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2Dept. de Matemática, Facultad de Ingenierı́a, Universidad de Atacama,

Copiapó, Chile
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Abstract

Recent years have shown growth in the potential applications of extensions of skew and half-normal

distributions. In this paper, we provide and study, in detail, an extended class of such distributions.

The presented distribution has a scale parameter and two shape parameters. The motivations behind the

development of this distribution are: 1- the probability distribution function has skewed, unimodal and

bathtub shapes with different styles and the hazard rate function is increasing with various shapes, which

makes this distribution flexible enough to analyze reliability data; 2- it can be expressed as a mixture of

the Generalized Half-Normal distribution and the new weighted Generalized Half-Normal distribution.

A number of statistical results are derived. Monte Carlo simulation analysis is carried out with Maximum

Likelihood Estimation to assess the performance of this technique for a variety of the distribution param-

eter values. The power of the distribution is demonstrated with real applications using two reliability

datasets from the industry. The results reveal that the proposed distribution outperformed the General-

ized Lindley, Exponentiated Exponential, Gamma, Alpha-Skew-Normal, the Half-Alpha-Skew-Normal,

and the Modified Generalized Half-Normal distributions.

Keywords: Coefficients of asymmetry and kurtosis; half-normal; Maximum Likelihood Estimation;

reliability; skew-normal

1. Introduction

In the era of Big data, the gathered observations exhibit different characteristics that reflect the com-

plexity of our modern life. Some of these characteristics are obvious such as volume, variety (struc-

tured/unstructured), velocity and value as described in (Katal et al., 2013). On the contrary, other fea-

tures require analyzing and mining the information hidden behind the collected data, which may support

decision-making in many industries. For example, modeling and analyzing reliability data may be uti-

lized to determine the boundaries of safe use of a material, component, or a system. Therefore, estimating

the threshold stress level or the probability distribution of failure strengths/times is crucial. Many related

studies exist in the literature, for example, (Kishorilal and Mukhopadhyay, 2018; Ansell and Phillips,

1990). In real life applications, various statistical distributions have been utilized to analyze datasets

under investigation, among those we mention the well-known Half-Normal (HN) distribution with zero

mean. This truncated distribution has been used for risk analysis in several fields such as engineering

(Krenek et al., 2016), finance (Aharony et al., 1980; Badia et al., 2020), and medicine (Krause et al.,

2018). Despite being widely used, the HN distribution has a limited control on the shape of the produced
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models because it has a scale parameter only. Several authors proposed more general models than the

HN distribution. Cooray and Aranda (2008) added a shape parameter to the HN distribution and devel-

oped the Generalized Half-Normal (GHN). This distribution has been extensively modified and recent

generalizations have been proposed following the same methodology of the developers. For example,

the Beta Generalized Half-Normal distribution was produced by (Pescim et al., 2010). Azzalini (1985)

proposed the Skew-Normal distribution. Elal-Olivero (2010) generated the Alpha-Skew-Normal (ASN)

distribution, which has one asymmetric parameter. On the other side, Olmos and Venegas (2018) studied

the Modified Generalized Half-Normal (MGHN) variable developed with the modulus of a ASN random

variable, considering a scale parameter and a shape parameter. The Half-Alpha-Skew-Normal (HASN)

distribution is another generalization of the HN distribution and was introduced in (Olmos and Venegas,

2018).

Despite the available distributions for modeling reliability data, this new era not only demands non-

linear distributions to unveil the hidden relations but also flexible models that can capture most of the

variations within the data. Here, we present a nonlinear distribution that may be suitable for modeling

various reliability datasets, namely the Extended Half-Normal (EHN). The EHN distribution is formu-

lated as an extension of the GHN, ASN, HASN, and the MGHN distributions and was initially introduced

in (Khorsheed et al., 2020). Unlike several existing one and two parameter-families, the EHN is a three

parameter-family that incorporate two shape parameters, which makes it more flexible for distribution

shape control. This work contains further EHN statistical properties and results, a simulation and sensi-

tivity analysis study, and two practical applications using fiber stress and strength data.

