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ABSTRACT

A stochastic bicriteria single machine scheduling problem with job-dependent learning
effects in which the normal processing times of jobs (i.e., processing times without any
learning effects) are random variables was studied. The job-dependent learning effects
show that the random actual processing times are unique functions of the positions of
jobs in a sequence. The goal was to derive the optimal sequence that minimizes the
expected value of a general quadratic function of each pair of criteria consisting of the
makespan, total completion time, total lateness, total waiting cost, total waiting time,
total absolute differences in completion times, and the sum of earliness, tardiness and
common due date penalty. The resultant problems were formulated as quadratic
assignment problems that could be solved exactly or heuristically, and proved that their
special cases with linear cost functions are solvable in polynomial time. Computational
results on problems with quadratic assignment formulations indicated that near-optimal
solutions can be obtained with attractive CPU times.
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INTRODUCTION

In classical scheduling problems, processing times are usually assumed to be
known constants independent of the positions of jobs in a sequence. However,
in many real world environments, especially in labor intensive systems, the
actual processing time of a job is shorter if it is scheduled later in a sequence,
due to the phenomenon known as the theory of ““learning effect” (Badiru, 1992).
In general, this theory states that the time required to process a single unit
decreases continuously with the processing of additional units; thus, the unit
costs decline due to the decline in processing times (Yelle, 1979). The impact of
learning on productivity in manufacturing was first discovered by Wright (1936)
in the aircraft industry, and was later observed in manufacturing and service
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organizations. Recently, there has been a growing interest in incorporating
learning into scheduling problems (Biskup, 1999, 2008; Cheng & Wang, 2000;
Wang & Li, 2011).

Most of the studies on scheduling with learning deal with the deterministic
single machine scheduling problem involving one criterion and a linear objective
function. For example, Biskup (1999) examined a single machine problem where
the learning effect is defined in its popular form of the log-linear curve, a job-
independent and position-based learning effect model, in which the actual
processing time of a job is a function of the job position. Cheng & Wang (2000)
introduced a volume-dependent processing time function to model the learning
effects on processing times. Many studies have incorporated the learning model
of Biskup (1999) into the single machine scheduling problem to optimize some
performance criteria (Mosheiov, 2001; Zhao et al., 2004; Eren & Guner, 2007;
Wu et al., 2007). Mosheiov & Sidney (2003) extended the Biskup’s (1999)
learning model to a job-dependent one. Mosheiov & Sidney (2005) defined
learning effects by non-increasing job-dependent learning curves. Soroush
(2012) studied a single machine problem with job-dependent past-sequence-
dependent setup times and job-dependent position-based learning effects where
the setup time and the actual processing time of a job are respectively defined as
unique functions of the actual processing times of already processed jobs and
the position of the job in the sequence. Lately, some researchers have examined
single machine scheduling using other learning effect models. For example,
Wang et al. (2009) analyze a case with exponential time-dependent learning.
Wang & Li (2011) study a case with position-dependent and time-dependent
learning. Huang et al. (2010) consider exponential learning and time-dependent
job deterioration. Cheng et al. (2010) address a case with learning and job
deterioration. To learn more about scheduling problems with various learning
models, the reader is referred to, e.g., Biskup (2008), Cheng et al. (2011), Wang
et al. (2009), and Zhang & Yan (2010).

In real world environments, scheduling decisions are made with respect to
(w.r.t.) multiple criteria rather than a single criterion. These criteria are often
conflicting and no single schedule would simultaneously optimize all criteria
(Hoogeveen, 2005; T’Kindt & Billaut, 2001, 2002). Most of the literature on
multiple criteria scheduling deals with the deterministic bicriteria single machine
systems with linear objective functions. These studies can be divided into three
groups. The first group finds the optimal sequence by minimizing a linear
composite function of two criteria (Mani et al., 2009; Mazdeh et al., 2011;
Shabtay et al., 2010; Soroush, 2013a; and Yedidsion et al., 2009). The second
group minimizes a primary linear function w.r.t. one criterion subject to the
constraint that a secondary linear function w.r.t. another criterion is attained for
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some specified value (Angel et al., 2005; Chen & Sheen, 2007; Erenay et al.,
2010; Liu, 2010; Shabtay & Steiner, 2011; and Wang & Wang, 2012). The third
group determines a set of Pareto-optimal, efficient, or non-dominated sequences
(Gawiejnowicz et al., 2006; Koksalan & Keha, 2003; Molaee et al., 2010; and
Steiner & Stephenson, 2007). A Pareto-optimal sequence is such that it is not
possible to find another sequence with a better value in at least one criterion
without worsening the value of at least one other criterion.

In comparison to deterministic single machine scheduling with learning effect
and single criterion, the amount of literature on its bicriteria counterpart is very
limited. For example, Mosheiov (2001) solves a single machine bicriteria
scheduling problem to minimize simultaneously the total completion and
variation of completion times. Lee et a/. (2004) minimize a linear combination of
the total completion time and the maximum tardiness. Mani et al. (2009)
minimize the total completion time and total absolute differences in completion
times. Lee et al. (2009) study a single machine scheduling problem with learning
and release times to minimize the sum of makespan and total completion time.

