
γ
rameters with matter coupling are considered for the current study. The new feasible solutions for these
models by comparing normal and inhomogeneous spacetimes is calculated. Further, we discuss the dif-
ferent properties of the obtained wormhole solutions by taking suitable values of the model parameters
analytically and graphically. Moreover, we consider a specific shape functions i.e., b(r) = r0 log(

r
r0
+1)

and discuss the energy conditions for both models. The presented wormhole solutions are physically
acceptable for the considered exponential and Tsujikawa gravity.

Keywords: Exponential gravity; exotic matter; inhomogeneous spacetime; wormholes; f(R, T ) the-
ory of gravity.

1. Introduction

Einstein’s general relativity (GR) has been served as the most successful theory of gravitation to explain
and understand various mysteries of the astrophysical as well as the cosmological realm. A wormhole is a
theoretical connection between remote regions of the universe, reducing travelling time and distance. The
wormhole concept has an early history starting with Flamm (1916), who constructed the Schwarzschild
solution of field equations as a non-traversable wormhole. Einstein-Rosen bridge proposed (Einstein et
al., 1935) the existence of a bridge, which used to join two copies of Schwarzschild spacetime for which
the wormhole throat implodes, thus forming a singularity. The topological structure (Ellis, 1973) intro-
duced the traversable wormhole concept by coupling geometry and scalar field, creating a geodesically
complete manifold with no horizon. Bronnikov (1973) explored the scalar-electro-vacuum configura-
tions without scalar charge. Clement (1984) gave a class of traversable wormholes in higher dimensions.
The wormhole geometry (Morris et al., 1988) proposed the idea of a traversable wormhole by joining
two distant cosmic regions (asymptotically flat) by a throat supported by an exotic matter violating the
null energy condition (NEC) that keeps the wormhole throat open. The physical viability of wormhole
configuration requires confining this matter’s usage, which is controversial. There has been extensive
work on the construction of wormholes from black hole spacetimes and analysis of their various phys-
ical aspects (Richarte et al., 2007., Eiroa et al., 2008., Sharif et al., 2016., Övgun, 2018., Falco et al.,
2020).

In curvature, the occurrence of higher-order terms would be feasible for constructing wormholes
with thin shells detained by ordinary matter in the framework of the modified theory of gravity (Mazha-
rimousavi et al., 2010, Mazharimousavi et al., 2011). In recent times, solutions of the wormholes have

Kuwait J.Sci., Vol.50, No.(3B),July.2023,pp(1-15)

Wormhole solutions and energy conditions in f (R, T ) gravity

with exponential models

G. Mustafa1∗, M. Farasat Shamir2, Anum Fazal2

1Dept. of Physics, Zhejiang Normal University, Jinhua, People’s Republic of China 
2National University of Computer and Emerging Sciences, Lahore Campus, Pakistan. 

*Corresponding author: gmustafa3828@gmail.com

Abstract

This study explores the new exact solutions of wormhole geometry by imposing the inconsistent Ricci 
scalar via inhomogeneous spacetime. The current analysis is dealing with the modified f(R, T ) theory
of gravity. Two different models of gravity that are f1(R) = R − αγ(1 − e− 

γ
R 

) known as exponential 
gravity model and f1(R) = R − αγtanh(R ) known as Tsujikawa model, where α, γ are model pa-

1



been studied within the context of modified gravity, for example, Kaluza-Klein gravity (Dzhunushaliev
et al., 2011), the theory of Einstein-Gauss-Bonnet (Mehdizadeh et al., 2015, Zangeneh et al., 2015),
theory of Einstein-Cartan (Bronnikov et al., 2015, Bronnikov et al., 2016, Mehdizadeh et al., 2017),
Brans-Dicke theory (Agnese et al., 1995, Nandi et al., 1997, Lobo et al., 2010, Sushkov et al., 2011),
scalar-tensor gravity (Shaikh et al., 2016) and Born-Infeld theory (Eiroa et al., 2012). Recently, modified
gravity theories have been considered relating to cosmological matters such as gravastars, wormholes,
black holes and strange stars. These theories explain the dark energy problems and can describe the
accelerating extension of the universe (Deffayet et al., 2002, Carrol et al., 2004, Nojiri et al., 2003). One
such theory with the modified form of Einstein gravity is f(R, T ) gravity theory, where R represents
Ricci scalar, and T represents the trace of energy-momentum tensor (Harko et al., 2011).