The article will proceed as follows. In section 2 we explain the development of the EHN distribution,

hazard function, some statistical properties, moments, skewness and kurtosis coefficients. In section

3 we make the inference by implementing the maximum likelihood estimation approach and present

a simulation study. We demonstrate the relevance of the (EHN) distribution for two reliability data

applications using goodness-of-fit statistics in section 4. In section 5 we list the limitations of the EHN

distribution and finally, in section 6 we provide a discussion.

2. The Extended Half-Normal distribution and further statistical properties

Recall that if X ∼ EHN(λ, β, σ), then the pdf of X is

fX(x;λ, β, σ) =
2λ(2σ2λ + βx2λ)

σ2λ+1(2 + β)

(
x

σ

)λ−1

φ

((
x

σ

)λ
)
, x > 0 (1)

and the corresponding cdf is

FX(x;λ, β, σ) = 2Φ

((
x

σ

)λ
)
− 2β xλ

σλ(2 + β)
φ

((
x

σ

)λ
)
− 1, (2)

where σ, λ > 0 and β ≥ 0.

The classical HN, GHN, HASN and MGHN distributions can be obtained as submodels of the EHN

distribution. More specifically, if X ∼ EHN(λ, β, σ), then

1. For β = 0 we obtain the Generalized Half-Normal distribution (GHN) with the pdf

f(x;λ, σ) =
2λ

σλ
xλ−1φ

((
x

σ

)λ
)

(3)

2. For β = 25 we obtain

f(x;σ, λ) =
2λxλ−1(2σ2λ + 25x2λ)

27σ3λ
φ

((
x

σ

)λ
)
, (4)

which is the pdf of the MGHN distribution.
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(a)X ∼ EHN(λ = 1.5, β, σ = 1)
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(b)X ∼ EHN(λ = 1, β, σ = 1)
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(c)X ∼ EHN(λ, β = 2, σ = 1)
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(d)X ∼ EHN(λ, β = 5, σ = 1)

Fig. 1. EHN pdf for different values of λ and β.

3. For λ = 1 and σ = 1 we obtain the HASN distribution with pdf

f(x;β) =
2(2 + βx2)

(2 + β)
φ (x) (5)

4. For β = 0 and λ = 1 we obtain

f(x;σ) =
2

σ
φ

(
x

σ

)
, (6)

that is the Half-Normal distribution of Johnson and Balakrishnan (1995).

Figure 1 displays the Extended Half-Normal pdf for a selected set of values of the parameters λ and

β with σ = 1. Owing to the two shape parameters of the proposed distribution, its pdf has skewed,

unimodal and bathtub shapes with various styles, as can be seen in Figure 1. The wide range of the EHN

shapes and skewness levels demonstrated in this figure provides a strong evidence of the distribution high

degree of flexibility, which is an important characteristics required in this age. Moreover, the hazard rate

(hr) function of the EHN is increasing with different shapes which adapts the nature of reliability data

hazard rates. Curves of the probability density function and hazard rate of the developed EHN model

motivate reliability data analysis will be illustrated later using two reliability datasets. A final motivation
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is that the EHN model can be expressed as a mixture of the GHN and the new weighted Generalized

Half-Normal distribution as follows:

fX(x;λ, β, σ) =pf(x;λ, σ)+(1− p)g(x;λ, σ),

where p = 2
2+β , f(x;λ, σ) is defined in equation (3) and g(x;λ, σ) = 2λ

σ3λx
3λ−1φ((xσ )

λ) = x2λ

σ2λ f(x;λ, σ)

is a weighted version of the Generalized Half-Normal distribution with the weight function w(x) = x2λ

and a normalizing constant σ2λ = E(w(X)).
In many practical situations, variations across items within a population of interest may exist. There-

fore, for an accurate data analysis a mixture model that can take into account the underlying statistical

heterogeneity is recommended. Below are some main further results.

Theorem 2.1 If Z ∼ ASN(α), then Y = |Z| ∼ HASN(β) where β = α2.

