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Abstract

Recent studies show that augmented Zagreb index (AZI) possess the best correlating ability among various well known 
topological indices for predicting the certain physicochemical properties of particular types of molecules. Hence, it is 
meaningful to study the mathematical properties of AZI, especially bounds and characterization of the extremal elements 
among well known graph families. For , let  be the collection of all cacti with  cycles and  vertices. In this 
note, the element of  having the minimum AZI is characterized. Some structural properties of the graph(s) having 
the maximum AZI over the collection  are also reported. 
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1. Introduction

All the graphs considered in the present study are simple, 
finite, undirected and connected. The vertex set and 
edge set of a graph G will be denoted by V (G) and E (G) 
respectively. Undefined notations and terminologies from 
(chemical) graph theory can be found in (Harary, 1969; 
Trinajstic′, 1992).

Topological indices are numerical quantities of a graph, 
which are invariant under graph isomorphisms. There are 
many topological indices, which may be used to model 
the physicochemical properties of chemical compounds 
in quantitative structure-property relation (QSPR) and 
quantitative structure-activity relation (QSAR) studies 
(Gutman & Furtula, 2010; Trinajstic′, 1992). The atom-
bond connectivity (ABC) index is one of such topological 
indices. The ABC  index was introduced by Estrada et al. 
(1998). This index is defined as: 

where  is the degree of the vertex  and  is 
edge connecting the vertices  and . Details about ABC 
index can be found in the survey (Gutman et al., 2013), 

papers (Ashrafi et al., 2016; Dimitrov, 2016; Lin et al., 
2015; Palacios, 2014; Raza et al., 2016) and the related 
references cited therein.

Inspired by the work done on the ABC index, Furtula et 
al. (2010) proposed the following topological index and 
named it augmented Zagreb index (AZI): 

The prediction power of AZI is better than ABC index 
in the study of heat of formation for heptanes and octanes 
(Furtula et al., 2010). Furtula et al. (2013) undertook a 
comparative study of the structure-sensitivity of twelve 
topological indices by using trees and they concluded that 
AZI has the greatest structure sensitivity. In the papers 
(Gutman & Tošovic′, 2013; Gutman et al., 2014), the 
correlating ability of several topological indices was tested 
for the case of standard heats (enthalpy) of formation and 
normal boiling points of octane isomers, and it was found 
that the AZI possess the best correlating ability among the 
examined topological indices. This recent research on AZI 
motivates us to study the mathematical properties of AZI, 
especially bounds and characterization of the extremal 
elements of renowned graph families.
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In (Furtula et al., 2010), the extremal -vertex chemical 
trees with respect to AZI were determined and the -vertex 
tree having the minimum AZI was characterized. Huang 
et al. (2012) gave various bounds on AZI for several 
families of connected graphs (e.g. chemical graphs, 
trees, unicyclic graphs, bicyclic graphs, etc.). Wang et al. 
(2012) established some new bounds on AZI of connected 
graphs and improved some results of the papers (Furtula 
et al., 2010; Huang et al., 2012). The present authors 
(Ali et al., 2016b) derived tight upper bounds for AZI 
of chemical bicyclic and unicyclic graphs. In (Ali et al., 
2016a), the authors characterized the -vertex graphs 
having the maximum AZI with fixed vertex connectivity 
(and fixed matching number). Recently, Zhan et al. (2015) 
characterized the -vertex unicyclic graphs with the first 
and second minimal AZI, and found -vertex bicyclic 
graphs with the minimal AZI.

A graph G is cactus, if and only if every edge of G lies 
on at most one cycle. In recent years, many researchers 
studied the problem of characterizing the extremal cacti 
with respect to several well known topological indices 
over the class of all cacti with some fixed parameters. 
For instance, some extremal results about the cacti can 
be found in the papers (Lu et al., 2006; Ali et al., 2014; 
Chen, 2016; Du et al., 2015) and in the related references 
cited therein. In the present note, the cactus having the 
minimum AZI is determined among all the cacti with fixed 
number of vertices and cycles. Moreover, some structural 
properties of the tree(s) having the maximum AZI over the 
set of all trees with fixed number of vertices are reported.