Some captivating cosmological f(R, T ) representations are auxiliary scalar field, models of dark
matter and models of the anisotropic universe, which has been established using various setups (Hound-
jo et al., 2012, Jamil et al., 2012). Diverse cosmological uses of the f(R, T ) theory of gravity have
been given in texts such as thermodynamics, compact stars, phase space perturbations and constancy
of collapsing matter (Singh et al., 2014, Shabani et al., 2013, Shabani et al., 2014, Santos et al., 2013,
Alvarenga et al., 2013, Baffou et al., 2015). Moraes et al., (2017) obtained general analytic explanations
for static wormholes in the f(R, T ) theory of gravity. Recently a non-linear f(R, T ) function has been
defined. The spherical areas where energy conditions are fulfilled for traversable static wormholes have
been explored by Godani and Samanta (2019). Shamir et al., (2021) used non-commutative geometry to
investigate the wormhole solutions in f(R, T ) gravity by considering Gaussian and Lorentzian sources.
For the derivation of cosmological forces in various settings, numerous useful procedures for examining
the f(R, T ) theory of gravity have been done. The split-up scenario which is f(R, T ) = f1(R) + f2(T )
is considered in most cases because of its simplicity and also one can search the impact from T without
stipulating f1(R) and similarly the impact from R without stipulating f2(T ). Such reformation of the
f(R, T ) theory of gravity is examined (Houndjo, 2012).

In the present paper, we want to find the wormhole solutions using a non-constant Ricci scalar in
the framework of the feasible f(R, T ) theory of gravity. Inspired by the discussion mentioned above,
we study static spherically symmetric wormholes in the f(R, T ) theory of gravity background in this
article. Following is the organization of this paper: Section II includes the description of the basic
formalism and corresponding spherically symmetric, static spacetime in f(R, T ) gravity.The discussion
of energy conditions is provided in Section III . In Section IV , traversable wormhole solutions with
inhomogeneous spacetime have been studied using both exponential gravity and the Tsujikawa model.
The entire section V is dedicated to the study of energy conditions using b(r) = r0 log(

r
r0

+ 1). And a
summary of the whole study is highlighted in the last section.

2. f(R, T ) gravity Wormholes

The action of f(R, T ) gravity is as follows

S =
1

16π

∫
d4xf(R, T )

√
−g +

∫
Lmd4x

√
−g, (1)

with R being Ricci scalar and T being trace of energy momentum tensor by T in an random f(R, T )
function, Lm being Lagrangian density and metric determinant is g. Variation of Eq. (1) with metric
tensor gives the following field equations (Cognola, 2008)

fR(R, T )Rγξ −
1

2
f(R, T )gγξ + (gγξ2−∇γ∇ξ)fR(R, T ) = 8π(Tγξ)− fT (R, T )Tγξ − fT (R, T )Θγξ.

(2)
By contracting Eq. (2) with gγξ, T and R are found to have a new relation such that

fR(R, T )R+ 32fR(R, T )− 2f(R, T ) = 8πT − fT (R, T )T − fT (R, T )Θ. (3)

Covariant derivative has been denoted as ∇ whereas 2 denotes d’Alembert operator. Also,

fR(R, T ) =
∂f(R, T )

∂R
, fT (R, T ) =

∂f(R, T )

∂T
, Θγξ = gγξ

∂Tγξ
∂gγξ

. (4)
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Here, we will take anisotropic fluid for energy momentum tensor as

Tγξ = (ρ+ pt)VγVξ − ptgγξ + (pr − pt)χγχξ, (5)