Another important issue in real world scheduling systems is the stochasticity of
job attributes (e.g., processing times, setup times) since these attributes are subject
to random variability (Baker & Trietsch, 2009; Soroush & Alqallaf, 2009;
Soroush, 2010a; and Sotskov & Lai, 2012). It is important to incorporate
variations of job attributes into scheduling decisions because schedulers
encounter such deviations. The significance of research in stochastic scheduling is
also emphasized by the interest in synchronous manufacturing, which recognizes
that variations in job attributes disrupt schedules (Umble & Srikanth, 1995).

There is a limited amount of literature on the stochastic bicriteria single
machine scheduling problem. These studies do not consider learning effects and,
either implicitly or explicitly, use linear objective functions of two criteria to
derive the optimal sequences. For example, Forst (1995) addresses a bicriteria
problem with random processing times and a common random due date to
minimize the expected value of a linear function of the total weighted tardiness
and total weighted flow time. Soroush & Fredendall (1994) investigate a
problem with random processing times and deterministic due dates to minimize
the expected value of a weighted linear function of job earliness and tardiness.
Soroush (2007) studies a problem with random processing times and
deterministic due date to minimize the expected value of a weighted linear
function of the number of early and tardy jobs.

Recently, Soroush (2011, 2013b, 2013c¢) has studied some stochastic bicriteria
single machine scheduling problems with linear/nonlinear cost functions. In
particular, Soroush (2011) examines a problem with random processing times
and sequence-dependent setup times. Soroush (2013b) utilizes two quadratic
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cost functions of various regular and non-regular performance criteria. The first
function includes both the linear and quadratic terms of two regular criteria,
while the second function possesses the linear and quadratic terms of a regular
criterion and the linear term of a non-regular criterion. (We remark that
quadratic functions have been used in deterministic scheduling problems with
single criterion but without learning (Alidaee, 1993; Baker & Scudder, 1990; Lu
& Sun, 2011; Soroush, 2010b; Valente & Goncalves, 2009; and Wei & Wang,
2010). Soroush (2013c) considers job attributes such as processing times, setup
times, and reliabilities/un-reliabilities are sequence-dependent or position-
dependent random variables and the learning effects are job-dependent and
position-based. The objective is to derive the optimal sequences that minimize
the expected values of linear, exponential, and fractional cost functions of
different pairs of criteria.

In this paper, we extend the stochastic bicriteria single machine scheduling
problem of Soroush (2013b) to a stochastic single machine scheduling problem
with job-dependent and position-based learning effects wherein the normal
processing times of jobs (i.e., processing times without any learning effects) are
random variables. The job-dependent and position-based learning effects show
that the random actual processing times are unique functions of the positions of
jobs in a sequence. The aim is to find the optimal sequence that minimizes the
expected value of a quadratic function of each pair of criteria consisting of the
makespan, total completion time, total lateness, total waiting cost, total waiting
time, total absolute differences in completion times, and the sum of earliness,
tardiness and common due date penalty. The quadratic function allows the cost
to grow nonlinearly with the criteria, and lets the scheduler to utilize not only
the means but also the variances of criteria. Furthermore, this cost (or disutility)
function can capture the behavior of decreasing risk averse or decreasing risk
prone schedulers (Keeney & Raiffa, 1976). To the best of our knowledge, there
are no prior studies on stochastic bicriteria scheduling dealing with learning
effects and quadratic objective functions.

The organization of the rest of this paper is as follows. The stochastic
bicriteria single machine scheduling problem with learning effect and quadratic
cost function is formulated in the next section. The third section fully explores
the problem w.r.t. various pairs of criteria, and introduces exact solution
approaches. Polynomial time solutions are also presented for the special cases
with linear cost functions. The fourth section contains some computational
results. Finally, we give a summary and some concluding remarks.

PROBLEM FORMULATION

A set of n independent jobs are available at time zero for processing, without
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preemption and idle time insertions, on a continuously available single machine.
Let p; be the probabilistic normal processing time (i.e., the random processing
time without any learning effects) of job i,i = 1,...,n, and u,; and v; be the mean
and variance of p;, respectively. Moreover, let p;;) and p[Ai] denote, respectively,
the probabilistic normal and the probabilistic actual processing time of job
[i],[i]=1,...,n, appearing in the ith position, i=1,...,n, of a sequence
S=(1],...,[i],...[n]) € ¥ where ¥ is the set of all sequences. The normal
processing time of a job is incurred if the job is scheduled first in any S. The
actual processing times of the following jobs in S are stochastically smaller than
their normal processing times because of the learning phenomenon. Using the
job-dependent and log-linear learning effect model of Mosheiov & Sidney
(2003),pf}], i=1,...,n,isdefined as

Pl ="y, (1)

where a;; < 0 is the learning index of job [7]. Let the learning model (1) be
denoted by LE,. Also, let t;,w;, v, di, L = t; —d;, E; = max{d; — t;,0}, and
T; = max{t; — d;,0} represent, respectively, the completion time, waiting time,
unit delay cost, due date, lateness, earliness time, and tardiness time of job i.
TCT=Y_,1, the total lateness TL =) ., L; the total waiting cost
TWC =", viw;, the total waiting time TWT =7, w;, the total absolute
differences in completion times TADC =377, > 7", [t;— t|, and the sum of
earliness, tardiness and common due-date penalty ETCP = Y, (wE; + pT; + &d)
where d is an unrestricted common due date (i.e., d is very large or it is a decision

variable) and 7, p and £ are the unit earliness, tardiness and due date penalty.

