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Abstract 

 
Because of the direct link between sea temperature and aquatic biodiversity, there is a need to 
analyze the temporal changes in sea surface temperature in various water bodies, especially the 
semi-enclosed ones. There has been substantial research undertaken on time series analysis as a 
powerful technique for studying the characteristics of long-term SST changes at regular time 
intervals. The present paper aimed to examine the monthly-averaged MODIS SST data (2001–
2019) over Kuwait Bay, i.e., the northwestern corner of the Arabian Gulf. Because different 
approaches can yield different results, the analysis of the SST time series was conducted using 
time and frequency domains. The preliminary analysis of the time series reported a significant SST 
peak in August 2010 that reached nearly 34.2 °C (SD = 0.17 °C) due to the moderate-intensity El 
Niño event in 2010. However, in the preceding year, we observed a cool SST anomaly in the range 
of –0.5 °C to –2.4 °C. The SMK trend test found that monthly climatological SST in September 
exhibited a significant upward trend (𝑆9 = 103, 𝜏 = 0.6, 𝑃 = 0.0004). Pettitt’s change-point test 
indicated a significant change in the central tendency of SST data after April 2012. The annual 
periodicity of the SST in Kuwait Bay was constant over the 19 years. Furthermore, a very weak 
periodicity of 6-month has been barely noticed. Our present results provide large-scale guidance 
that affirms the importance of highlighting the severe SST fluctuations in Kuwait’s water to 
understand and improve its marine environmental status. 
 
Keywords: Frequency domain; Kuwait Bay; MODIS; SST; time series analysis. 

1. Introduction 

The role of time series analysis (TSA) in studying the long-term variability of various 
environmental observations has received increased attention across several disciplines, principally 
in coastal regions where aquatic and biological activities are highly sensitive. TSA detects any 
change, trend, or development in the environmental data collected by different in situ instruments 
or satellite sensors. Often, this approach is a crucial aspect of the process of legislation and 
decision-making on environment-related issues. Hence, TSA accounted for the greatest percentage 
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of contribution in the field of environmental sciences (12%) among other significant fields such as 
mathematics (10%), medicine (9%), and social sciences (9%)  (Maçaira et al., 2018).  
 

One of the most frequently measured and statically analyzed parameters in marine ecosystems 
is sea surface temperature (SST) due to its importance in aquatic biodiversity (Antão et al., 2020; 
Descombes et al., 2015; Gentilucci et al., 2020) and water quality (Al-Mutairi et al., 2014, 2015). 
Consequently, a considerable amount of literature has been published on understanding the 
dynamics of SST in the spatial or temporal domains (Bulgin et al., 2020; Goela et al., 2016; 
Hosoda & Kawamura, 2004; Mak, 1995; Polanco et al., 2011; Silva et al., 2019; Zhang et al., 
2016). 

 
The study region, Kuwait Bay (KB), is a semi-enclosed water body located in the northwestern 

corner of the Arabian Gulf between latitudes 29.32°N and 29.58°N and longitudes 47.68°E and 
48.17°E (Figure 1). It has a total length of about 45 km and a maximal width of about 25 km (Al-
Rashidi et al., 2009), with a total area of approximately 750 km2 (Al-Ghadban, 2004; Al-Mutairi 
et al., 2014). It is characterized by high surface temperatures (Alosairi et al., 2020) and shallow 
waters, with an average depth of 5 m (Al-Zaidan et al., 2006). This region of Kuwait waters is of 
particular concern due to the existence of several outfalls and effluents along its coastal line, in 
addition to the slow water flushing time (> 1 year) (Rakha et al., 2010) that may affect its water 
quality. 

 
A large and growing body of literature has investigated the oceanographic characteristics of 

