builds upon MonoDepth2(Godard et al., 2019) and extends it by improving 

depth estimation network, replacing visual pose model using CNN-RNN network and introducing inertial 
measurement unit (IMU) model. This section mainly introduces the Depth-VIO network architecture. 
The model mainly includes two networks, namely depth estimation network, visual inertial odometry 
network(VIO) pose network.

3.3.1 Depth Estimation Network
The depth estimation network is shown in Figure 5 that estimates a depth map from a single target 

RGB view. With reference to the performance of the encoding-decoding network structure(Garg et al., 
2016; Godard et al., 2017, 2019) used in the current monocular depth estimation, our depth estimation 
network is built upon by improving the U-Net network(Ronneberger et al., 2015). We adopt Resnet(He 
et al., 2015) as our encoder and the decoding network uses bilinear interpolation for upsampling. In the 
Resnet network, we use three small convolutional layers of 3 × 3 to replace the sizeable convolutional 
layer of 7 × 7 and use the convolutional layer of stride 2 to replace the pooling layer of stride 2. We take 
advantage of skip connections from the encoder’s activation block to the decoder blocks with the same 
resolution to resolve higher resolution details. Inspired by the refinement module in(Dosovitskiy et al., 
2015), we reconnect the multi-scale disparity output after upsampling to the high-resolution features to 
improve the refinement accuracy.
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Fig. 4. Trajectories of "Ground Truth" pose on video sequences. Where, (a) is sequence 00,(b) is se-
quence 02, (c) is sequence 03, (c) is sequence 04, (c) is sequence 05 and (d) is sequence 07.

3.3.2 Visual Inertial Odometry Network:
Visual Odometry Network: Taking inspiration from (Dosovitskiy et al., 2015), the FlowNet net-

work without the refinement module is used as the feature extraction part of the visual odometry(VO) 
network of our VIO model. The configuration of the network is shown in Table 2. The RGB image frame 
is normalized by subtracting the mean training set and dividing by the variance, resizing to a new size as 
640 × 192. A monocular image tensor sequence formed by stacking multiple consecutive sets of front 
and rear frame images ( feature map is 6) is used as input. The conv6_1 and conv6_2 output translation 
and rotation feature side by side, respectively. This output feature will be used as part of the input data 
of the fusion network.

IMU Pre-integration Network: Usually, the sampling frequency of the inertial measurement unit 
is several times higher than the sampling frequency of the camera. To enable the network to learn 
how to implicitly estimate the time offset between the camera and IMU data, we choose the raw IMU 
measurement as the input sample of the network. IMU data include raw linear acceleration α ∈ R3 and

Fig. 5. The depth network architecture of our model. This model is improved on the basis of U-Net
network architecture.
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Table 2. The configuration of the Visual Odometry Network.

Layer
Receptive Stride Feature Output Input

File Map
Input 6 640*192
Conv1 7x7 2 64 320*96 Input
Conv2 5x5 2 128 160*48 Conv1
Conv3 5x5 2 256 80*24 Conv2
Conv3_1 3x3 1 256 80*24 Conv3
Conv4 3x3 2 512 40*12 Conv3_1
Conv4_1 3x3 1 512 40*12 Conv4
Conv5 3x3 2 512 20*6 Conv4_1
Conv5_1 3x3 1 512 20*6 Conv5
Conv6_1 3x3 2 1024 10*3 Conv5_1
Conv6_2 3x3 2 1024 10*3 Conv5_1

raw angular velocity ω ∈ R3 from t − 1 to t + 1. We can obtain raw measurements M ∈ Rn×6, where n is 
the number of IMU samples. Following the VIOlearner(Shamwell et al., 2019), the IMU pre-integration 
network uses two parallel branches of 7 convolutional layers to extract pose information from IMU data. 
Each branch begins with 2 convolutional layers each of 64 single-stride with kernel size 3x5 followed by 
one convolutional layer of 128 filters each of stride 2  with kernel size 3x5 and one convolutional layer 
of 256 filters each of stride 2 with kernel size 3x5. Next, one convolutional layer of 512 filters is applied 
with strides of 2, 1, and 1, and kernels of size 3x5, 3x3, and 3x1. The final networks use three filters of 
kernel size 1 and stride 1 in the angular velocity and linear acceleration pathways. Finally, each output 
is 1 × 3 tensors and concatenated together into a tensor.