Proof. By using the cdf of Z displayed in (Elal-Olivero, 2010), we have

P(Y ≤ y) = P (|Z| ≤ y)
= P(Z≤ y)− P (Z ≤ −y)

= Φ(y) + α

(
2− αy

2 + α2

)
φ(y)− Φ(−y)− α

(
2 + αy

2 + α2

)
φ(−y)

= 2Φ(y)− 2α2y
2+α2φ(y)− 1

= 2Φ(y)− 2βy
2+βφ(y)− 1.

Therefore, Y has the HASN(β) distribution.

Theorem 2.2 If Y ∼ HASN(β), then X = σY 1/λ ∼ EHN(λ, β, σ).

Proof. As given in (Khorsheed et al., 2020).

Corollary 2.3 The hazard rate function for the random variable X ∼ EHN(λ, β, σ) is

hX(x;λ, β, σ) =
λxλ−1(2σ2λ + βx2λ)φ

(( x
σ

)λ)

σ2λ
[
σλ(2 + β)Φ

(
−
(
x
σ

)λ)
+ βxλφ

((
x
σ

)λ)] . (7)

Figure 2 demonstrates the hazard rate function curves for a range of values of λ and β. All these curves

are increasing with different styles which suits the realistic behavior of the hazard rate for real life data.

Proposition 2.4 For a random variable X ∼ EHN(λ, β, σ) and integers r = 1, 2, ..., the correspond-

ing r-th moments are given by

µr =
2r/2λσr(βr + λ(2 + β))√

π λ(2 + β)
Γ

(
r + λ

2λ

)
, (8)

where Γ(x) corresponds to the gamma function.

Proof. By Theorem 2.2 and the pdf of the EHN given in equation (1),

E(Xr) = σr
E(Y r/λ)

= σr
∫∞
0 yr/λ 2(2+βy2)

β φ(y)dy

= 2σr

2+β

[∫∞
0 2yr/λφ(y)dy + β

2

∫∞
0 2yr/λ+2φ(y)dy

]

= σr

2+β

[
2E(U r/λ) + βE(U r/λ+2)

]
,

where U is a HN random variable such that E(U r/λ) = 2r/2λΓ( r+λ
2λ )/

√
π. What follows is achieved

with a little algebraic manipulation and some simplifications.

A flexible probability model for reliability data analysis: The extended half-normal distribution with further results

arun
Typewritten Text
4



0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

H
az

ar
d 

ra
te

 fu
nc

tio
n

EHN(1.5,0)
EHN(1.5,2)
EHN(1.5,5)
EHN(1.5,10)

(a)X ∼ EHN(λ = 1.5, β, σ = 1)
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(b)X ∼ EHN(λ = 1, β, σ = 1)
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(c)X ∼ EHN(λ, β = 2, σ = 1)
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(d)X ∼ EHN(λ, β = 5, σ = 1)

Fig. 2. EHN hazard rate function with a range of values of λ and β.
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Corollary 2.5 For r = 1, 2, 3, 4 and X ∼ EHN(λ, β, σ), the mean, variance, skewness (γX ) and

kurtosis (κX ) coefficients are, respectively, given as µ = σ ρ1, V ar(X) = σ2
(
ρ2 − ρ21

)
, γX =

ρ3−3ρ1ρ2+2ρ3
1

(ρ2−ρ2
1
)3/2

and κX =
ρ4−4ρ1ρ3+6ρ2

1
ρ2−3ρ4

1

(ρ2−ρ2
1
)2

, where ρr = ρr(λ, β) =
2r/2λ(βr+λ(2+β))√

π λ(2+β)
Γ
(
r+λ
2λ

)
.

Proof. These formulas are derived by substituting into the definitions of the variance, skewness and

kurtosis coefficients directly using the results of proposition 2.4 with r = 1, 2, 3 and 4.

3. Estimation with Inference and a Simulation Study

In this section, we discuss the Maximum Likelihood Estimation for the EHN distribution parameters σ, λ
and β and provide a simulation and sensitivity analysis study to gain insight on the obtained estimators.

To find the MLE for each parameter, we used the R software (R core Team 2014) with the machine

learning tool of (Byrd and Zhu, 1995). Here, we also present the observed information matrix for the

distribution.