Vγ and χγ indicates four velocity vectors of the fluid with Vγ = e−αδγ0 and χγ = e−βδγ1 , hence fulfilling
the relations VγVγ = −χγγ = 1. By selecting Lm = ρ, we get

Θγξ = −2Tγξ − ρgγξ. (6)

With Eqs. (2), (3) and (6), we attain modified field equations in the given form

fR(R, T )Gγξ = (8π + fT (R, T ))Tγξ +

(
∇γ∇ξfR(R, T )−

1

4
gγξ(8π + fT (R, T ))T

+ 2fR(R, T ) + fR(R, T )R) . (7)

In spherically symmetric spacetime, geometry of wormhole is as follows

ds2 = −e2ψ(r)dt2 + dr2

1− b(r)/r
+ r2(dθ2 + sin2θdϕ2), (8)

here b(r) and ψ(r) are radial coordinate functions with b(r) being shape function and ψ(r) being redshift
function. In the present work, we take constant red shift function i.e. ψ′(r) = 0. Now by putting values
in Equation (7) with metric given in Equation (8), we get

b′

r2
=

(8π + fT (R, T ))

fR(R, T )
ρ+

X

fR(R, T )
, (9)

− b

r3
=

(8π + fT (R, T ))

fR(R, T )
pr +

1

fR(R, T )
(1− b

r
)[(f ′′R(R, T )− f ′R(R, T )

b′r − Fs
2r2(1− b/r)

)]

− X

fR(R, T )
, (10)

−b
′r − b

2r3
=

8π + fT (R, T )

fR(R, T )
pt +

1

fR(R, T )
(1− b

r
)
f ′R(R, T )

r
− X

fR(R, T )
, (11)

where
X ≡ X(r) =

1

4
(fR(R, T )R+2fR(R, T ) + (8π + fT (R, T ))T ). (12)

Ricci Scalar for spacetime given in Equation(8) is

R =
2b′

r2
, (13)

and

2fR(R, T ) = (1− b

r
)

[
f ′′R(R, T )− f ′R(R, T )

b′r − b

2r2(1− b
r ) +

2f ′R(R,T )
r

]
. (14)

The above-mentioned system of equations is not easy to solve for ρ, pr and pt as it has higher order
derivatives with several unknowns. To make these calculations easy, we choose the split-up scenario
which is f(R, T ) = f1(R)+f2(T ). Taking f2(T ) = λT with λ being coupling parameter. Then putting
in the form of f(R, T ) and making calculations in Eqs. (9-11) a little easier to solve. We obtain

ρ =
b′fR

r2(8π + λ)
, (15)

pr = − bfR
r3(8π + λ)

+
f ′R

2r2(8π + λ)
(b′r − Fs)− (1− b

r
)

f ′′R
8π + λ

, (16)

pt = −
f ′R

r(8π + λ)
(1− b

r
) +

fR
2r3(8π + λ)

(b′r − b). (17)

G. Mustafa, M. Farasat Shamir, Anum Fazal
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3. Energy Conditions

Null energy condition (NEC), weak energy condition (WEC), strong energy condition (SEC) and
dominant energy condition (DEC) are main energy conditions. Aforementioned energy conditions are
defined as

NEC ⇔ Tγξk
γkξ ≥ 0, WEC ⇔ TγξV

γV ξ ≥ 0,

SEC ⇔ (Tγξ −
T

2
gγξ)V

γV ξ ≥ 0, DEC ⇔ TγξV
γV ξ ≥ 0,

where kγ is null vector and V γ is timelike vector. For DEC, TγξV γ is not space like. The following
energy conditions with regards to principal pressure are defined as

NEC ⇔ ∀j, ρ+ pj ≥ 0, WEC ⇔ ρ ≥ 0 and ∀j, ρ+ pj ≥ 0,

SEC ⇔ ∀j, ρ+ pj ≥ 0, ρ+
∑
j

pj ≥ 0, DEC ⇔ ρ ≥ 0 and ∀j, pjϵ[−ρ,+ρ].