Kuwait Bay. The study by Al-Abdulghani et al. (2013) offers probably the most comprehensive 
water quality assessment in this area, considering the impact of different uses and anthropogenic 
activities. From the spatial distribution of SST, they noted that the highest water temperatures 
inside the Bay were attributed to the effect of sewage effluents and thermal discharge from power 
plants. Likewise, Al-Banaa and Rakha (2009) believe that the seasonal peaks of water 
temperatures, based on in situ CTD data in Sulaibikhat Bay (the southwest corner of Kuwait Bay), 
are associated with cooling waters from power and desalination plants. Al-Rashidi (2009) analyzed 
the long-term SST data (1985–2007) from the AVHRR sensor and found that the upward trend in 
Kuwait Bay is much higher than the global average. Also, he identified the SST peak anomalies 
in the years 1998 and 2003, which coincided with El Niño events. In another study for statistical 
validation, Al-Rashidi et al. (2009) compared in situ measurements with coincident AVHRR SSTs 
and found a near-perfect relation (𝑅2 = 0.99, standard error = 0.2 °C). Similarly, Alsahli (2009) 
used linear regression to model MODIS (MODerate resolution Imaging Spectroradiometer) SST 
data collected from January 2003 to July 2007 against in situ matchups in Kuwait waters to assess 
their accuracy and reliability. He showed that the relation between MODIS and in situ data is 
strong and significant (𝑟2 = 0.98, 𝑛 = 118, RMSE = 0.7 °C). Also, he investigated the spatial 
distribution of SST in Kuwait Bay and showed that the maximum and minimum variability 
occurred in November (SD = 0.7 °C) and February (SD = 0.4 °C), respectively.  
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Given the importance of SST, this study set out to analyze the long-term SST variations in 
Kuwait Bay to improve our understanding of their frequency and intensity. In this study, the SST 
time series data were collected at regular intervals from 2001 to 2019. The methodological 
approach taken in this study is a mixed methodology based on the time domain and the frequency 
domain. Relying on mid-wave infrared (MWIR) bands, remotely sensed SST images from MODIS 
were assessed because of their excellent spatiotemporal resolution, with high precision and 
accuracy (Kilpatrick et al., 2015). Figure 2 is an example of a MODIS-Terra SST image with a 
spatial resolution of 1-km generated from the standard short-wave (SW) algorithm. 

The remainder of this paper is structured into four sections. Section 2 describes the remotely 
sensed MODIS data used in this study. Section 3 discusses the specific methods of conducting the 
research and analyses. The results of time-series analyses, including wavelet transform and 
spectral analysis, are presented in Section 4. The final section draws together a summary of the 
study and the main conclusions.

 

 
 

Fig. 1. Bathymetry of Kuwait Bay based on ETOPO 2 min dataset. 
The color bar on the right represents the water depth. 

 

29.2˚N

29.4˚N

29.6˚N

29.8˚N

47.6˚E 47.8˚E 48˚E 48.2˚E 48.4˚E

O
c
e
a
n
 
D
a
t
a
 
V
i
e
w 30 m

20 m

10 m

5 m

Ali K. Saleh, Bader S. Al-Anzi

3



 

 

 
(a)  (b) 

 
Fig. 2. (a) Subset scene of Level-2 MODIS SST4 imagery on 10 January 2018 at 7:09 PM and 
(b) the corresponding quality levels ranging from black (best retrieval) to grey (bad retrieval) 

 

2. Data source 

 
MODIS-Terra SST4 data with the latest processing version R2019.0 were acquired from NASA's 
OceanColor and extracted for Kuwait Bay at a spatial resolution of 4.64 km. The reason behind 
implementing the short-wave algorithm (MODIS bands 22 and 23) is to get reliable skin SST 
estimates (Kilpatrick et al., 2015). However, the use of this algorithm is limited to night-time SST 
retrieval due to the contaminated signal that may occur during the daytime (Brown et al., 1999). 
A total of 228 Level-3 MODIS images that include the monthly SST observations from January 
2001 to December 2019 were analyzed and visualized using SeaDAS software (version 7.5.3). 
MODIS data processing flow chart from Level-1 to Level-3 is shown in Figure 3a. The quality 
levels of satellite retrievals ranging from 0 (the best) to 4 (the worst) were visually inspected for 
validity. For each raster band, the mean value of “valid” pixels (~54–64 pixels inside the Bay) is 
calculated by the statistics tool provided by SeaDAS. Figure 3b summarizes the general workflow 
applied in this study. 
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(a) 

 
  

(b) 

 
 

Fig. 3. (a) MODIS data processing flow chart from Level-1 through Level-3. GEO is the 
geolocation file (Lotliker, 2014). (b) The workflow for analyzing MODIS Level-3 data in this 

study. 
 
Summary statistics of SST4 data by month can be shown in the aggregated box-whisker plots 
(Figure 4). For instance, the minimum and maximum sea temperatures were recorded in January 
(14.7 °C) and August (32.1 °C). From the empirical probability density function (Figure 5), it is 
apparent that monthly SST between ~29–32 °C has the highest density among other SST intervals. 
The secondary peak with lower relative frequency can be seen at SST of ~15–18 °C.
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Fig. 4. Box-whisker plots of monthly climatological SST data in Kuwait Bay. For each month, 

25–75 percent quartiles are represented by each box. The whiskers are drawn from the top of the 
box up to the largest data point, less than 1.5 times the box height from the box (the "upper inner 

fence") and similarly below the box. The black circles represent the extreme outliers. 
 