3.1 The Maximum Likelihood Estimation

The log-likelihood based on a random sample X1,X2, . . . ,Xn from the EHN(λ, β, σ) is given by

l(θ) = n log λ− 3nλ log σ − n log(2 + β)

+
n∑

i=1

log(2σ2λ + βx2λi ) (9)

+ (λ− 1)
n∑

i=1

log xi −
1

2σ2λ

n∑

i=1

x2λi ,

where θ = (λ, β, σ)′.

The 2nd order derivatives of the log-likelihood function given in equation (9) with regard to the pa-

rameters of interest are obtained as follows:

lλλ = −n
λ2 − 2

σ2λ log2 σ
∑n

i=1 x
2λ
i + 4

σ2λ log σ
∑n

i=1 x
2λ
i log xi − 2

σ2λ

∑n
i=1 x

2λ
i log2 xi

+ 8βσ2λ∑n
i=1

x2λ
i (log σ−log xi)2

(2σ2λ+βx2λ
i )2

,

lλβ = Iβλ = −4σ2λ∑n
i=1

x2λ
i (log σ−log xi)

(2σ2λ+βx2λ
i )2

,

lλσ = lσλ = −3n
σ + 1

σ2λ+1

∑n
i=1 x

2λ
i − 2λ

σ2λ+1 log σ
∑n

i=1 x
2λ
I + 2λ

σ2λ+1

∑n
i=1 x

2λ
i log xi

+ 1
σ2λ+1

∑n
i=1

8σ2λ+4β(1+2λ log σ−2λ log xi)x
2λ
i

(2σ2λ+βx2λ
i )2

,

lββ = n
(2+β)2 −∑n

i=1
x4λ
i

(2σ2λ+βx2λ
i )2

,

lβσ = lσβ = −4λσ2λ−1∑n
i=1

x2λ
i

(2σ2λ+βx2λ
i )2

,

lσσ = 3nλ
σ2 − λ(2λ+1)

σ2λ+2

∑n
i=1 x

2λ
i − 4λ

σ−2λ+2

∑n
i=1

2σ2λ+β(1−2λ)x2λ
i

(2σ2λ+βx2λ
i )2

.

The Hessian matrix can be written as

H(θ) =




lλλ lλβ lλσ
lβλ lββ lβσ
lσλ lσβ lσσ




Under some regularity conditions, we have
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√
n(θ̂ − θ) → N3(0, I

−1(θ)),

where I(θ) = −E(H(θ)) is the Fisher information matrix. Then asymptotically θ̂ has a normal distri-

bution with mean θ and variance I−1(θ). This asymptotic behavior is also valid if I(θ) is replaced by

−H(θ̂) where −H(θ̂) is the observed information matrix.

3.2 Simulation and Sensitivity Analysis

A Monte Carlo simulation study related to the estimation of the EHN parameters σ, β and λ is

discussed next. The goal is to assess the quality of the maximum likelihood estimates. The result of

Theorem 2.2 allows us to generate random numbers X ∼ EHN(σ0, β0, λ0) through the steps of the

following algorithm:

1. Choose the sample size n and the model parameters by the values λ0, β0 and σ0;

2. Generate W ∼ χ2
3, Y ∼ N(0, 1) and S such that P (S = 1) = P (S = −1) = 1

2 ;

3. Compute R =
√
W S;

4. Compute Z =
√

β0

2+β0
R+

√
2

2+β0
Y ;

5. Compute X = σ0|Z|1/λ0 .

where Z is a ASN random variable (Elal-Olivero, 2010). We generated 1,000 random samples of different

sizes n = 100, 200, 300, and 400 from the EHN distribution with fixed parameter values λ = 1, β = 4
and σ = 1 considering the above algorithm. We computed the corresponding MLEs using R with the

starting point (1, 1, 1). Table 1 represents the performance of the maximum likelihood estimators in

terms of mean of Bias and MSE for the EHN parameters λ, β, and σ. To test the stability of the results,

we performed sensitivity analysis using different initial and parameter values. Due to lack of space, we

will demonstrate the results only for the following EHN models: (λ = 1, β = 4, σ = 1) with initial

values (0.8, 1.5, 0.5), (λ = 1.5, β = 4, σ = 1) with initial values (1, 1, 1), and (λ = 2, β = 9, σ = 3)

