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A  class of linear and nonlinear Fredholm integral equations of the third kind
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Abstract

In this paper we are applying a new approach to prove the uniqueness and existence theorems for linear and nonlinear 
Fredholm  integral equations of the third kind.
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Introduction1. 

Various issues concerning the theory of integral equations 
were studied by Lavrent’ev (1959); Magnitskii (1979); 
Lavrent’ev et al. (1986); Imanaliev & Asanov (1989; 2007, 
2010); Asanov (1998); Bukhgeim (1999); Denisov (1999); 
Shishatskii et al. (2001); Apartsyn (2003); Imanaliev et 
al. (2011); Ismat Beg et al. (2014). More specifically, 
regularizing operators in the sense of Lavrent’ev were 
constructed by Lavrent’ev (1959) for solving linear 
Fredholm integral equations of the first kind. Imanaliev & 
Asanov (2007, 2010) and Imanaliev et al. (2011) proved 
uniqueness theorems for systems of nonlinear Volterra 
integral equations of the third kind and for systems of 
linear Fredholm integral equations of the third kind  
and constructed regularizing operators in the sense of 
Lavrent’ev. In this paper a new approach is proposed 
for the study of Fredholm integral equations of the third 

kind. Following this approach, we prove uniqueness and 
existence theorems for the linear and nonlinear Fredholm 
integral equation of the third kind.

Preliminaries2. 

Let consider the linear and nonlinear integral equations 
of the third kind

 
 (1)

  (2)

where  P(x) and f(x)  are given continuous functions on 
[a,b], K(x,y) is given continuous function on  G =[a,b]2, 
M(x,y,v) is given continuous function on G×R, u(x) and 
v(x) are sought continuous functions on [a,b] , λ is a real 
parameter, P(xi )=0, xi∈[a,b], i=1,2,...,m.

Throughout this paper we assume that

                                                                            (3)

Setting  x = x1, we find from (1) and (2) that

 
                                                               

 (4)
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 (5)

Subtracting (4) from (1) and (5) from (2) yield

                                      
   (6)

                                  
 (7)

where  .

Assume that the following conditions hold:

a) For all i =1,...,m, j = si-1+1, ..., si, Ki,j(x,y) ∈C(G),

where  

b) For all  i=1,..., m, j=si-1+1,...,si,  Mi,j (x,y,v)∈C(G×R), where  
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c) For all  i = 1,..., m, j = si-1+ 1, ... , si, Fi,j(x)∈ C[a,b], where 

The  linear  Fredholm  integral  equation of the third kind3. 

Theorem 1. Let conditions (3), a) and c) are satisfied. Then the solution of the integral equation (1) in  C[a,b]  is 
equivalent to the solution of the linear integral equations of the second kind

                               
                                               

 (8)

with the conditions

                                               (9)

Proof. First, let u(x)∈C[a,b] is a solution of equation (1). Then identities (4) and (6) hold. Taking into account (3) and 
conditions a) and c) we find from (6) that

         
                       

 (10)

If P(x)=P1,1(x), x∈[a,b], then

If  s1 = s(1)= 1 and P(x2)= 0, then
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If s1 > 1, then setting x = x1, we find from (10) that

                                                                                                
 (11)

Subtracting (11) from (10) and taking into account conditions (3) , a) and c), yields

If  s1 = 2, then

Continuing this process, we see that the function u(x) solves the following equation

                      
                                          

  (12)         

with the conditions

Setting  x = x2  we find from  (12) that

                                                         (13)

Subtracting (13) from (12) and taking into account conditions a) and c), yields

                         (14)   

Continuing this process with respect to equation (14), we see that the function u(x) solves equation (8) with the 
conditions (9). 

Conversely, let u(x)∈C[a,b] is a solution of the equation (8) with conditions (9). Multiplying the equation (8)  by 
Pm,s(m)(x) and taking into account condition  (9) at  jm = sm, gives

                                                (15)

Multiplying the equation (15) by  Pm,s(m)-1(x) and taking into account condition (9) at jm = sm-1, we have

                                       (16)

Continuing this process with respect to equation (16) 
and taking into account condition (9), we see that u(x) is a 
solution of the equation (1). The theorem 1 is proved.

Corollary 1. Let conditions (3),  a) and c) are satisfied  

and  is a real number, that is not an eigenvalue of kernel 

. Then: 

1) The solution of equation (1) is unique in C[a,b].

2) The solution of equation (8) can be written as

  (17)

where R(x,y,λ)  is the resolvent of the kernel  
In this case, the function u(x), defined by (17) is a solution 
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of the equation (1) if and only if u(x) satisfies the condition 
(9).

Corollary 2. Let conditions (3), a) and c) are satisfied, 

 is a real number, that is an eigenvalue of the kernel 

 and the functions  and 

 are the eigenfunctions of the 

kernels  and  that correspond to the 

eigenvalue  . Then the following  assertions hold:

1) If there exists  i ∈ {1, 2,..., q}, such that

then the equation (1) has no solution in C[a,b].

