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Abstract

A subset  of an ordinary topological space  is -open (resp. -open) if for each , there exists  
such that  and  is countable (resp. finite). In this work, we extend -open and -open notions to include 

-topological spaces, where  is an F-lattice, and we introduce a third notion of -sets weaker than both of them. For a 
given -topological space, the new notions give us three new finer -topological spaces, which can help us to increase 
our understanding of this -topological space. By means of these new notions in -topological spaces, several types 
of Chang’s compactness, and Wong’s Lindelöfness will be introduced. We make many comparisons between the new 
notions, and between them and some other related concepts. Several characterizations of the new concepts are given and 
two characterizations of Wong’s Lindelöfness concept are given.
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1. Introduction

Dealing with the fuzzy set theory is still a hot area of 
research in almost all branches of mathematics and 
computer science (Chauhan et al., 2014; Davvaz & 
Leoreanu-Fotea, 2014; Davvaz & Hassani Sadrabadi, 
2014; Et et al., 2014; Pant et al., 2015; Sen & Roy, 2013; 
Zulfiqar, 2014; Zulfiqar & Shabir, 2015). The fuzzy 
topology as an important part of the fuzzy set theory has 
been significantly developed in the last years. The best 
outlook of this development can be seen in (Höhle, 1991; 
Höhle et al., 1995; Höhle & Šostak, 1999; Höhle, 2001; 
Liu & Luo, 1997; Rodabaugh et al., 1992; Rodabaugh & 
Klement, 2003; Wang, 1988), in which several definitions 
of fuzzy topology appear. Throughout this paper, our 
definition of fuzzy topology will be the one which appears 
in (Höhle & Šostak, 1999) with the notation ‘ -topology’, 
where  is an F-lattice.

Let  be an ordinary topological space and let  
be an ordinary subset of . A point  is called a 
condensation point of  if for each  with  
the set  is uncountable.  is called -closed 
(Hdeib, 1982) if it contains all its condensation points. 
The complement of an -closed set is called -open. It 
is known that  is -open if and only if for each  
there exists  and a countable subset  such 
that .  is called   -open (Al-Omari & 
Noorani, 2009) if for each , there exists  such 

that  and  is finite.

Using -open sets, Lindelöfness has been characterized 
in (Hdeib, 1982), several continuity concepts have been 
introduced and studied in (Al-Hawary & Al-Omari, 
2006a; Al-Omari & Noorani, 2007b; Al-Omari et al., 
2009b; Hdeib, 1989), and several generalizations of 
paracompactness have been introduced and studied in (Al 
Ghour, 2006). Also, some modifications of both -open 
and -closed sets appear in (Al-Hawary & Al-Omari, 
2006b; Al-Omari & Noorani, 2007a; Al-Zoubi, 2005; 
Sarsak, 2003). The authors in (Al-Omari et al., 2009a; Al-
Omari & Noorani, 2009) have characterized compactness 
and strong compactness using -open sets. The door is 
still open to use -open ( -open) sets for the purpose 
of generalizing some known concepts or improving some 
known results. 

When we define a reasonable generalization of open 
-sets in -topological spaces, we hope that this will 

open the door for a number of future related studies. For 
example, as a generalization of open sets in I-topological 
spaces, semiopen sets were defined in (Azad, 1981) for 
the reason of introducing some continuity concepts, then 
many related research articles appeared, for instance, 
(Cho & Lee, 2005; Dang et al., 1994; Ganguly & Saha, 
1986; Ghosh, 1990; Mukherjee & Sinha, 1989a; 1989b; 
Mukherjee, 1999). In this work, for the purposes of 
introducing and studying new types of compactness and 
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Lindelöfness in -topological spaces, we will extend the 
notions -open and -open sets to include -topological 
spaces, and we will introduce a notion which is weaker 
than -openness.

2. Preliminaries

In this section, we will introduce concepts, symbols, and 
results, which will be used in the sequel. For non-cited 
things, we refer the reader to (Höhle & Šostak, 1999) and 
(Liu & Luo, 1997).

Throughout this paper,  is an F-lattice; i.e., a 
completely distributive lattice with an order-reversing 
involution  on it, and with smallest element 0 and largest 
element 1 .  is called a molecule of , if  
and for arbitrary  implies  or 

.  will denote the set of all molecules of . 
Let  and  be two ordinary nonempty sets. In this paper, 
I will denote the complete distributive lattice [0, 1] with 
the usual order and order-reversing involution  ,  

 for every . An -subset of  is a function with 
domain  and values in ; i.e., an element of .  
under the pointwise ordering:

for ,  in  if and only if 
in for all  for all  is also an 
F-lattice.