with initial values (1, 0, 3). As Tables 2 to 4 display, the new MLEs are, in general, consistent with

the primary analysis of the EHN(1, 4, 1). Convergence is confirmed with each case by the utilized

machine learning algorithm. The MLEs returned adequate estimates for almost all parameter values and

converged quite quickly therefore, most estimation errors are very small especially when ”good” initial

values were used to start the estimation process. Further, as n increases the errors decay significantly

toward zero as Figures 3 and 4 reveal. The effect of increasing the sample size on the errors of estimation

has been widely investigated and our findings in this regard are in line with many other studies such as

(Amjad and Ismail, 2021). These simulation based results indicate that the EHN is a promising flexible

distribution for analyzing reliability data, and that the MLE is an efficient and stable inference technique

for the parameters of this new distribution.

4. Applications To Reliability Data

In this section, we demonstrate the importance of the EHN distribution in modeling reliability data using

the method of Maximum Likelihood Estimation. Here, we provide two real applications to assess the

Kolmogorov-Smirnov (K-S) and other goodness-of-fit statistics for the EHN distribution with respect

to breaking stress of carbon fibers of 50 mm in length observations and strength of 1.5 cm glass fibers

measured at the National Physical laboratory in England. Descriptive statistics for both datasets are

displayed in Table 5. For more details on the these sets, the reader is referred to (Bakouch and Abd

El-Bar, 2017).

The observed information in Table 5 and the corresponding data histograms displayed in Figures 5 and

6 suggest that each dataset may be modeled by negative-skewed and unimodal distributions with heavier

tails than a normal distribution. Fits by several possible classic and relatively new distributions other

than the EHN are presented for comparison purposes. These distributions are:
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Table 1. Average bias and average MSE of MLEs for EHN model with true parameter values λ = 1,

β = 4 and σ = 1 calculated when 1,000 replications for each n are considered. The initial values are (1,

1, 1).

Sample size n Parameter Bias MSE

100 λ 0.0011 0.0013

β 0.0246 0.6064

σ 0.00098 0.00095

200 λ 0.00089 0.00079

β 0.01524 0.2322

σ 0.00081 0.00066

300 λ 0.00084 0.00071

β 0.0138 0.189

σ 0.00078 0.00061

400 λ 0.00075 0.00056

β 0.0113 0.128

σ 0.00075 0.00056

Table 2. Average bias and average MSE of MLEs for EHN model with true parameter values λ = 1,

β = 4 and σ = 1 calculated when 1,000 replications for each n are considered. The initial values are

(0.8, 1.5, 0.5).

Sample size n Parameter Bias MSE

100 λ 0.0012 0.0014

β 0.039 1.53

σ 0.0014 0.002

200 λ 0.00102 0.00105

β 0.0264 0.6952

σ 0.00133 0.00176

300 λ 0.00091 0.00083

β 0.016 0.2864

σ 0.0012 0.001

400 λ 0.00082 0.00068

β 0.01 0.26

σ 0.001 0.0016

Table 3. Average bias and average MSE of MLEs for EHN model with true parameter values λ = 1.5,

β = 4 and σ = 1 calculated when 1,000 replications for each n are considered. The initial values are (1,

1, 1).

Sample size n Parameter Bias MSE

100 λ 0.0019 0.0036

β 0.0227 0.516

σ 0.000498 0.000248

200 λ 0.0016 0.0025

β 0.0171 0.294

σ 0.00048 0.00023

300 λ 0.0016 0.0025

β 0.0137 0.188

σ 0.00045 0.00025

400 λ 0.0014 0.0019

β 0.012 0.154

σ 0.00044 0.0002
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Table 4. Average bias and average MSE of MLEs for EHN model with true parameter values λ = 2,

β = 9 and σ = 3 calculated when 1,000 replications for each n are considered. The initial values are (1,

0, 3).