Fusion Network: The visual pose feature and IMU pose are concatenated into a tensor to feed into 
the fusion network, which is a two layers LSTM network. The LSTM network is followed by a fully 
connected layer that regresses the fused pose, which maps the features to a 6-DoF pose vector. The final 
outputs are a batch ×(n −1)×6(n is the length of the image sequence) tensor for translation and rotation 
parameters, representing the n motion of the camera between a time window t − n × δt to t + n × δt , δt 
represents the time difference between adjacent video frames.

3.4 Loss Function
We formulate a total loss function Lθ that is composed of the weak supervision losses Lwl , the spatial 

image losses Lsl , and the temporal image losses Lt l . Each constraint term adds a trade-off parameter to 
limit the percentage of the cost in the loss function.

(6)Lθ = αLwl +βLsl + γLt l

Where α,β,γ are the trade-off parameters of each loss term.

3.4.1 Weak Supervision Loss
We use "Ground Truth" labels to supervise our model, thereby constructing a weakly supervised

constraint function.

Lwd = L1(D l
t ,D̂ l

t )+L1(Dr
t ,D̂r

t ) (7)

Lw p = L1(ρt , ρ̂t )+κL1(φt , φ̂t ) (8)

where L1 is the L1 norm operation. Lwd refers to the left and right weakly supervised depth loss, and Lw p

refers to the left or right weakly supervised pose loss. We can construct weakly supervised constraint
functions Lwl =ω1Lwd +ω2Lw p .
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3.4.2 Self-supervised Spatial Image Losses
Appearance Matching Loss: The view reconstruction loss is an image alignment error between origi-

nal stereo pairs and synthesized stereo pairs. Taking inspiration from the loss function(Zhao et al., 2015) 
, we use a combination loss of an L1 loss L1 and a structural similarity(SSI M) (Wang et al., 2004) loss 
Lssi m as the view reconstructed loss Li a .

Ll
i a = Lssi m(I l

t , Î l
t )+ (1−ρ)L1(I l

t , Î l
t )

+(I r
t , Î r

t )+ (1−ρ)L1(I r
t , Î r

t )
(9)

Among them, ρ is a proportional coefficient, and the value is 0.85.
b. Left-Right Disparity Consistency Loss
The left-right disparity maps can transform each other according to the translation of geometric

relations. We define the consistency loss by taking advantage of this characteristic of the disparity map
to improve the prediction accuracy. Inspired by the consistency loss (Godard et al., 2017), we define the
loss formula Ldc using L1 penalty:

Ldc = L1(D̂ l
t (x),D̂r

t (x + D̂ l
t (x)))

+L1(D̂r
t (x),D̂ l

t (x + D̂r
t (x)))

(10)

Where x denotes the pixel position of left or right disparity maps.
We can construct the self-supervised spatial image loss Lsl = s1Li a + s2Lwd .

3.4.3 Self-supervised Temporal Image Losses
We can project each pixel coordinate pt of the target view I t

l onto the p̂s in the source view Is using
Eq. 12. Then we use the differentiable bilinear sampling mechanism proposed in the spatial transformer
network(Jaderberg et al., 2015) to calculate the value of point p̂s by using the 4-pixel neighborhood of
p̂s ((0,0),(0,1),(1,0),(1,1)). Then the calculated value is the warped image Ī t pixel at location pt . The
weighting scale for bilinear sampling is

∑
i , j ωi j = 1

p̂s
∼= K T̂t→sD̂ t (pt )K −1pt (11)

Ī t (pt ) = I s(p̂s) =∑
i , j
ωi j I s(i , j ) (12)

where i ∈ (0,1), j ∈ (0,1), p̂s is the homogeneous coordinates of a pixel in the source view, K is the camera
intrinsics matrix, T̂t→s is the relative pose from target view to source view, pt is the pixel coordinates of
the mapped target view.