 
Fig. 5. Empirical probability density function (EPDF) of collected SST data (2001–2019) in 

Kuwait Bay. 
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3. Methodology

3.1 Seasonal-trend decomposition

Seasonal decomposition of SST time series (𝑌𝑡) into seasonal (𝑆𝑡), trend (𝑇𝑡), and remainder (𝑅𝑡) 
components based on loess (Cleveland et al., 1990) was performed using the native stats package 
in R software (version 3.6.3). This method is widely available and used in many investigational 
studies (Cristina et al., 2016; Goela et al., 2016; Rojo et al., 2017). That is, the additive 
decomposition model used in this study can be defined as 

𝑌𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡, 𝑡 = 1, 2, … , 𝑁.	  (1) 

3.2 Trend and change-point tests 

The seasonal Mann-Kendall (SMK) trend test (Hirsch et al., 1982) was implemented to test 
whether the collected data had a trend considering the conventional seasonal effect. It is a 
nonparametric test commonly used to detect monotonic trends in environmental and hydrological 
data sets that aren't normally distributed. Let 

𝑌 = (𝑌1, 𝑌2, … , 	𝑌12),	
to be the entire SST series collected over the years consisting of subsets 𝑌1 through 𝑌12; that is 

𝑌1 = (𝑦11, 𝑦12, … , 𝑦1𝑛1) is the subset of January SST data for 𝑛1 years,
𝑌2 = (𝑦21, 𝑦22, … , 𝑦2𝑛2) is the subset of February SST data for 𝑛2 years, etc.

where 𝑦𝑖𝑗 denotes the datum obtained for the season in year 𝑗. Here, we assume the season is a 

month. The overall seasonal Kendall test statistic (𝑆𝑘) is the sum of individual Kendall’s 𝑆𝑖 
statistics for each of the 𝑖 = 1 to 𝑔 seasons. 

𝑆𝑘 =9𝑆𝑖

𝑔

𝑖*1

,	 (2) 

𝑆𝑖 = 9 9 𝑠𝑖𝑔𝑛 ;𝑦𝑖𝑗 − 𝑦𝑖𝑘= ,
𝑛𝑖

𝑗*𝑘+1

𝑛𝑖,1

𝑘*1

	 (3) 

were 

𝑠𝑖𝑔𝑛 ;𝑦𝑖𝑗 − 𝑦𝑖𝑘= = >

+1 𝑦𝑖𝑗 − 𝑦𝑖𝑘 > 0,
0 	𝑦𝑖𝑗 − 𝑦𝑖𝑘 = 0,
−1 		𝑦𝑖𝑗 − 𝑦𝑖𝑘 < 0.

	 (4) 

The nonparametric correlation coefficient of the SMK test is calculated according to: 

𝜏 =
𝑆𝑘

𝑛(𝑛 − 1)/2.	
(5) 
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For any data set, it is possible to detect the shift in its central tendency based on Pettitt’s 
nonparametric test (Pettitt, 1979). The SST time series was tested for a single value change using 
the trend package (Pohlert, 2020) in R software according to: 

𝑈𝑡,𝑇 =9 9 𝑠𝑖𝑔𝑛;𝑦𝑖 − 𝑦𝑗= ,
𝑇

𝑗*𝑡+1

𝑡

𝑖*1

 (6) 

where 𝑈𝑡,𝑇 represents the Mann-Whitney statistic. The statistical change point (SCP) test statistic 
is the maximum of the absolute value of the vector: 
𝐾𝑇 = maxH𝑈𝑡,𝑇H. (7) 

The probable change-point is located in the series at 𝐾𝑇. The approximate probability for a two-
sided test is considered good for 𝑝 ≤ 0.5 and is estimated according to: 
𝑝 ≅ 2𝑒,6𝐾𝑇

2/(𝑇3+𝑇2).	 (8) 

3.3 Wavelet transform and spectral analysis 
 
The univariate SST time series for Kuwait Bay was subjected to frequency analysis using 
continuous wavelet transform (CWT) and Fourier spectrum to understand its periodic behavior 
across time (Rösch & Schmidbauery, 2018). Morlet wavelet function, among other CWT functions 
such as derivative of Gaussian (DOG) and Paul wavelet functions, is the most frequently used 
because of its performance (Addison, 2017). The Morlet wavelet is expressed as (Torrence & 
Compo, 1998): 

𝜓0(𝜂) = 𝜋,1 46 	𝑒𝑖𝜔0𝜂	𝑒,𝜂2/2,	 (9) 

where 𝜂 is the time parameter, and 𝜔0 is the frequency of the mother wavelet. The analysis was 
based on the practical guide developed by Torrence and Compo (1998). The analysis results were 
visualized as a period image of the wavelet power spectrum. 