Here we take these conditions with regards to principal pressures which is as follows

NEC : ρ+ pr ≥ 0, ρ+ pt ≥ 0,

WEC : ρ ≥ 0, ρ+ pr ≥ 0, ρ+ pt ≥ 0,

SEC : ρ+ p− r ≥ 0, ρ+ pt ≥ 0, ρ+ pr + 2pt ≥ 0,

DEC : ρ ≥ 0, ρ− |pr| ≥ 0, ρ− |pt| ≥ 0.

Theses energy conditions are fulfilled by normal matter because of positive density and positive pressure.
Einstein’s field theory tells us that wormholes are full of exotic matter which is not similar to normal
matter.

4. Traversable Wormhole Solutions with Inhomogeneous Spacetime

Since, inhomogeneous spacetime (Golchina & Mehdizadeh, 2019) merges easily with cosmological
background so we study the Ricci scalar of wormhole geometry as

R = 6a1 +
6a2
rn

, (18)

with a1, a2 and n being free parameters. Now we have to find wormhole solutions with Ricci scalar
given in equation (18). Shape function can be found by comparing equation (13) with equation (18),

b(r) = r3(a1 +
3a2
3− n

r−n) + C, (19)

with C being constant of integration. In this work, we take C = 0. Following conditions should be
satisfied by the shape function b(r) for wormhole solution:

i) b(r0) = r0,

ii) b′(r0) < 1,

iii) 1− b(r)

r
> 0. (20)

We can find the value of a2 by putting condition i) in Equation (19) as

a2 =
n− 3

3
rn−2
0 (a1r

2
0 − 1). (21)

By inserting Equation (21) in Equation (19), shape function is found as

b(r) = (rn−2
0 − rn0a1)r

3−n + a1r
3. (22)

Wormhole solutions and energy conditions in f(R, T ) gravity with exponential models
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Fig. 1: Shows the asymptotically flat a1 = 0 and asymptotically hyperbolic a1 = −1 wormhole solutions
respectively with n = 4 and r0 = 1.
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The shape function for a1 = 0,±1 are shown in Figure 1 and Figure 2. We can also write Equation (22)
as

b(r)

r
= a1r

2 + (rn−2
0 − a1r

n
0 )r

2−n. (23)

Because of the condition ii) given in Equation (20) we should put n > 2 in Equation (23). Due to the
metric (Equation (8)), we deduce that the solutions obtained with a1 = 0, a1 = 1 and a1 = −1 at large
value of r matches the flat, spherical and hyperbolic Friedmann-Robertson-Walker (FRW ) universe
respectively. Solutions of wormholes can be obtained for the shape function (22) by using Equations
(15-17).

ρ =
fR

r2(8π + λ)
(3a1r

2 + r2−n(3− n)(rn−2
0 − a1r

n
0 )), (24)

pr = −
f ′′R

8π + λ
+

f ′R
2r(8π + λ)

(3a1r
2 + r2−n(3− n)(rn−2

0 − a1r
n
0 ))−

frA

r2
−
f ′RA

2r
+ f ′′RA,(25)

pt = −
f ′R

r(8π + λ)
− fR

2r2(8π + λ)
(3a1r

2 + r2−n(3− n)(rn−2
0 − a1r

n
0 )) +

fRA

2r2
+
f ′R
r
, (26)

where

A =
a1r

3 + r3−n(rn−2
0 − a1r

n
0 )

r(8π + λ)
.

Now we consider a captivating f(R) gravity model which is exponential gravity model (Cognola,
2008., Elizalde, 2011.)

f1(R) = R− αγ(1− e
−R

γ ), (27)

where α and γ are taken as free positive parameters. We get the following set of equations by using
Equation (27) in Equations (24-26)

ρ =
C

r2(8π + λ)

(
1 +

4αC

r2
+ 2n−1nγ

(C
r2

)n−1
)
, (28)

pr = − 1

r3(8π + λ)

(
I
)(

1 +
4αC

r2
+ 2n−1nγ

(C
r2

)n−1
)
+ F

− 1

2r2(8π + λ)