Lt l = Lssi m(I l
t , Ī l

t )+ (1−ρ)L1(I l
t , Ī l

t )

+Lssi m(I l
t , Ī l

t )+ (1−ρ)L1(I l
t , Ī l

t )
(13)

4 . Experiments

4.1 Implementation Details
We train our model on the rectified KITTI odometry dataset without using any ground truth depth 

and use data split as proposed by (Eigen et al., 2014) to test our model for depth estimation. We use 
sequences 00-08 as the training sample and sequences 09-10 as the test sample for pose estimation. We 
divide the training samples into 17871 pairs (left and right views) of training images and 2466 pairs of 
verification i mages. In t he t raining p rocess, t he model r andomly selects a  pair of v iews as t he target 
images and uses the continuous view pairs with the target images as the center as the source images. 
Corresponding 100 Hz IMU data are collected from the KITTI raw datasets and for each target image,
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Algorithm 1: "Ground Truth" module
Result: GA-Net:θs ;ICP
Input: Stereo pairs:[I1, ..., Ik ]
Output: Disparity pairs:[D1, ...,Dk ]; Camera poses:[ε1, ...,εk ]

1 Initialization:Load θs to GA-Net;t = 1;
2 while t ≤ k do
3 Get GA-Net left-right disparity:Di = {D l

t ,Dr
t };

4 Compute depth Zt and cloud ct from D t ;
5 Get camera poses [ρt ,φt ] using ICP;
6 εt = [ρt ,φt ]

7 end

Algorithm 2: Monocular Weakly Supervised Depth and Pose Estimation Method Based on
Multi-information Fusion

Result: Depth-CNN:θd ;Pose-RCN:θp ;IMU-CNN:θi ;Fusion-Net:θo

Input: Left view:[I l
1, ..., I l

k ]
Output: Disparity pairs:[D̂1, ...,D̂k ]; Camera Poses:[ε̂1, ..., ε̂k ]

1 Initialization: Load pretrained model θp and initialize weights for VIO(First train VIO);
2 Initialize hyperparameters(η,α,β,γ,and so on );
3 for each i ∈ {0, ...epoch} do
4 for each j ∈ {0, ...nbatch} do
5 Get VIO-Net predictions:ε̂ j ;
6 Compute forward-backward loss:Lpl ;
7 Using SGD to optimize θV IO ;
8 θ∗V IO = θV IO

ar g mi n
;

9 end
10 Save θV IO = [θp ,θi ,θo]

11 end
12 Load pretrained model θp ;θi ;θo ;
13 for each i ∈ {0, ...epoch} do
14 for each j ∈ {0, ...nbatch} do
15 Get Depth_VIO predictions:D̂ j ; ε̂ j ;
16 Compute forward-backward loss:Lθ Using SGD to optimize θ;
17 θ∗ = θ

ar g mi n

18 end
19 Save θ = [θd ,θp ,θi ,θo]

20 end

Monocular weakly supervised depth and pose estimation method based on multi-information fusion
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Table 3. Evaluation metrics of our model and the current mainstream depth estimation model on the
KITTI dataset. Supervision refers to the way of supervision, in which D refers to using ground truth
depth data as supervision, stereo refers to the supervision with stereo temporal pairs, and M refers to the
common training of monocular temporal sequence