We study a stochastic bicriteria single machine scheduling problem utilizing
the learning effect model (1) and the general quadratic cost function of Soroush
(2013Db) given by

2(C1,Cy) = aC? + BC) + 6C3 4 0C3, 3,0 > 0, (2)

where the criteria C; and C, are stochastic since they are functions of processing
times. Note that if o, > 0(«,6 < 0,C; < —3/2a,Cy < —0/26), then g(Cy, C?)
is non-decreasing and convex (concave), and models the behavior of a
decreasing risk averse (decreasing risk prone) scheduler w.r.t. both C; and C;
(Keeney & Raiffa, 1976). If a>0,6<0,C, < —0/26,¢(Ci,C2) is non-
decreasing, convex w.r.t. Ci, concave w.r.t. C,, and models the behavior of a
scheduler who is decreasing risk averse w.r.t. Cy and decreasing risk prone w.r.t.
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C . fa<0,6>0,Cy <—p/2a,g(Cy, Cy) is non-decreasing, concave w.r.t. Cy,
convex w.r.t. C,, and models the behavior of a scheduler who is decreasing risk
prone w.r.t. C; and decreasing risk averse w.r.t. C,. In addition, we examine the
special case with linear cost function g(Cy, Cy) = 8C; + 0C,, 3,6 > 0, which models

the behavior of a risk neutral scheduler w.r.t. C; and C,.

Using the three-field notation of Graham et al. (1979), the proposed
stochastic scheduling problem with learning is denoted by 1/LE,/G(C,C>)
where G(Cy, Cy) = E[g(C1, )], the expected value of g(Cy, C,), using (2), is
defined as

G(Cy, Cy) = aE[CY] + BE[Cy] + 6E[C3] + 0E[C,], 3,6 > 0. (3)

Thus, G(C,, C,) is a function of the first and second moments of C; and
C,. In 1/LE,/G(C;,C>), the goal is to find the optimal sequence
S* = argmingey{Gs(C1, C2)} w.r.t. each pair of criteria consisting of MSP,
TCT, TL, TWC, TWT, TADC, and ETCP.

THE STOCHASTIC BICRITERIA SCHEDULING PROBLEMS
WITH LEARNING
The 1/LE,/G(MSP,C;) problem with C, = TCT, TL, TWC, TWT, TADC and ETCP

We first examine the problem 1/LE,/G(MSP, C;) where C, = TCT. Here, the
goal of a scheduler is to find the sequence that minimizes the expected cost w.r.t.
the completion time of the entire set of jobs and each individual job. Since the

completion time 7 ;j of job [ i ],i=1,...,n, using (1), is given by
(i)=Y kMpp, 4)
k=1
then
n
MSP = Z[n] = Zla[i]p[i], (5)
=1
and

n

TCT = Z ik“w P =Y (n—i+1)py. (6)

i=1 k=1 i=1

We now present the following lemma. (The proofs to all lemmas and
corollaries are given in an appendix available at http://db.tt/06DjBBPm.)
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Lemma 1.

(i) The optimal sequence for 1/LE,/G(MSP,TCT) is the solution to a
quadratic assignment problem (QAP) with the objective function:

Minimize Z Zq,,x,, + Z Z Z Z Uijlee Xij Xkt (7)

i=1 j=1 k=1k#il=j+1

where
gy = |18+ 000 —j+ V)]pi+ lac 8 —j+ 1] (1 + v |

and

{ 2a+6(n—j+1)(n— L+ )] jl% pipy;
Uijke =

0, otherwise.

(i) The optimal sequence for 1/LE,,a=6=0/GMSP,TCT)
(i.e.,1/LE,/G(MSP, TCT) when g(Ci,C>) = SCy + 0C») is the solution
to a linear assignment problem (AP) whose costs are given by
g =[B+0(n—j+ D] fipsij=1,...n

In general, QAP is defined as

n n n
Minimize E E qiixij + E E E E Uik XijX ke,
=l j= i=1 j=1 k=1 k#il=1 %]

subject to: znjx,-j: 1j= 1,...,n,§n:x,-j: Li=1,..,nx;=0,1;i,j=1,..,n
i=1 j=1

In 1/LE,/G(C,Cs),x;; =1 if job i,i=1,...,n, is assigned to position
J.j=1,...,n, of a sequence and x;; = 0 otherwise; ¢g;; is the cost for assigning
job i to position j, and wu is the interaction cost for assigning job i to
positionj and job k to position 4;i,j,k, ¢ =1,....n,i# k,j < {. Since QAP is
NP-hard, some researchers have presented branch-and-bound (B & B) based
exact methods for small QAP, and lower bound based heuristics for
moderately large QAP (Adams & Johnson, 1994; Adams et al., 2007; James et
al., 2009; Xia, 2010; Zhang et al. 2010). In addition, AP is defined as Minimize
Y1 dpxy subject to Yljx=1, j=1...,n30 x;=1,
i=1,...nx;=0,1,i,j=1,...,n, which is solvable exactly in O(n*)time
(Papadimitriou & Steiglitz, 1982).
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The objective of a scheduler in 1/LE,/G(MSP,TL) is to minimize the
expected cost w.r.t. the completion time of the entire set of jobs and the total
deviations of job completion times from their due dates. The later criteria, given
as TL = TCT — nd where d =Y}, d;;/n, is important in just-in-time (JIT)
production systems where both job earliness and tardiness are undesirable.