(
I
)(

G

)
− 1

8π + λ

(
H

)
+

1

r(8π + λ)

(
a1r

3 + r3−n(rn−2
0

− a1r
n
0 )
)(

− 16αD

r3
+

24αC

r4
+

4αE

r2
+ 2n−1(n− 2)(n− 1)nγ

(C
r2

)n−3(D
r2

− 2C

r3

)2
+ 2n−1(n− 1)nγ

(C
r2

)n−2(4D
r3

+
6C

r4
+
E

r2

))
, (29)

pt = − C

2r2(8π + λ)

(
1 +

4αC

r2
+ 2n−1nγ

(C
r2

)n−1
)
+

1

2r3(8π + λ)

(
I
)(

1 +
4αC

r2

+2n−1nγ
(C
r2

)n−1
)
− 1

r(8π + λ)

(
G

)
+

1

r2(8π + λ)

×
(
I
)(4αD

r2
− 8αC

r3
+ 2n−1(n− 1)nγ

(C
r2

)n−2(D
r2

− 2C

r3

))
, (30)

where,

C = 3a1r
2 + r2−n(3− n)(rn−2

0 − a1r
n
0 ),

D = 6a1r + r1−n(2− n)(3− n)(rn−2
0 − a1r

n
0 ),

E = 6a1 + r−n(1− n)(2− n)(3− n)(rn−2
0 − a1r

n
0 ).
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Fig. 3: Shows the development of ρ+ pr and ρ+ pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 4: Shows the development of ρ and ρ− pr with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.

F =
C

2r(8π + λ)

(
4αD

r2
− 8αC

r3
+ 2n−1(n− 1)nγ

(C
r2

)n−2(D
r2

− 2C

r3

))
,

G =
4αD

r2
− 8αC

r3
+ 2n−1(n− 1)nγ

(C
r2

)n−2(D
r2

− 2C

r3

)
,

H = −16αD

r3
+

24αC

r4
+

4αE

r2
+ 2n−1(n− 2)(n− 1)nγ

×
(C
r2

)n−3(D
r2

− 2C

r3

)2
+ 2n−1(n− 1)nγ

(C
r2

)n−2(
− 4D

r3
+

6C

r4
+
E

r2

)
,

I = a1r
3 + r3−n(rn−2

0 − a1r
n
0 )

Now, considering one more specific and interesting model for f(R) theory of gravity i.e., Tsujikawa
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model and is represented as (Tsujikawa 2008., DeFelice 2010.)

f1(R) = R− αγtanh(
R

γ
), (31)

with α and γ being positive and free parameters of the given model. Now, by inserting the above model
(31) in Equations (24-26), we obtain given set of equations:

ρ =
C1

r2(8π + λ)
(1− αS2), (32)

pr = − 1− αS2

r3(8π + λ)

(
I
)
+

αC1S
2T

r(8π + λ)

(2D1

r2γ
− 4C1

r3γ

)
− αS2T

r2(8π + λ)

(
I
)(2D1

r2γ
− 4C1

r3γ

)
− 1

8π + λ

(
2αS4

(2D1

r2γ
− 4C1

r3γ

)2
+ 2αS2T

(−8D1

r3γ
+

12C1

r4γ
+

2E1

r2γ

)
− 4αS2T 2

(2D1

r2γ
(33)

−4C1

r3γ

)2)
+

1

r(8π + λ)

(
I
)(

2αS4
(2D1

r2γ
− 4C1

r3γ

)2
+ 2αS2T

(
− 8D1

r3γ
+

12C1

r4γ
+

2E1

r2γ

)
−4αS2T 2

(2D1

r2γ
− 4C1

r3γ

)2)
, (34)

pt =
−C1

2r2(8π + λ)
(1− αS2) +

1

2r3(8π + λ)

(
I
)
(1− αS2)− 2αS2T

r(8π + λ)

(2D1

r2γ
− 4C1

r3γ

)
+

2αS2T

r2(8π + λ)

(
I
)(2D1

r2γ
− 4C1

r3γ

)
, (35)

where,

S = sech(
2C1

r2γ
),

T = tanh(
2C1

r2γ
),

and

C1 = 3a1r
2 + r2−n(3− n)(rn−2

0 − a1r
n
0 ),

D1 = 6a1r + r1−n(2− n)(3− n)(rn−2
0 − a1r

n
0 ),

E1 = 6a1 + r−n(1− n)(2− n)(3− n)(rn−2
0 − a1r

n
0 ).