Method Supervision
RMSE RMSE(log) ARD SRD δ< 1.25δ< 1.252 δ< 1.253

–lower is better– –higher is better–
Eigen et al.(2014) Coarse D 6.215 0.271 0.204 1.598 0.695 0.897 0.960
Eigen et al.(2014) Fine D 6.138 0.265 0.195 1.531 0.734 0.904 0.966

Liu et al.(2015) D 6.471 0.273 0.201 1.584 0.680 0.898 0.967
Zhou et al.(2017) M 6.709 0.270 0.183 1.595 0.734 0.902 0.959

Vid2Depth(Mahjourian et al., 2018) M 6.220 0.250 0.163 1.240 0.762 0.916 0.968
Zhou et al.(2019) M 4.945 0.197 0.121 0.8370 0.853 0.955 0.982

MonoDepth2 (Godard et al., 2019) M 5.180 0.205 0.129 1.112 0.851 0.952 0.978
Li et al.(2020) M 5.138 0.209 0.130 0.950 0.843 0.948 0.978

PackNet-SFM (Guizilini et al., 2020) M 4.538 0.186 0.107 0.802 0.889 0.962 0.981
Bian et al.(2021) M 4.706 0.191 0.114 0.813 0.873 0.960 0.982

Ours-no "Ground Truth" M 5.168 0.190 0.115 0.882 0.864 0.951 0.978
Ours M 4.601 0.182 0.105 0.751 0.890 0.960 0.982

Garg et al.(2016) S 5.104 0.273 0.169 1.080 0.740 0.904 0.962
MonoDepth (Godard et al., 2017) S 5.927 0.247 0.148 1.344 0.803 0.922 0.964

Zhan et al.(2018) S 5.869 0.241 0.144 1.391 0.803 0.928 0.969
UndeepVO(Li et al., 2018) S+M 6.570 0.268 0.183 1.730 - - -
DVSO(Yang et al., 2018) S 4.442 0.187 0.097 0.734 0.888 0.958 0.980

MonoDepth2 (Godard et al., 2019) S+M 5.029 0.203 0.114 0.991 0.864 0.951 0.978
D3VO(Yang et al., 2020) S+M 4.485 0.185 0.099 0.763 0.885 0.958 0.979
Ours-no "Ground Truth" S 5.145 0.196 0.112 0.908 0.859 0.950 0.976

Ours-no pretrain VIO S 5.141 0.182 0.103 0.854 0.881 0.958 0.980
Ours-Res18 S 4.716 0.174 0.099 0.742 0.882 0.960 0.981
Ours-Res50 S 4.405 0.171 0.094 0.740 0.886 0.961 0.982

the preceding 100 ms and the following 100 ms of IMU data are combined yielding a tensor of size 20 x
6 (100ms between the source images and target).

We download the pre-trained GA-Net model from this link at https://drive.google.com/
open?id=19hVQXpcXwp7SrHgJ5Tlu7_iCYNi4Oj9u. The "Ground Truth" labels are obtained
by inputting stereo pairs into the stereo matching network model method based on transfer learning.