Lemma 2.

(i) The optimal sequence for 1 /LE,/G(MSP, TL) is the solution to QAP with
objective function (7) where

= [[ﬂ (0= 20nd)(n =+ D] + [+ 8(n =+ 1)) (f + v | i = 1,.
and

{2[05—'— 6(” _]+ 1)(” _E—I— 1)]]'“%“/{/14/14{; lalak = 17 ey 1y k # ia €:]+ la w1
Uikt =

0, otherwise.

(i) The optimal sequence for 1/LE;, o0 =6 =0/G(MSP,TL) is the solution
to AP whose costs are given by q;; = [+ 0(n — j+ 1)] jpsij=1,....n
In 1/LE,/G(MSP, TWC), a scheduler’s aim is to find the sequence that

minimizes the expected cost w.r.t. both the completion time of the entire set of
jobs and the waiting cost of each individual job.

Since wy; ZA | KMy, then

TWCZZ’)/[,-]W“] Zlﬂ [i] Z’y (8)
i=1

i=1 k=i+1

Substituting (5) and (8) into (3), we obtain

(B+0 5 ~w)Elpg) + o+ 8( > )i Ep?) | 0

k=i+1 k=i+1

LYY (48 3 Vi > V) 00 Elp ] Elpy].

i=1j=it1 k=itl =i+l

n
G(MSP,TWC) =3

Since p = Elpj;] and ELU[,] u[l + v, then

GMSP,TWC) =3 (ﬂ+9k2 Vi )y + [ae =+ 6 Z V[k])z](ﬂﬁ]+y[i])la[i]] il
i=1 i+1 k=i+1
+2) ) (a+9¢ Z iy Z W]) e

i=1j=i+1 k=i+1 (=j

©)



Scheduling in stochastic bicriteria single machine systems with job-dependent learning effects 139

For general unit delay costs (or weights) v;,i = 1,...,n, it is difficult to minimize
(9). However, this can be done if y; = 7/,7 > 1(0 < 7 < 1),i=1,...,n, that is, if
the weight for job [i],[i] = 1,...,n, increases (decreases) nonlinearly with the job
position #,i = 1,...,n. The use of this weight function can be justified, e.g., in the
scheduling problem of boarding different classes of passengers into an aircraft, and
in the production scheduling of items involving in the ABC inventory system.

Lemma 3.

() The optimal sequence for 1/LEg, vy =7,0<7#1/G(MSP,TWC) is
the solution to QAP with objective function (7) where

0 7.j+1 _ 7_n+l . o
( ) ](MIZ +V’)]ﬂ[ .]a’7l7] = 17"'7”;

1—-7

5(Tj+l _ Tn+1)2

]Mi+[a+ (1_7_)2

g = |8+

2[a . 5(Tj+l _ Tn+l)(7_l+1 _ Tn+l)

Uiee = (1-7)
0, otherwise.

jljalea/\lu’ll’[’k7 l7]7k = 11"'7”7 k # i? £:1+ 171”7

(i) The optimal sequence for 1/LEy, v =7,0<7#l,a=06=0/G(MSP,TWC) is
the solution to AP with costs ¢ = [B+ (7 — V) /(1 = 7)| fipsiyj=1,...,n.

Note that when v, =1,i=1,...,n1/LE,/GIMSP,TWC) reduces to
1/LE;/G(MSP, TWT) (i.e., 1/LE;,~v;i=1/G(MSP,TWC)). The following
corollary solves this special case.

Corollary 1.

(i) The optimal sequence for 1/LE,/G(MSP, TWT) is the solution to QAP
with objective function (7) where

gy = |18+ 001 =Pl + o+ 600 =] (aF + v |5i) =1,

and

2[04 + 6(” _J)(n - g)]jaizakuiu'k; ivjvk = 17 ey 1 k 7& iv 14 :.]+ 17 e 1
Uijlet =
’ 0, otherwise.

(ii) The optimal sequence for 1/LE,, oo =6 =0/G(MSP, TWT) is the solution to
AP whose costs are given by q; = [+ 0(n —j)| fipsi,j=1,...,n.
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In 1/LE,/G(MSP,TADC), the goal of a scheduler is to minimize the
expected cost w.r.t. the completion time of the entire set of jobs and the total
absolute differences in completion times. This is essential in reducing inventory
costs and the variations in job completion times so that, e.g., the finished jobs
can be delivered together in batches.

For the deterministic single criterion problem 1//TADC, Kanet (1981)
introduced TADC =37, (i—1)(n—i+1)p; as a measure of variation in
completion times, and showed that the optimal sequence is V-shaped (i.e., a subset
of jobs placed in the longest processing time (LPT) order is followed by the
remaining jobs in the shortest processing times (SPT) order). However, in
1/LE/G(MSP, TADC), the optimal sequence is not V-shaped because, using (1),

we have

n

TADC = " (i—1)(n— i+ 1)i'py, (10)
i=1
which is influenced by MSP and learning effects.

Lemma 4.