Evolutionary power spectral analysis was carried out using the Lomb-Scargle method (Lomb, 
1976; Scargle, 1982). Briefly, the Lomb-Scargle normalized periodogram can be expressed as 
(Press & Rybicki, 1989): 

𝑃𝑁(𝜔) =
1
2𝜎2

R
[∑ (𝑦𝑗 − 𝑦U) cos𝜔(𝑡𝑗 − 𝜏)]𝑗

2

∑ cos2𝑗 𝜔(𝑡𝑗 − 𝜏)
+
[∑ (𝑦𝑗 − 𝑦U) sin𝜔(𝑡𝑗 − 𝜏)]𝑗

2

∑ sin2𝑗 𝜔(𝑡𝑗 − 𝜏)
\,	 (10) 

where 𝜔 is the angular frequency, and 𝜎2 is the data’s variance. The time offset 𝜏 is calculated via 

tan(2𝜔𝜏) =
∑ sin 2𝜔𝑡𝑗𝑗

∑ cos 2𝜔𝑡𝑗𝑗
.	 (11) 

A sliding window of 24 months was chosen since the longest SST cycle was ~12 months (i.e., 
1.5–2 times the annual cycle is acceptable). The maximum frequency was set to 0.5 (cycles/unit) 
to highlight the low-frequency power. However, from our trials, enlarging the frequency had a 
negligible effect on the results. It should be noted that the standard Lomb-Scargle periodogram 
can be affected by measurement errors and the mean subtraction (Zechmeister & Kürster, 2009), 
and hence, caution must be applied. To overcome these shortages, other techniques are proposed 
by Zechmeister and Kürster (2009). However, their usage is beyond the scope of this paper. All 

Remote sea-surface temperature variations (2001–2019) in Kuwait Bay: Time series analysis in frequency and time domains

8



spectral and wavelet analyses were performed using the Acycle package (version 2.2) (Li et al., 
2019) developed in MATLAB©.  

4. Results and discussion 

4.1 Time-domain analysis of SST 
 
Figure 6 shows the original time series (top panel) and the three decomposed components: (i) the 
seasonality (also called cyclical effect) (second panel), (ii) the trend (third panel), and (iii) the 
remainder (bottom panel) of sea surface temperatures for Kuwait Bay over a time frame from 
January 2001 to December 2019. From the original time series, there was a significant SST peak 
in August 2010 that reached 34.2 °C (standard deviation = 0.17 °C) as compared to that in August 
2009 (SST = 30.7 °C, standard deviation = 0.52 °C) and August 2011 (SST = 32.1 °C, standard 
deviation = 0.49 °C). In Figure 7, the SST pattern shows the cool anomaly (–0.5 °C to –2.4 °C) in 
August 2009 and the warm anomaly (1.2 °C to 2.8 °C) in August 2010. It should be noted that the 
base period for calculating the anomalies has been extended by two years (i.e., 2000–2020) to 
improve the estimation accuracy. The warm SST anomaly is probably due to the influence of a 
moderate intensity El Niño event in 2010. The year and duration of the El Niño event were from 
WMO (2014). The seasonal effects are clear and strong in the second panel (Figure 6). In the third 
panel, there are random fluctuations but no general upward or downward trend away from a 
horizontal line. However, there appears to be a sharp increase in the trendline from 23.5 °C in May 
2009 to 25 °C in June 2010, followed by a sharp decrease to 23 °C in January 2012. The fourth 
panel shows the remainder component (or the residuals) that is not explained by the trend and the 
seasonal components.  

 
Fig. 6. Decomposition plot of monthly average SST (2001–2019) over Kuwait Bay in degrees 
Celsius. The grey bars on the right are magnitude guides—each bar represents the same magnitude. 
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(a) 

 
(b) 

Fig. 7. MODIS-derived sea surface temperature data for Kuwait Bay showing the anomalies of 
August 2009 and August 2010 (a) in comparison to SST anomalies of August 2011 (b). The 
anomalies are interpolated and calculated as the difference between monthly and long-term 
monthly climatology data collected during the base period. The contour lines are shown for 

every major and minor scale tick. The grey color represents the land mask. 
 