Shape function plays a vital part in defining the character of a wormhole structure. Since for each value
of radial coordinate r, the energy density is positive. As seen in figure 4 and Figure 8 graphs on the left
side, the obtained energy density is non-negative and decreasing. NEC, WEC, and DEC except are
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Fig. 7: Shows the development of ρ+ pr and ρ+ pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 9: Shows the development of ρ− pt and ρ+ pr + 2pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 10: Shows the development of ∆ and ω with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 11: Shows the development of ρ+ pr and ρ+ pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 12: Shows the development of ρ and ρ− pr with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.

satisfied throughout but SEC is not see ( figures 3-5, and figures 7-9). Anisotropy parameter is denoted
as ∆ = pt−pr. The negative value of ∆ represents the attractive geometry of the wormhole, whereas the
positive value represents the repulsive nature of geometry. For the given shape function, both the models
have a negative anisotropy parameter which shows the attractive nature of geometry inside the wormhole
see ( figures 6,10). Furthermore in terms of radial pressure, equation of state parameter is defined as
ω = pr

ρ . It tells us the type of fluid filled in the wormhole’s structure. For the given shape function,
value of ω for both the models is between −1 and 0 that indicates the existence of non-phantom fluid see
(figures 6,10). Hence, such solutions to wormholes can occur without the existence of exotic matter.
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Fig. 13: Shows the development of ρ− pt and ρ+ pr + 2pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 14: Shows the development of ∆ and ω with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 15: Shows the development of ρ+ pr and ρ+ pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 16: Shows the development of ρ and ρ− pr with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 17: Shows the development of ρ− pt and ρ+ pr + 2pt with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.
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Fig. 18: Shows the development of ∆ and ω with n = 5, a1 = 2, r0 = 0.9 and γ = 0.5.

5. NEC and WEC for b(r) = r0 log(
r
r0

+ 1)

In this section, energy conditions for a specific shape function (Godani, 2018., Smantha, 2018), which is
defined as:

b(r) = r0 log(
r

r0
+ 1) (36)

Now, by using Equation (36) in both exponential gravity models, which are given in Equation (27) and
in Equation (31) we can check the behavior of energy conditions. As first attempt, we calculated the
generic field equations for both models by Equation (27) and Equation (31) in Equations (15-17). The
energy density and pressure components for the first model by Equation (27) are calculated as:

ρ =

b′(r)

(
1− αe

− 2b′(r)
γr2

)
(λ+ 8π)r2

, (37)

pr =
e
− 2b′(r)

γr2

γ2(λ+ 8π)r7

(
b(r)

(
α
(
−16b′(r)2 + r2

(
γr2

(
2b(3)(r) + γ

)
− 9γrb′′(r)− 4b′′(r)2

)
+ 2rb′(r)

(
8b′′(r) + 7γr

))
− γ2r4e

2b′(r)
γr2

)
+ αr

(
−2γr4b(3)(r) + 4r2b′′(r)

(
b′′(r) + 2γr

)
= 2

(
γr2 − 8

)
b′(r)2 + rb′(r)

((
γr2 − 16

)
b′′(r)− 12γr

)))
, (38)

pt =
r2 (b(r)− rb′(r)) +

αe
− 2b′(r)

γr2 (r((γr2+8)b′(r)−4rb′′(r))−b(r)(r(γr−4b′′(r))+8b′(r)))
γ

2(λ+ 8π)r5
. (39)
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The energy density and pressure components for the second model by Equation (31) are calculated as:

ρ =
b′(r)