(i) The optimal sequence for 1/LE,/G(MSP, TADC) is the solution to QAP
with objective function (7) where

gi= [[B+0G—1)(n—j+ D+ [a+06G— 17—+ 17 (12 + v |0 = 1..om;

and

Aot 6= 1)l =1)(n=j+ 1)(n =€+ V)] fil% s ik = 1,0, k £i,
Ujjkr = ij—I-l,...,l’l;

0, otherwise.

(ii)  The optimal sequence for 1/LE,,a = 6 = 0/G(MSP, TADC) is the solution to AP
whose costs are q;; = [B+0(— 1)(n—j+1)|jipsij=1,...,n.

Finally, the objective of a scheduler in 1/LE,/G(MSP, ETCP) is to jointly
minimize the expected cost w.r.t. the completion time of the entire set of jobs
and the sum of earliness, tardiness and common due-date penalty
ETCP =Y, (nE;+ pT; + &d) where d is an unrestricted common due date,
and 7,p and £ are the unit earliness, tardiness, and due date penalty,
respectively. The later criteria is also significant in JIT production systems where
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job earliness and tardiness costs as well as the costs of assigning due dates need
to be minimized.

Panwalkar et al. (1982) gave the following useful results for the deterministic
single criterion problem 1//ETCP. (i) The optimal sequence is V-shaped, that is,
early jobs are arranged in LPT order and tardy jobs are arranged in SPT order;
(ii) the optimal due date is the completion time of the k—th job in the optimal
sequence where k is the smallest integer greater than or equal to
(np —né)/(m+ p)(i.e.,k = [(np —n&)/(m+ p)]); and (iii) the positional weight
of a job when scheduled in position r,r = 1, ..., n, in the sequence is given by

A = min{né + (r— D, (n+1 - r)p}. (11)

In 1/LE/G(MSP, ETCP), the optimal sequence is not also V-shaped since,
using (1), we have

ETCP = " (nE;+ pT;+ &d) = Y Nilipy, (12)
P i=1

which is affected by MSP and learning effects.
Lemma 5.
(i) The optimal sequence for 1/LE;/G(MSP, ETCP) is the solution to QAP
with objective function (7) where
iy = [(B+ 0N + (o +6N) (1 + )]0 = 1,..om;

and

{Z(a + 6)\./-)%)]'“[6"1‘»”[“[{; i7j7k = 17 - 1, k 75 iv 14 :]+ 17 ey 15
Uijke =

0, otherwise;

where \; is defined by (11).

(ii) The optimal sequence for 1/LE;, o= 6=0/G(MSP,ETCP) is the
solution to AP whose costs are given by q;; = (8 + 0N) jipi;i,j=1,...,n.

Lemmas 1-5 indicate that scheduling decisions in the proposed stochastic
bicriteria scheduling problem can be affected by the stochasticity of job
attributes (i.e., their means and variances), the job-dependent learning effects,
the convexity, concavity, or linearity of the cost functions (i.e., the decreasing
risk averse, decreasing risk prone, or risk neutral behavior of schedulers), and
the two criteria. The results also show that, unlike the deterministic single
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criterion problem which yields the same optimal sequence w.r.t. TCT, TL, and
TWT, the optimal sequences for the proposed stochastic bicriteria problem w.r.t
pairs of criteria (MSP, TCT), (MSP,TL), and (MSP, TWT) can be different.

The 1/LE,|G(TCT,C;) problem with C; = TL, TWC, TWT, TADC and ETCP

A scheduler’s goal in the problem 1/LE,/G(TCT, C;) where C, = TL is to find
the sequence that minimizes the expected cost w.r.t. the completion time of each
job and the deviation of each job’s completion time from its due date.

Lemma 6.

(i) The optimal sequence for 1/LE,/G(TCT, TL) is the solution to QAP with
objective function (7) where

qu = |:(I/l _]+ 1)[(ﬂ + 6— 2(51’[07)/% + (Oé + 6)(” _]+ 1)2(///,2 + Vi)jai] jai; lv] = 17 A

and

2(0[ + 6)(” _]+ 1)(” _€+ 1)]jai£ak:ui:uk; i7jak = 1) w1y k 7é i: 8:]+ 17 w1
Uijke =
! 0, otherwise.
(ii) The optimal sequence for 1/LE;, o = 6 = 0/G(TCT, TL) is the solution to
AP whose costs are given by q;; = (64 0)(n —j+ V)] jfipsij=1,..,n

In 1/LE,/G(TCT, TWC), a scheduler’s aim is to minimize the expected cost
w.r.t. the completion time and the waiting cost of each job. Substituting (6) and
(8) into (3), we obtain

G(TCT,TWC) =
B — i+ )40 3 gl +lalr—i+ 0P +8( & e D12, + vta |
=1 k=it1 k=i+1 (13)
+22 E la(n—i+1)(n—j+1)+06 Z ol Z Vgl 7070 g -
i=1 j=i+1 k=i+1 (=j+1
For general ~;,i =1,...,n, it is hard to minimize (13); however, S* can be

derived when vy = 7,0 <7 #1,i=1,....n
Lemma 7.

(i) The optimal sequence for 1/LE,, ~;; = 7,0 <7 # 1/G(TCT, TWC) is the
solution to QAP with objective function (7) where
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9(T1+1 _ Tn+l> 6(7”1 _ Tn+l)2

gj= ([Bn—j+1)+ i+ la(n —j+ 1) + (7 + v) |

I-7 (1- 7')2
Lj=1,...m
and
S(1 — pntl l+1 _ n+l .
2oy 1) 1) 4 2T T
-7
Uijkt = ijk=1,..,n k {=j+1,..,m

0, otherwise.