Since our depth_VIO network is a combination of CNN and RNN networks, it can be seen from
the discussion in Literature (Wang et al., 2017) that the CNN-RNN network training process is prone to
overfitting. Therefore, we use a two-step training method in the training process. First, we use the weakly
supervised pose loss Lw p to train the VIO network and then load the trained VIO model to the Depth_VIO
model for full network training. The model is trained on the experiment platform that is both e5-2698v4
processors, 503 GB memory, and eight 32 GB Tesla V100 graphics cards. The 1242 × 375 resolution
stereo pairs are resized into 640 × 192 resolution views for training and test data of our model. In the first
stage, the Flow-CNN network can be initialized by the pre-trained weight of FlowNet (Download link:
https://drive.google.com/drive/folders/0B5EC7HMbyk3CbjFPb0RuODI3NmM. Other
network weights are initialized by the gaussian distribution with a standard deviation of 0.01. Stochastic
Gradient Decent (SGD) with an RMSProp adaptive learning rate is used to update the weights of the
networks. The epoch is set at 250 with 8 batch sizes and the sequence length of each batch is 7. In
the second stage, the depth encoder network is initialized by the pre-trained model obtained from the
ImageNet classification task (He et al., 2015). We use Resnet18 or Resnet50 as an encoder for training.
Stochastic gradient descent also is used to update the weights with a batch size of 8 for 50 epochs. In
the optimization process, we set the default learning rate as 10−5 and keep the default learning rate un-
changed in the first 30 steps, and then reduce it by a factor of 2 every ten steps until the end to avoid
shock. The predicted disparity cap is constrained to 0.3 × the output disparity map width by using sig-
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Fig. 6. Qualitative depth estimation results for different methods on the Kitti dataset. Where, (a) is the 
ground truth disparity map. (b) is SFMlearner(Zhou et al., 2017), (c) is UndeepVO (Li et al., 2018), (d) 
is Monodepth (Godard et al., 2017), (e) is Monodepth2(Godard et al., 2019), (f) is our model without 
the ”Ground Truth” label, (g) is our model

moid non-linearity. To adjust the effect of each loss function on the model, we set the parameter value of 
each loss term:κ = 100,ω1 = 1,ω2 = 0.1, s1 = 1, s2 = 0.8. The training mode is determined by setting the 
value of α,β,γ. When the supervision mode is a stereo pair, the value is α = 1,β = 1,γ = 1, and when the 
supervision mode is monocular, the value is α = 1,β = 0,γ = 1.

4.2 Algorithm
This part describes the algorithm flow of t he proposed m ethod, which i s mainly d ivided i nto two 

parts, namely Algorithm 1 and Algorithm 2. Algorithm 1 is the process of generating "Ground Truth" 
depth labels. Algorithm 2 is the realization process of the proposed monocular weakly supervised depth 
and pose estimation method based on multi-information fusion.

4.3 Results
4.3.1 Prediction Results Analysis

We test our model on KITTI, a challenging autonomous driving dataset. Table 3 shows the estimation 
metrics of our method and other methods so that we can quantitatively analyze the performance of our 
model and other models. It can be seen that our model is better than other self-supervised monocular 
methods in most estimation indexes, whether it is monocular supervision or stereo pair supervision. We 
also tested the estimation results of our model without a weak supervision label (i.e., no "Ground Truth"). 
It can be seen from the results in the table that the estimation accuracy has been greatly improved after the 
addition of weak supervision labels. We also can see from the table that the accuracy of the pre-trained 
model is greatly improved compared with the model that is not pre-trained through the first s tep of 
weakly supervised pose loss. The encoder of Resnet50 has improved estimation accuracy than Resnet18.

Monocular weakly supervised depth and pose estimation method based on multi-information fusion
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Fig. 7. Qualitative comparison of generalization for different models on Cityscapes. (a) is Zhou et
al.(2017) , (b) is Godard et al.(2019) , (c) is our model trained on the KITTI dataset and tested on the
Cityscape dataset.

In short, it can be seen from the table that the accuracy of the method proposed in this paper has been
greatly improved, which proves the effectiveness of the method.

Figure 6 shows the visual disparity map about our model and the current mainstream monocular self-
supervised methods. Perhaps unsurprisingly, the ground truth disparities obtained by the 3D scanner can
provide better visual effects, but the sampled data points are sparse and sampling equipment is expensive.
As we can see from the figure, although the current method (Godard et al., 2017, 2019; Garg et al., 2016)
can obtain a better depth estimate from a single view in the scene, the proposed model can describe
more clearly the details of object edge and depth information. Figure 6 also qualitatively illustrates the
visual disparity map of our proposed model under self-supervised(no "Ground Truth" labels) and weakly
supervised ("Ground Truth" labels) mode. The weakly supervised mode has a significant improvement
in effect.