Sample size n Parameter Bias MSE

100 λ 0.0033 0.011

β 0.045 2.07

σ 0.0012 0.015

200 λ 0.0029 0.0084

β 0.021 0.46

σ 0.0011 0.0012

300 λ 0.0026 0.0069

β 0.020 0.43

σ 0.0010 0.00108

400 λ 0.0025 0.0063

β 0.015 0.22

σ 0.00096 0.00093
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Fig. 3. The mean bias(n) versus n = 100, 200, 300, 400 associated with the EHN MLEs for λ = 1,

β = 4 and σ = 1 computed by bias(n)= 1
1000

∑1000
i=1 (θ̂ − θ) for θ ∈ {λ, β, σ}
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Fig. 4. The mean MSE(n) versus n = 100, 200, 300, 400 associated with the EHN MLEs for λ = 1,

β = 4 and σ = 1 computed by MSE(n)= 1
1000

∑1000
i=1 (θ̂ − θ)2 for θ ∈ {λ, β, σ}

1. Generalized Lindley (GL) distribution with pdf

f(x) =
γλ2

1 + λ
(1 + x)e−λx1− 1 + λ+ λx

1 + γ
e−λx

γ−1

, (10)

where x > 0, λ, γ > 0.

2. Exponentiated Exponential (EE) distribution with pdf

f(x) = αλe−λx(1− e−λx)α−1, (11)

where x > 0, α, σ > 0.

3. Modified Generalized Half-Normal (MGHN) distribution with pdf

f(x) =
2γxγ−1

27β3γ
(2β2γ + 25x2γ)φ

((
x

β

)γ)
, (12)

where x > 0, γ, β > 0.

4. Gamma distribution (Ga) with pdf

f(x) =
1

Γ(α)βα
xα−1e−x/β , (13)

where x > 0, α, β > 0.

5. Alpha-Skew-Normal Distribution (ASN) with pdf

f(x) =
(1− αx)2 + 1

2 + α2
φ(x) (14)

where x ∈ R, α ∈ R.

6. Half-Alpha-Skew-Normal distribution presented in equation (5).

A flexible probability model for reliability data analysis: The extended half-normal distribution with further results

arun
Typewritten Text
10



Table 5. Summary statistics of the breaking stress of the 50 mm carbon fibers and the 1.5 cm glass fibers

data sets, where a1 and a2 represent the coefficients of skewness and kurtosis respectively.

Data n x̄ s a1 a2

Carbon 66 2.759 0.891 -0.132 3.223

Glass 50 1.441 0.331 -0.629 3.774

Maximum likelihood estimates of the unknown parameters of the seven distributions are produced

using the machine learning tool developed by (Byrd and Zhu, 1995), available in R. The corresponding

Kolmogorov-Smirnov statistics and the associated p-values are displayed in Tables 6 and 7. For more

comparisons, other goodness-of-fit statistics that have been widely used in many applications as pre-

sented in (Khorsheed and Razzaghi, 2020) are considered here. These statistics are: Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information Criterion (CAIC)

and Hannan-Quinn Information Criterion (HQIC). The corresponding values of these measures are pre-

sented in the same tables mentioned above. The results reveal that the EHN distribution has the lowest

goodness-of-fit measures, whereas the highest values are associated with the related ASN and HASN

distributions. From Figures 5 & 6, we noticed that the type of skewness of both datasets is reversely

estimated by almost all models except the EHN and the MGHN distributions. Moreover, the corre-

sponding ML estimates of the ASN and HASN distributions are extremely large and almost approach to

∞. According to (Elal-Olivero, 2010), this phenomenon may suggests bimodal-normal fits rather than

unimodal. To investigate this assumption, we conducted the Hartigan’s dip test for unimodality & multi-

modality (Maechler, 2016) using the corresponding R package. With each dataset, we obtained a p-value

> 0.9 for the null hypothesis of unimodality. The results derived from the Hartigan’s test and also the

K-S statistics indicate that both ASN and HASN distributions did not fit the datasets well enough at 5%

significance level.