To explore the seasonal decomposition, the cycle-subseries of each month (e.g., all SST values in 
January from 2001 to 2019) is displayed in Figure 8. According to the seasonal Mann-Kendall 
trend test, it was noticed that SST had an upward and significant (i.e., 𝑃 < 0.05) trend in September 
(𝑆9 = 103, 𝜏 = 0.6, 𝑃 = 0.0004) and to a lesser extent in May (𝑆5 = 91, 𝜏 = 0.53, 𝑃 = 0.002) and 
June (𝑆6 = 79, 𝜏 = 0.46, 𝑃 = 0.006). Thus, the global trend for the entire SST series is at 𝑆 = 504 
(𝑃 = 3.774E–07) with a seasonal Sen’s slope for linear rate of change of 0.07. 
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There was a significant probability approximate (p-value = 0.4987) in the central tendency of 
the SST time series at 𝐾 = 136 with a �̂� of 1660. This probable-change point corresponds to SST 
collected in April 2012 (Figure 9). The underlying reasons for this finding are unclear at present. 

 
Fig. 8. Extracted monthly subseries from the SST time series (2001–2019). The horizontal line 

represents the monthly climatological sea surface temperature. 

 
Fig. 9. Time series plot of SST. The dashed red line represents the central tendency of SST 

before and after the change point in the series (i.e., April 2012). 
 

4.2 Frequency-domain analysis of SST 
 
The Morlet wavelet spectrum for the SST series obtained by the MODIS sensor is calculated and 
is displayed in Figure 10. Overall, the records show that a dark red shade is assigned to the largest 
value of the wavelet coefficient and illustrates a constant period of 1 year (Figure 10a). The area 
below the cone of influence (black line) is highly affected by the edge effects at the beginning and 
the end of the analysis and should be ignored. The corresponding global wavelet spectrum in 
Figure 10b clearly shows the aforementioned strong periodicity of 1 year. Since the annual period 
has the strongest component and hence, the highest total energy of the signal, other weak 
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periodicities cannot be detected easily (Andreo et al., 2006). However, a detailed analysis of the 
Lomb-Scargle results (Figure 11) allowed us to observe the less obvious 6-monthly periodicity of 
SST (frequency = 0.167 cycles/unit), together with the evident peak corresponding to the annual 
periodicity (frequency = 0.083 cycles/unit). These results mirror those of the previous studies that 
have applied frequency analysis to rainfall (Andreo et al., 2006) and sea level (Sudha Rani et al., 
2017) data. 
 

  
(a) (b) 

Fig. 10. Morlet wavelet analysis of monthly average SST (2001–2019) over Kuwait Bay: (a) 
continuous wavelet transform (CWT) power spectra of the series. The left axis is the period (in 

months). The bottom axis is time (months). (b) The global wavelet spectrum. 
 

(a) 

 
(b) 

  
Fig. 11. Lomb-Scargle spectrum (a) and normalized periodogram with a unit step (b) of monthly 

average SST (2001–2019) over Kuwait Bay. The left axes in (b) represent the time (months).
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5. Conclusions 
 
This study has examined the SST variations for 19 years within Kuwait Bay, an important area of 
Kuwait waters. The seasonal decomposition of the data set revealed that the seasonality is clear 
and strong, whereas the irregular components were generally not consistent. The findings indicate 
that the SST subseries had an upward trend in September (2001–2019), while other months have 
exhibited a reasonable SST fluctuation. However, the SMK test revealed that the global trend for 
the entire SST series is at 𝑆 = 504, with a seasonal Sen’s slope for a linear rate of change of 0.07. 
We observed that the central tendency of the monthly SST in recent years, from 2012 to 2019, was 
higher than that of the years 2001–2011. In the frequency domain, the apparent strong period 
associated with the highest frequency is the stationary 12-month. However, a less noticeable 
periodicity of 6-month can be detected with the Lomb-Scargle periodogram. Relying on MODIS 
data, the analysis of the long-term SST changes undertaken here has extended our knowledge of 
extreme SST events in one of the warmest ecosystems. These findings make several contributions 
to the current literature. 
 

In terms of directions for future research, further work could examine the mechanisms of SST 
anomalies in Kuwait Bay since several questions remain to be answered. 
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