(ii) The optimal sequence for l/LEg,fym:Ti,0<T;£1,a =0
=0/G(TCT, TWC) is the solution to AP with costs q; = [B(n—j+1)
+O(F — D) S (= 7)) i =1,.. 0.

Corollary 2.

(i) The optimal sequence for 1/LE,/G(TCT,TWT) (i.e.,1/LE,,~;
=1/G(TCT, TWC)) is the solution to QAP with objective function (7)
where

gi= [[B0n—j+ 1) +0(n— )i+ [aln —j+ 17 +6n— )7 (42 + v |0 = ..o,

and

Qam—j+ D(m—L+ 1)+ 6(n—j)(n—0)| il pp; i,j,k=1,....n, k#Ii
Ujjky = C=j+1,..m

0, otherwise.

(ii) The optimal sequence for 1/LE;, o0 =6 =0/G(TCT, TWT) (i.e.,1/LE,,
a=6=0,v=1/G(TCT, TWCQC)) is the solution to AP with costs
gy = [Bn =j+ 1)+ 0(n =) i ij =1, n.

The next two lemmas derive the optimal sequences for 1/LE,/G(TCT, TADC)
and 1/LE,/G(TCT,ETCP). That is, when a scheduler’s goal is to minimize the
expected cost w.r.t. the completion time of each job and either the deviation of the
job’s completion time from its due-date or the total earliness, tardiness and common
due-date penalty for the job.

Lemma 8.

(i) The optimal sequence for 1/LE,/G(TCT,TADC) is the solution to QAP
with objective function (7) where
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g = {[Kﬂ 67— D) —j+ Vg4 o460 = D (n =+ D> (uF + ) |50 = 1,0

and
Yo — Qa+6(j— 1= D) (n—j+1)(n = 41) fil® ppy; ik =1, k#i, £=j+1,....m;
=0, otherwise.

(ii) The optimal sequence for 1/LEs, o0 =6 = 0/G(TCT, TADC) is the solution
to AP whose costs are ¢ = [+ 0(j—1)|(n—j+ 1)/ p;i,j=1,...,n.

Lemma 9.

(i) The optimal sequence for 1/LE,/G(TCT, ETCP) is the solution to QAP
with objective function (7) where

qij = {[ﬂ(ﬂ = 1)+ O+ [o(n — j+ 1) + 6] (uf + Vz-)J”'}f’"; Lj=1,...,m

and
{2[&(}1 _.H_l)(n - €+1) + 6>\j)‘l]jui€ak/~"iﬂk; ivjak = 17 e k # I €:]+ 11 e 1
Uikt =

0, otherwise.

(ii) The optimal sequence for 1/LE,,a = 6 = 0/G(TCT, ETCP) is the solution
to AP whose costs are g;j = [B(n—j+ 1)+ 0N ipsij=1,....n

Based on Lemmas 6-9, we observe that scheduling decisions can be affected
by the stochasticity of job attributes, the job-dependent learning effects, the
characteristics of the cost functions, and the two criteria. The results also
indicate that, on contrary to the deterministic problem w.r.t. single criterion
TCT, TL, and TWT, the optimal sequences for the proposed bicriteria problem
w.r.t pairs of criteria (7CT,TL) and (TCT,TWT) can be different.

The 1/LE,/G(TL,C;) problem with C; = TWC, TWT, TADC and ETCP

The following lemmas and corollary (Lemmas 10-12 and Corollary 3) solve the four
problems 1/LE,; =7,0<7%#1/G(TL, TWC);1/LE,/G(TL, TWT);
1/LE,/G(TL, TADC); and 1/LE,/G(TL, ETCP). That is, they derive the optimal
sequences when a scheduler is interested in minimizing the expected costs w.r.t. the
total deviations of job completion times from due dates and the total waiting cost,
the total waiting time, the total absolute deviations of completion times, or the total
earliness, tardiness and common due-date penalty.

Lemma 10.

(i) The optimal sequence for 1/LEg, vy =7,0 <1 # 1/G(TL, TWC) is the
solution to QAP with objective function (7) where
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o(7+! — )

1—7

gij = |[(B—2ond)(n—j+1)+ it

§(7H! — )2 N
? (—)] (/1’12 + l/i).jal ]aia L]= 17 - 13

[a(n—j+1)"+ Tt
and
(e S IS
Uijke = i,jyk=1..n k#i {=j+1,.. n

0, otherwise.

(ii) The optimal sequence for 1/LE,y=1,0<7#l,a
=6=0/G(TCT,TWC) (see Lemma 7(ii)) is also optimal for 1/LEg, v =
70<7#1,a=6=0/G(TL, TWC).

Corollary 3.
(i) The optimal sequence for 1/LE,/G(TL,TWT) (i.e.,1/LE,,
~i = 1/G(TL, TWC)) is the solution to QAP with objective function (7) where

i = [[(8 = 20nd(n =+ 1)+ 001 = D+ len =+ 1+ 800 7] 2 + )|

ij=1,..m
and
Qam—j+ D(n—L04+1)+6(n—j)(n—0)]jil%pp; i,j,k=1,....,n, k#1i,
Ujjket = L=j+1,..n

0, otherwise.