Furthermore, the MGHN and the EHN models performed almost in the same manner when fitting

the carbon observations as seen in Figure 5. This is due to the fact that the MGHN is a special case of

the EHN distribution with β = 25 (equation 4) and the corresponding ML estimated scale and shape

parameters of both distributions are not significantly different for this particular set of data as Table 6

reveals. Also, the recorded skewness level of this dataset is small (-0.132), i.e., the underlying distribution

is approximately symmetric. When the skewness is higher, as observed in the glass dataset (-0.629),

the MGHN model did not fit the data adequately at the peak and the right tail of the distribution as

corroborated by Figure 6. Obviously, the EHN distribution outperformed the MGHN in this case. These

results indicate that the EHN model provides the most flexible fits among all compared distributions

especially when the data are moderately to highly skewed.

5. Concluding Remarks

In this article, we present a promising flexible distribution with three parameters called the Extended

Half-Normal (EHN) distribution. According to particular values of its parameters, it includes few

special cases known in the literature: Generalized Half-Normal, Modified Generalized Half-Normal,

Half-Alpha-Skew-Normal and the Half-Normal distributions. Various theoretical properties of the EHN

model, namely the moments, asymmetry and kurtosis are derived. A demonstrative Monte Carlo and sen-

sitivity analysis study is presented. Applying the Maximum Likelihood approach, the estimation results

show a good retrieval of the EHN parameters. Moreover, two reliability datasets are used to demonstrate

the practical importance of the EHN model. The EHN distribution appears to be a good competitor to

several existing distributions for lifetime and reliability skewed data.
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Fig. 5. The fitted densities for the competing distributions for breaking stress of carbon fibers data.
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Fig. 6. The fitted densities for the competing distributions for strength of 1.5 cm. glass data.
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Table 6. The estimated parameters for the models fitted to the breaking stress of carbon fibers dataset

and the values of AIC, BIC, CAIC, HQIC, K-S statistics with the corresponding p-value.

Distribution Estimates AIC BIC CAIC HQIC K-S p-value

GL(γ, λ) γ̂ = 7.0412 191.5939 195.9733 191.3235 193.3244 0.1319 0.1839

λ̂ = 1.2461

EE(λ,α) λ̂ = 1.0077 194.7447 199.1241 194.4743 196.4752 0.1550 0.0839

α̂ = 9.2009

MGHN(β, γ) β̂ = 2.1394 177.2419 183.8109 176.8362 179.8376 0.0744 0.8316

γ̂ = 1.5176

Ga(α, β) α̂ = 7.4885 186.3351 190.7144 186.0646 188.0656 0.1328 0.1948

β̂ = 0.3685

ASN(α) α̂ = 9.9983 × 109 427.5930 429.7826 427.4577 428.4582 0.8055 8.881 ×10−16

HASN(β) β̂ = 9.9997 × 109 336.0977 338.2872 335.9623 336.963 0.5908 8.882 ×10−16

EHN(λ, β, σ) λ̂ = 1.5705 176.4462 183.0152 176.0405 179.0419 0.0731 0.9342

β̂ = 16.0108

σ̂ = 2.1888

Table 7. The estimated parameters for the models fitted to the strength 1.5cm glass fibers measurements

and the values of AIC, BIC, CAIC, HQIC, K-S statistics with the corresponding p-value.

Distribution Estimates AIC BIC CAIC HQIC K-S p-value

GL(γ, λ) γ̂ = 24.3069 50.9599 54.7839 50.7238 52.4162 0.2068 0.0236

λ̂ = 3.0704

EE(λ,α) λ̂ = 2.6850 52.0331 55.8571 51.7968 53.4892 0.2171 0.0180

α̂ = 28.9652

MGHN(β, γ) β̂ = 1.2366 33.4234 39.1595 33.0691 35.6077 0.1648 0.1179

γ̂ = 2.3012

Ga(α, β) α̂ = 15.9115 41.9366 45.7607 41.7005 43.3929 0.2157 0.0191

β̂ = 0.0906

ASN(α) α̂ = 9.9982 × 109 136.3403 138.2524 136.2222 137.0682 0.5907 2.221 ×10−16

HASN(β) β̂ = 9.9973 × 109 67.0257 68.9377 66.9076 67.7538 0.3543 4.02 ×10−6

EHN(λ, β, σ) λ̂ = 2.6312 32.4929 38.2291 32.1740 34.6773 0.1601 0.1379

β̂ = 7.4592

σ̂ = 1.3084
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