(
1− αsech2

(
2b′(r)
γr2

))
(λ+ 8π)r2

, (40)

pr =
1

2γ2(λ+ 8π)r7

(
− 48α(r − b(r))

(
rb′′(r)− 2b′(r)

)2 sech4
(
2b′(r)

γr2

)
+ 2α

(
b(r)

(
r
(
4b′′(r) + γr

)
− 8b′(r)

) (
r
(
γr − 4b′′(r)

)
+ 8b′(r)

)
+ 16r

×
(
rb′′(r)− 2b′(r)

)2) sech2
(
2b′(r)

γr2

)
+ 4αγr2

(
−2rb′(r)2 + r (2r(b(r)− r)

× b(3)(r) + (8r − 9b(r))b′′(r)
)
+ b′(r)

(
r
(
rb′′(r)− 12

)
+ 14b(r)

))
× tanh

(
2b′(r)

γr2

)
sech2

(
2b′(r)

γr2

)
)− 2γ2r4b(r)

)
, (41)

pt =
1

2γ(λ+ 8π)r5

(
αγr2

(
rb′(r)− b(r)

)
sech2

(
2b′(r)

γr2

)
+ γr2

(
b(r)− rb′(r)

)
− 8α(r − b(r))

(
rb′′(r)− 2b′(r)

)
tanh

(
2b′(r)

γr2

)
sech2

(
2b′(r)

γr2

))
. (42)

Since we know that the existence of exotic matter in a wormhole is correlated to the violation of
NEC. In response to the above mentioned energy conditions, we observe that for both models energy
density is positive and decreasing (Figure 13) and (Figure 16)for the specific shape function i.e. b(r) =
r0 log(

r
r0

+ 1). Development of ρ + pr and ρ + pt (NEC and WEC) can be seen in (Figure 11) and
(Figure 15) respectively. For both models, NEC is violated because of the negative behavior of ρ+ pr,
which is evidence of the presence of exotic matter. All the energy conditions are presented graphically
for b(r) = r0 log(

r
r0
+1) specific model in (Figure 11-18) for both considered model of f(R, T ) gravity.

6. Conclusion

Scientists have always been concerned about the construction and occurrence of wormhole solutions in
GR. The existence of exotic matter is one of the significant settings for producing wormholes because
it violates NEC. But this is not the compulsory condition for the wormhole presence as long as it is
cosmologically acceptable. Wormhole construction is a fascinating topic in terms of modified theories of
gravity. In this paper, we have discussed different cases in f(R, T ) gravity and shown that the existence
of exotic matter is a necessary but not critical condition for wormhole solutions existence. The essential
features of the current study are itemized below:

• Firstly, we considered inhomogeneous spacetime in the f(R, T ) theory of gravity. Wormhole
solutions are found using two captivating f(R) models i.e. exponential gravity model (f1(R) =

R− αγ(1− e
−R

γ )) and Tsujikawa model (f1(R) = R− αγtanh(Rγ )). The energy conditions are
studied and their geometric nature is examined. NEC, WEC and DEC are satisfied everywhere
for both models (Figures 3-5, and Figures 7-9). This shows the presence of solutions of wormholes
without the existence of exotic matter as NEC is satisfied everywhere. The geometric nature of
the wormhole is found to be repulsive and is full of non-phantom fluid (Figures 7, 10). Hence,
the obtained results show the existence of solutions of wormholes in the presence of non-exotic
matter.

• Moving forward, NEC an WEC for a specific shape function i.e. b(r) = r0 log(
r
r0

+ 1) using
both exponential gravity model and Tsujikawa model have been explored. We observe that for the
given models, energy conditions are provided in (Figures 11-18), and NEC is violated because of
the negative behavior of ρ+ pr which is the evidence of the existence of exotic matter.

G. Mustafa, M. Farasat Shamir, Anum Fazal

13



In a nutshell, the present study gives a detailed discussion on the occurrence of solutions of wormholes
in f(R, T ) gravity using specific models. In particular, we may conclude from this work that traversable
wormholes are conceivable with or without the presence of exotic matter.
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