To show that our method can be generalized to other data sets, we test the comparison results of
several models on the Cityscapes (Cordts et al., 2016) dataset and verify that model trained on the KITTI
dataset can be generalized well to the Cityscapes dataset. Figure 7 qualitatively compared the results of
different models on the Cityscapes dataset. We can see from the comparison results that our model trained
on the KITTI dataset shows good generalization performance on the Cityscapes dataset for accurate
disparity estimation. We can use this model to predict the depth of similar scenes.

3.4 Pose results
In this section, we comparatively discuss the pose estimation performance of our method in terms of

both no-labels and with-labels estimation modes.
We tested the pose estimation model on sequences 09 and 10 that were not used in the training. These

results are shown in Table 4. We can see from the table that compared with other self-supervised monoc-
ular depth and pose estimation methods, our model can have a good performance on the most estimated
metric. After pre-training the VIO network, the accuracy of pose estimation is further improved. The
metrics in Table 4 prove the effectiveness of the proposed method.

We also visualize the performance of the pose estimation model in Figure 8. For the KITTI data
set, the camera in the scene basically only moves in a straight line, and the angle changes a little, so
the displacement estimation is very sensitive to this scene. In the process of displacement change, the
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Table 4. VO results with our proposed method and other mainstream models on Kitti sequence 09 and
10. tr el refers to average translational RMSE drift (%) on length of 100m-800m. rr el refer to average
rotational RMSE drift (◦/100m) on length of 100m-800m.

Method
Seq.09 Seq.10

ATE(m) ter r (%) rer r (◦/100m) ATE(m) ter r (%) rer r (◦/100m)
VISO2-M(Geiger et al., 2011) 52.62 18.06 1.25 57.25 26.10 3.26

OKVIS(Leutenegger et al., 2015) - 9.77 2.97 - 17.30 2.82
ORB-SLAM2-M(Mur-Artal and Tardós, 2017) 38.77 9.30 0.26 5.42 2.57 0.32

SfMLearner(Zhou et al., 2017) 77.79 19.15 6.82 67.34 40.40 17.69
DeepVO-Feat(Zhan et al., 2018) 52.12 11.89 3.60 24.70 12.82 3.41

UndeepVO(Li et al., 2018) - 7.01 3.60 - 10.63 4.60
MonoDepth2(Godard et al., 2019) 45.22 12.17 3.85 18.35 8.68 5.31

Zhan et al.(2020) 10.88 2.61 0.29 3.72 2.29 0.37
Bian et al.(2021) 13.40 5.08 1.05 7.99 4.32 2.34

Our-no "Ground Truth" 21.40 4.11 1.94 18.99 3.96 2.06
Our-no pretrained VIO 12.52 2.03 1.82 8.56 1.98 1.62

Our 10.45 1.63 1.52 6.35 1.74 1.21

Fig. 8. Sample trajectories comparison for different models on Sequence 09 and 10 of Kitti dataset.

movement in the Y direction is very small, so in our visual view, only the absolute displacement changes 
in the X and Z directions are displayed. From the figure, we can see that compared to other unsupervised 
monocular VO models, our weakly supervised multi-information fusion method can obtain more accurate 
pose estimation results.

5 . Conclusion
In this paper, we propose a new monocular weakly supervised depth and pose estimation method based 
on multi-information fusion. Our model is improved on the current research and methods and is trained 
and tested on KITTI data. Our method uses the migration learning model of stereo matching to obtain 
the "Ground Truth" label with very few ground truth samples, but still obtains excellent results, which in-
dicates that this method has certain research value. However, due to the some error between the "Ground 
Truth" labels and the ground truth labels, there are still some gaps between our algorithm and the fully 
supervised method. In the future, we will combine traditional algorithm and deep learning to make the 
"Ground Truth" label more obeying geometric principles and having higher precision. In addition, we 
will also propose more suitable models for monocular depth and pose estimation methods.
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