If  then  denotes the -set given by  
for all ; i.e.,  denotes the “constant” -set of 
level ; i.e., the smallest and the largest elements of  
are denoted respectively by  and .  is called 
an -crisp subset on  if there exists an ordinary subset 

 such that , i.e., if 
 is a characteristic function of some ordinary subset of 
. An -point on  is an -subset  defined as 

follows:

for every 

 will denote the set of all -points on . An 
-point  is said to belong to an -set  
(notation: ) if and only if . It is well 
known that .

An -topological space or -ts for short, is a pair 
, where  is a nonempty set,  is an F-lattice and   

called an -topology on  is a subfamily of  satisfying 
the following three axioms:

(i) .

(ii) If  then .

(iii) If  then .

The elements of  are called open -sets. An -set  is 
called closed if .

Let   be an -ts, .  is called a base of 
, if .  is called a subbase of 
, if  and  is a nonempty finite set} forms 

a base of . For every  and , we say 
 is quasi-coincident with , denoted by , if 

  is called a quasi-coincident neighborhood 
of  in , shorted as Q-neighborhood, if  
The family of all Q-neighborhoods of  is 
denoted by .

Throughout this paper, for an -subset  of an -ts 
, the support of  is defined by  

and is denoted by . For any nonempty set 
  (resp. ) will denote the ordinary 

cocountable (resp. cofinite, discrete) topology on , and  
 (resp. ) will denote the -topology 

 (resp. ,  
on . For an -ts , denote the families 

    
and  by , , and , 
respectively.

The following definitions and proposition will be used 
in the sequel:

Definition 2.1. An -ts   is called , if for every 
, the -crisp subset  is -closed.

The author in (Fora, 1989) defined the concept  for 
the special F-lattice .

Definition 2.2. An -ts  is called P- -ts, if the meet 
of any countable family of -open subsets of  is 

-open.

The author in (Al-Hawary, 2008) defined the concept 
P- -ts for the special F-lattice .

Definition 2.3. (Liu & Luo, 1997) Associated with a 
given -ts  and arbitrary nonempty ordinary 
subset  of , define the induced -topology on  or 
the relative -topology on  by .

Definition 2.4. (Liu & Luo, 1997) Let   be an -ts, 
, , .  is called a cover of , if 

particularly,  is called a cover of , if  is a cover 
of .  is called an open cover of , if  and  is a 
cover of . For a cover  of ,  is called a subcover of 

, if  and  is still a cover of .
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Proposition 2.5. (Liu & Luo, 1997) Let  be an -ts, 
. Then the following conditions are equivalent:

(i)  is a base of .

(ii) For all , for all , there 
exists  such that .

3. !-Open, N-open, D-open L-sets

We start by defining the main notions of this paper.

Definition 3.1. Let  be an -ts and let .

(i)  is called an -open (resp. -open) -set in 

 if for every  with , there 
exist  and  (resp. ) such that 

 and .

(ii)  is called a -open -set in  if for every 
 with , there exists  such 

that .

(iii)  is called an -closed (resp. an -closed, a 
-closed) -set in  if  is an -open (resp. an 
-open, a -open) -set in .

For an -ts  denote the family of all -open 
(resp. -open, -open) -sets in   by  (resp. 

, ).

The following theorem summarizes several important 
properties and relationships related to the notions in 
Definition 3.1.

Theorem 3.2. Let  be an -ts. Then the following 
conclusions hold.

(i) .

(ii) .

(iii) .

(iv) Each of , , and  forms an -topology 
on .

(v)  (resp. , ) forms a base of the -topology 
 (resp. , ) on .

(vi)  (resp.  ,  ) forms a 
subbase of the -topology  (resp. , ) on .

(vii)  (resp. , ) if and only if 
  (resp. , ).

(viii) .

Proof. (i) For every , , hence  
. That  is obvious. To see that 

, let , , and  

with , it is not difficult to see that  
Thus, we have , , , and 

, which shows that . 
To see that , let  and let  
with . Then there exist  and 

 such that  and  and 
hence , consequently, .

(ii) and (iii) Each similar to that used in the proof of 
.

(iv) Only we prove  satisfies the conditions of 
-topology, the others are similar:

(1) By (i), , .