(ii) The optimal sequence for 1/LE,,a0=6=0/G(TCT,TWT) (see
Corollary 2(ii)) is also optimal for 1/LE;, o =6=0/G(TL, TWT)
(ie,1/LE,,a=6=0,v,=1/G(TL, TWC)).

Lemma 11.

(i) The optimal sequence for 1/LE,/G(TL,TADC) is the solution to QAP

with objective function (7) where

gy = |[B—20nd+0(j = V)(n—j+ Dpi+ [+ 6(j = 1] (n = j+ 17 (22 + vi) |
ihj=1,..,nm
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and

{2[04 + 5(]7 1)(£ - 1)} (i’l *H‘])(l’l - EJF]).ja[gak/ﬁiMk? l,],k = 17 "'7”7 k # i7 EZ]+ 17 ...ﬂ’l;
Uijlet =

0, otherwise.

(ii) The optimal sequence for 1/LE,, o = 6 =0/G(TCT, TADC) (see Lemma
8(ii)) is also optimal for 1/LE,,a = 6=0/G(TL,TADC).

Lemma 12.

(i) The optimal sequence for 1/LE,/G(TL,ETCP) is the solution to QAP
with objective function (7) where
gy = [1(8=20nd)(n—j+ 1) + OJus + [a(n = j + 1) + ONF] (442 + vi)j* |
iLj=1,.. n
and
{2[04(11 — D) (= H1) + NN Jil% pigu; Bk =1,.n, k#i, L=j+1,...m
Ujjkp =

0, otherwise.

(ii) The optimal sequence for 1/LE,, o0 = 6=0/G(TCT,ETCP) (see Lemma
9(ii) ) is also optimal for 1/LE,,a = 6=0/G(TL,ETCP).

The I/LE,/G(TWC,TADC); 1|LE,|G(TWC,ETCP);
and I/LE,/G(TADC,ETCP) problems
A scheduler’s objectives in the problems //LE,/G(TWC,TADC); 1/LE,/
G(TWC,ETCP); and 1/LE,/G(TADC,ETCP) are to minimize the expected

costs w.r.t. the total waiting cost and either the total absolute deviations of
completion times or the total earliness, tardiness and common due-date penalty.

For I/LE,/G(TWC,TADC), substituting (8) and (10) into (3), we obtain

B = =i 1) 4.8 3 gl +[oi = 1=+ 17

G(TWC,TADC) =

n
=

1

o i + U[,»m“w] i (14

=i+

+2) Y PlE-DG=-Dm—i+ D —j+1)+a 3 v 2 Yol i -
i=1 j=it1 k=itl =+l

For general v;,i =1,...,n, it is hard to minimize (14); however, if ) = 7,0
<T1#1,i=1,...,n, one can use the next two lemmas to optimally solve I/LE,/
G(TWC,TADC) and 1/LE,/ G(TWC, ETCP).
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Lemma 13.

(i) The optimal sequence for I/LE,,y =7,0<7 #£1/G(TWC,TADC) is the
solution to QAP with objective function (7) where

B = o)
-7

Oé(Tj+1 n+1)2

5= |0G-Dn—j+1)+ it

G — 1) n—j+ 1>+ [(if + v/, ij=1,.m;

(1=
and
g+l _ nt (D 7_n+1
2= e = =)o 1)+ 2T T
-7
Uiy = k=1 en ke 0=+ 1,

0, otherwise.

(ii) The optimal sequence for I/LEg,V[i]:T[,0<77é1,a:6:0/
G(TWC,TADC) is the solution to AP with costs q;= [0(j—1)
(n=j+ D4 B =) /(L= 7)) pisinj = 1,..om

For the problem //LE,/G(TWC,ETCP) we obtain

G(TWC,TADC) =
300+ 8 3 gl + BN+al 3 )0 + v | #0g5)
-1 k=it+1 k=i+1
+22 Z [BAA + a Z Vi Z Vi) 07 gy gy
i=1 j=i+1 k=i+1 k=j+1
Lemma 14.

(i) The optimal sequence for I/LEgy =71.0<T #1/G(TWC,ETCP) is the
solution to QAP with objective function (7) where

OL(T/H _ 7.n+l)2

ﬂ(Tj+1 _Tn+1) 5
i= |0+l + [N + = (F + ) |, =1,
qij 2 1= i+ [0X; (1-1) (it + v J
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and

2[6)\/\ . a(TjH _ Tn+1)(7f+l _ Tn+1)
Ujjkt = i (1 —7)2
0, otherwise.

}]ﬂ%akui‘uk; i»jak = 1> sy Ty k 7é ia €:]+ 1a e 15

(ii) The optimal sequence for 1/LE,~;=1'0<T #1,00= 6=0/G(TWC,ETCP) is the
solution to AP with costs g = [0\ + B(7 ™ — ) /(1 = )] fpsij=1,...,n.

Finally, the following lemma solves //LE,/G(TADC,ETCP).
Lemma 15.

(i) The optimal sequence for 1/LE,/G(TADC,ETCP) is the solution to QAP
with objective function (7) where

gy = [[0G= D)1=+ 1)+ 0N+ [ali = 1 (n =+ 1 + ¥ (2 + )|

iLj=1,..,m
and
e — D)(l=1)(n—j+1)(n = £+1) + NN J il pipuge; 1,7,k =1, ...,n, k #1,
Ujjk = L=j+1,..m

0, otherwise.