2. The AZI of cacti

For , let  be the collection of all cacti with 
cycles and  vertices. As usual, denote by  and  the 
star graph and path graph (respectively) on  vertices. A 
vertex of a graph is said to be pendent if it has degree 
one. Let  be the cactus obtained from  
by adding  mutually independent edges between the 
pendent vertices (Figure 1). Note that .  

k          cycles

n –2k          –1 

Fig. 1. The cactus .

Routine calculations show that 

Let us take 

Note that the collection  consists of all trees on 
vertices. Furtula et al. (2010) characterized the -vertex 
tree having the minimum AZI:

Lemma 1. (Furtula et al., 2010). If T is any tree with 
 vertices, then 

The equality holds if and only if . 

Observe that the class  consists of all unicyclic 
graphs on  vertices. The following result about the 
characterization of unicyclic graph having the minimum 
AZI is due to Huang et al. (2012): 

Lemma 2. (Huang et al., 2012). If G is any unicyclic graph 
with  vertices, then 

The equality holds if and only if . 

The main result of this note will be proved with the 
help of following lemma:

Lemma 3. For fixed , let 

where ,  and . The function  
is increasing for  in the interval . 

Proof. Simple computations yield

  (1)

Note that if  then  is positive and 
hence the desired result follows. Let us assume that 

 and  . The first order partial 
derivative of  with respect to , can be written as 
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It can be easily verified that the function  
 is increasing in both  and  for 

 and  is positive. Hence  is positive 
for all  and , which means that the function 

 is increasing in . Therefore, from Equation (1), 
the desired result follows.                                                

□ 

The following elementary result will also be helpful in 
proving the main result of the present note.

Lemma 4. The function  is decreasing in 
the interval . 

For a vertex  of a graph G, denote by  (the 
neighborhood of ) the set of all vertices adjacent with 

. Now, we are in position to prove that the unique graph 
 has the minimum AZI among all cacti in the 

collection .

Theorem 1. If G is any cactus belongs to the collection 
, then 

with equality if and only if . 

Proof. We will prove the theorem by double induction 
on  and . For  and , the result holds due to 
Lemma 1 and Lemma 2 respectively. Note that if  
then . For  there is only one cactus which is 
isomorphic to  and hence the theorem holds in 
this case. Let us assume that  where  and 

. Then there are two possibilities.

Case 1. G does not contain any pendent vertex. In this case, 
there must exist three vertices  and  on some cycle 
of G such that  is adjacent with both the vertices  
where  and . Here we consider 
two subcases.

Subcase 1.1. There is no edge between  and . Note that 
the graph  obtained from G by removing the vertex  
and adding the edge , belongs to the collection  
Bearing in mind the Lemma 4, inductive hypothesis and 
the fact , one have 

               

                  

Subcase 1.2. There is an edge between  and . Let 
G * be the graph obtained from G by removing both the 
vertices , then G * belongs to the class . Let 

. By virtue of Lemma 3, 
Lemma 4 and inductive hypothesis, one have 

The equality  holds if and 
only if ,  for all  (where 

) and .

Case 2. G has at least one pendent vertex. Let  be the 
pendent vertex adjacent with a vertex  and assume 
that . Without loss of 
generality, one can assume that  for  
and  for . Let  be the graph 
obtained from G by removing the pendent vertices 

, then  and hence one 
have

By virtu of Lemma 3 and inductive hypothesis, we have 

                                (2)

with equality if and only if  and 
 for all  (where ). From Lemma 4 

and Inequality (2), it follows that 
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with first equality if and only if  and 
, and the second equality holds if and only if 

. This completes the proof.

       □

Note that  is positive for all 

, which means that  is increasing in  (where 
). Hence,  attains it minimum value at  

and therefore from Theorem 1, one have:

Corollary 1. If G is any cactus with  vertices, then 

with equality if and only if . 