2) If 

for all i = 1,2,..., q and r(A) ≠ r(B), where A is an sm×q 

matrix with , i = 1, 2, ...,m,

         

 (18)

r(A) is the rank of the matrix A and φ0(x) is a particular 
solution of the equation (8), then equation (1) has no 
solutions in C[a,b].

3) If  

for all i = 1, ..., q and  r(A) = r(B) = q, then equation (1) 
has a unique solution in C[a,b] and that solution can be 
represented as 

         
 (19)

Here c = (c1, c2, ... , cq)T is the only vector satisfying 
the system

Ac = Q,                                 (20)

where the matrices A and Q are defined by formula (18).

4) If 

for all i = 1, 2, ..., q  and r = r(A) = r(B)<q, then equation 
(1) has a solution in C[a, b] and that solution can be 
represented as (19), where the vector c = (c1, c2, ... , cq)T 
depends on q-r arbitrary constants and satisfies system 
(20).  

Proof. In case 1) by the Fredholm alternative the equation 
(8) has no solution in C[a,b]. Therefore, the equation 
(1) has no solution in C[a,b] either. In cases 2)-4), by 
the Fredholm alternative the equation (8) has a solution 
representable as (19), where c1, c2, ... , cq are arbitrary 
constants. Substituting (19) into (9) we have system (20). 
Applying the Kronecker-Capelli’s theorem to system (20), 
we prove assertions 2)-4) in Corollary 2.

Example 1. Consider the equation 

        (21)

where λ, α, α1, β, γ1, γ2 are real parameters. In this case 
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Then by theorem 1, the solution of the integral equation (21) in C[0,1] is equivalent to the solution of the integral 
equation of the second kind

                                                                                      (22)

with the conditions

                                                             (23)

Then from (22) and (23) we obtain:

1) Let  . Then the equation (21) has a solution in C[0,1]  if and only if

This solution is unique and given by the formula

 
                                                                  

(24)

 2) Let   and  . Then the equation (21) has no solution in C[0,1]. 

3) Let   and  . Then the equation (21) has a solution in C[0,1]$ if and only if 
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This solution is unique and given by the formula 

                                                              
 (25)

Example 2. Consider the equation 

                             
      (26)

where  are real parameters. In this case

 Then by theorem 1, the solution of the integral equation (26) in    is equivalent to the solution of the integral 
equation of the second kind

                                                                         
  (27)

with the conditions

                                                                                                      (28)
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Then from (27) and (28) we obtain:

The equation (26) has a solution in  if and 
only if

where 

This solution is unique and given by the formula

    (29)

The nonlinear Fredholm integral equation of the 4. 
third kind

Theorem 2. Let conditions (3), b) and c) are satisfied. 
Then the solution of the nonlinear integral equation (2) in 
C[a,b] is equivalent to the solution of the integral equation 
of the second kind

   (30)

with the conditions

           

 

                                   (31)

Proof. First, let  is a solution of the equation (2). Then identities (5) and (7) hold. Taking into account (3) 
and conditions b) and c) we find from (7) that

         
                      

  (32)

If P(x)=P1,1(x), x∈[a,b], then

If  s1 = s(1)= 1 and P(x2)= 0, then

If  s1 > 1, then setting x = x1, we find from (32) that

                                                           (33)

Subtracting (33) from (32) and taking into account conditions  (3) , b) and c), yields
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If  s1 = 2, then

Continuing this process, we see that the function v(x) 
solves the following equation

   (34)         

with the conditions

Setting  x = x2  we find from  (34) that

 
         

(35)

Subtracting (35) from (34) and taking into account 
conditions b) and c), yields

     
(36)   

Continuing this process with respect to equation (36), 
we see that the function v(x) solves equation (30) with the 
conditions (31). 

Conversely, let v(x)∈C[a,b] is a solution of the equation 
(30) with conditions (31). Multiplying the equation (30)  
by Pm,s(m)(x) and taking into account condition (31) at  

, gives

                                    (37)

Multiplying the equation (37) by  Pm,s(m)-1(x) and taking into account condition (31) at jm = sm-1, we have

                                       (38)

Continuing this process with respect to equation (38) and taking into account conditions (31), we see that v(x) is a 
solution of the equation (2). The theorem 2 is proved.

Corollary 3. Let conditions (2) and b) are satisfied. But the condition c) is not satisfied. Then the equation (2) has no 
solution on C[a,b] .

Example 3. Consider the equation

                                                (39)

where  and  are real parameters. It is easy to see that equation (39) satisfies conditions (3), b) and c) 
for
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Then, for equation (39), the equation (30) and conditions (31) are written as

with the conditions

Then the equation (39) has a solution in C[0,1] if and only if

This solution is unique and given by the formula

Example 4. Consider the equation

            (40)

where   are real parameters, . In this case
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Then, for equation (40) the equation (30) and conditions 
(31) are written as

                             (41) 

with the conditions

  

                   

  (42)

Then from (41) and (42) we obtain:

1) The function   is unique solution of 

the equation (40) in  if and only if

2) The function  is unique solution 

of the equation (40) in   if and only if 
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