(ii) The optimal sequence for 1/LEq,cc = 6=0/G(TCT,ETCP) is the solution
to AP whose costs are given by q; = [B(j—1)(n—j+ 1)+ ON] % p;;
ij=1,...,n.

Lemmas 10-15 also indicate that scheduling decisions can be affected by the
stochasticity of job attributes, the job-dependent learning effects, the
characteristics of the cost functions, and the two criteria. The results further
show that, contrary to the deterministic problem w.r.t. single criterion 7CT, TL,
and TWT, the optimal sequences for the proposed stochastic problem w.r.t pairs
of criteria involving TCT, TL, and TWT can be different.

COMPUTATIONAL RESULTS

We carry out some computational experiments on the exact and heuristic
solution methods for the QAP formulations of 1/LE,/G(C;,C,). For
comparison, we solve 1/LE,/G(MSP,TCT); 1/LE;/ G(MSP,TADC); 1/LE,/
G(TCT, TADC); and 1/LE,/G(TADC,ETCP). The job learning indices a; < 0,
are sampled from U[-0.862, -0.014] (i.e., between 55% and 99% learning rates).
The coefficients ( and 60 of g(C, C) are sampled fromU[1,10] and coefficients «
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and 6 from U[-5,5] generating convex and concave cost functions to model the
behavior of decreasing risk averse and decreasing risk prone schedulers. The
means u; and variances v;,i=1,...,n, of normal processing times are
respectively generated from U[1,20] and U[0.5,10].

A computer with Intel core 2 due, 2.24 GHz processor and with 1.99 GB
RAM is used to run the experiments. For each problem size, ten instances are
generated and solved exactly using the B&B algorithm for QAP of Cplex, and
heuristically using the modified version of the integer linear programming (ILP)
model of Soroush (2013Db).

The experimental results on the problems 1/LE,/G(MSP,TCT); 1/LE;/
G(MSP,TADC);1/LE;/G(TCT,TADC); and 1/LE,/G(TADC,ETCP) are
shown in Table 1. For each problem size and type, the table displays the number
of heuristic solutions for the ten instances that turned out to be optimal, the
average percentage of gaps between the objective values of the optimal and
heuristic solutions (i.e., 100[(optimal objective value - heuristic objective value)/
heuristic objective value]%), and the average CPU times (in seconds) for the
exact and heuristic methods. The results indicate that at least 60% of the
heuristic solutions for the problems with 5 to 12 jobs are optimal. In the
remaining problems, where the heuristic could not find the optimal sequences,
the percentages of gaps between objective values of the exact and heuristic
solutions are at most 4.82%. As expected, the heuristic’s CPU time is much
lower than that of the exact method. We did not optimally solve problems with
more than 12 jobs since their solutions could not be found within our time limit
of 4,000 CPU seconds. However, the heuristic was used to approximate the
solutions for such problems with attractive CPU times.

The results also show that the pairs of criteria (MSP,TCT), (MSP,TADC),
(TCT, TADC) and (TADC,ETCP) did not affect the difficulty of solving the
problem exactly or approximately. Given the NP-hard nature of the problem,
the heuristic performs well in providing optimal or near-optimal sequences. Our
results also indicate that the optimal sequences are affected by the stochasticity
of job attributes, the job-dependent learning effects, the convexity (or concavity)
of the cost functions, and the two criteria.
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CONCLUSION

In this paper, we have addressed a stochastic bicriteria single machine
scheduling problem with job-dependent and log-linear learning effects wherein
the normal processing times of jobs (i.e., processing times without any learning
effects) are random variables. The goal is to determine the optimal sequence that
minimizes the expected value of a general quadratic cost function of each pair of
criteria consisting of the makespan, total completion time, total lateness, total
waiting cost, total waiting time, total absolute differences in completion times,
and the sum of earliness, tardiness and common due date penalty. The resultant
problems have been formulated as quadratic assignment problems that can be
solved exactly or approximately by using the relevant branch-and-bound
methods. We have also formulated special cases with linear cost functions as
linear assignment problems that are solvable in polynomial time. The proposed
models demonstrate that scheduling decisions can be affected by the
stochasticity of job attributes (i.e., their means and variances), the job-
dependent learning effects, the convexity, concavity, or linearity of the cost
functions (i.e., the decreasing risk averse, decreasing risk prone, or risk neutral
behavior of schedulers), and the two criteria. Our computational experiments,
on some problems formulated as quadratic assignment models, show that the
heuristic performs well in producing optimal or near-optimal sequences. We
have solved problems with up to 12 jobs optimally, and up to 30 jobs
approximately within our CPU time limit of 4,000 seconds. Given the NP-hard
nature of the problem, the CPU time of the heuristic is attractive, and the
amount of gap between the objective values of the exact and heuristic solutions
is small. The problem studied here is general in the sense that its special cases
reduce to some new stochastic and deterministic single criterion/bicriteria single
machine models with/without learning effects. Furthermore, the proposed
approaches can be modified to solve the stochastic bicriteria scheduling problem
with both job-dependent deterioration and learning effects where the
deterioration indices are the negative of those of learning effects. We are
currently extending this research to a problem scenario with sequence-
dependent setup times. Future research should focus on incorporating other
learning models into the problem.
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