Now, we consider the problem of characterizing 
graph(s) having the maximum AZI over the collection 

. Let us start from considering the special case  
that is  (which is the class of all -vertex trees). It can 
be easily checked that for , the path  has the 
maximum AZI in  and for  all those -vertex 
trees in which every edge is incident with at least one 
vertex of degree 2, have the maximum AZI in . Hence, 
the graph having the maximum AZI in the collection  
needs not to be unique. Also, note that for the -vertex 
tree  depicted in Figure 2, one have 

             for all .

Fig. 2. The -vertex tree  where .

The above inequality suggests that the -vertex tree 
(where ) with the maximum AZI must be different 
fromthe path . At this time, the problem of finding 
graph(s) having the maximum AZI over the class  (and 
hence over the class ) seems to be hard and we leave 
it for future work. However, here we prove some results 
related to the structure of the -vertex tree(s) having the 
maximum AZI. In order to prove these results, we need the 
following lemma.

Lemma 5 (Huang et al., 2012). If  
then 

i).  is decreasing for . 

ii).  for all . 

iii). If  is fixed then  is increasing for  

To proceed, we require the following definitions which 
are taken from the paper (Gutman et al., 2012): 

A pendent vertex adjacent with a vertex having degree • 
greater than 2 is called star-type pendent vertex.  

A path •  of length  in a graph G is called 
pendent if one of the degrees  is 1 and 
other is greater than 2, and  for all  where 

 

A path •  of length  in a graph G is called 
internal if both the degrees  are greater than 
2 and  for all  where .

Theorem 2. For , let  be the tree with the 
maximum AZI. Then  

i).  does not contain any internal path of length greater 
than 1. 

ii).  does not contain any pendent path of length greater 
than 3. 

iii).  contains at most one pendent path of length 3. 

Proof. i). Suppose to the contrary that  contains 
the internal path  of length  where 

. We consider two cases.

Case 1. If   contains at least one star-type pendent 
vertex. Let  be a star-type pendent vertex adjacent with 
a vertex  (then ) and suppose that  is the tree 
obtained from  by moving the vertex  on the edge  
and adding the edge . Observe that both the trees  
and  have same degree sequence. By virtue of Lemma 
5(i) and Lemma 5(ii), we have 

              

            

which is a contradiction to the maximality of .

Case 2. If  does not contain any star-type pendent 
vertex. Suppose that  is the tree obtained from  by 
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moving the vertex  on any pendent edge and adding the 
edge . If  then by using Lemma 5(i) and Lemma 
5. (iii), one have 

                    

                        

which is a contradiction.

If , then it can be easily checked that 
. After repeating the 

above transformation (defined in Case 2) sufficient 
number of times, one arrives at a tree  such that 

. This contradicts the 
maximality of , which completes the proof of 
Part (i).

ii). Let us suppose to the contrary that  contains the 
pendent path  of length  where  
We consider two cases.

Case 1. If  contains at least one star-type pendent 
vertex. Let  be a star-type pendent vertex adjacent with a 
vertex . Let  be the tree obtained from  by moving 
the vertex  on the edge  and adding the edge . 
Bearing in mind the Lemma 5(i), Lemma 5(ii) and the fact 

 one have 

                

            

which is a contradiction to the maximality of .

Case 2. If   does not contain any star-type pendent 
vertex. Suppose that  has the maximum degree 
and . Note that  for all 
 where .

Subcase 2.1 If at least one neighbor of  has degree 
greater than 2. Suppose that  is the tree obtained from 

 by removing the edge  and adding the edge . 
By using Lemma 5(ii) and Lemma 5(iii), one have 

            

            

        

which is again a contradiction.

Subcase 2.2 If  for all  where . Then 
Part (i) suggests that  must be a starlike tree. Note that 
each branch of  has length at least 2 and  (in 
this case), hence

               

where the tree  is depicted in the Figure 2. This is 
a contradiction to the maximality of . This 
completes the proof of Part (ii).

iii). Suppose to the contrary that  contains two pendent 
paths  and  of length three, where 

. Then for the tree  obtained from  by 
deleting the edge  and adding the edge  one have 

, which means that  has also the 
maximum AZI. But,  contains a pendent path of length 
4, namely . This contradicts the Part (ii).

□
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