(2) Let  and  with 
Then  and , and so there exist  
and  such that ,  
and . Thus, we have , 

, , and   
, hence .

(3) Let    and    with 
. There exists  such that 

. Thus, there exist  and 
such that  and , 
hence .

(v) Since by (i) (resp. (ii), (iii))  (resp.  
 , ), then by Proposition 2.5, it is easy to 

check that  (resp. , ) forms a base of  (resp. 
, ).

(vi) Follows directly from (v).

(vii) Follows directly from (vi).

(viii) Since by (i), , then by (v), it follows 
that .

For an -ts , each of the sequence of the 
inclusions  cannot be replaced by 
equality, in general. As an example, take  as an 
uncountable set,  as an arbitrary F-lattice,  
Then , , and . In the first part of 
the rest of this section, we study conditions which are 
sufficient to have equality between two of  
or more.

Although an -ts   need not to be , in general, 
the following theorem says that each of the new -ts’ 

, ,  is .

Theorem 3.3. For any -ts , each of , 
,  is .
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Proof. As by Theorem 3.2 (i) and (viii)  , it 
is sufficient to see that  is . Let . Then 

, and hence  is a closed 
-set in .

In a  -ts, the concepts -open and open -sets are 
equivalent, as the following result shows.

Theorem 3.4. An -ts  is  if and only if .

Proof. Necessity. Suppose  is . For every 
,

is a closed -set in , and hence . Therefore, 
by Theorem 3.2 (vii), it follows that .

Sufficiency. Follows since by Theorem 3.3,  is 
.

For an -ts , in Theorem 3.4, we see that the 
property  is a sufficient (and necessary) condition for  

. In the following theorem, we add the condition 
that ‘  P-L-ts’ to get the stronger result, .

Theorem 3.5. If  is  and P-L-ts, then 

Proof. Since  is P-L-ts, then for every ,

                   

is a closed -set in , and hence . Therefore, 
by Theorem 3.2 (vii), it follows that . This ends 
the proof because by Theorem 3.2 (i) and (viii), we have  

.

Definition 3.6. An -ts  is said to be CS (FS) if 
 has a base  such that for every , Supp ( ) is 

countable (finite).

The property ‘  CS’ (resp. ‘  is FS’) 
is sufficient for  (resp.  ), as the 
following theorem says.

Theorem 3.7. Let  be an -ts. Then

(i) If  is CS, then .

(ii)  is FS, then .

Proof. (i) By Theorem 3.2 (i), . We show 
that . Let  and let  
with . Then there exists  such 
that . As  is CS, there exists 

 such that  and  ( ) is countable. 
Put . Therefore,  

, and . Hence, 
.

(ii) By imitating the proof of (i), one can show that 
.

Corollary 3.8. Let  be an -ts. Then

(i) If  is countable, then .

(ii) If  is finite, then .

The following lemma will be used in the proof of the 
next two theorems.

Lemma 3.9. Let  be an -ts,  a base of . Then

(i)  and  is a base of .

(ii)  and  is a base of .

Proof. (i) Since by Theorem 3.2 (v),  forms a base 
of , it is sufficient to show that every element of  
is a join of a family of elements of  
and . Let  where  and 

. Since  is a base of , there exists  
such that . Since  is distributive, 

. This completes the 
proof.

(ii) Similar to the proof of (i).

Theorem 3.10. Let   be an -ts. Then

(i) .

(ii) .

Proof. (i) By Theorem 3.2 (v),  is a base of . Thus by 
Lemma 3.9, it follows that  
is a base of . It is clear that  

 . Thus, .

(ii) Similar to the proof of (i).

Theorem 3.11. Let  be an -ts. Then

(i) If  is CS, then  is CS.

(ii) If  is FS, then  is FS.

Proof. (i) Suppose  is CS. Then there exists a base 
 of  such that for every ,  ( ) is countable. 

So by Lemma 3.9 (i),

is a base of . Also, for every  and    
 is countable. This ends 

the proof.
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ii) Similar to that used in (i).

The following theorem is natural and it will be used in 
the proof of the next main result:

Theorem 3.12. Let  be an -ts,  . 
Then

(i) .

(ii) .

(iii) .

Proof. The proofs of all are similar, so we prove only (i).

(i) Let  where ,  
 is countable. Since   

and , then 
Conversely, let  where  

 ,  is countable. Since   
, , and  is countable, then 

.

For a given -ts  and a nonempty ordinary 
subset , there is a strong relationship between the 

-open (resp. -open, -open) -sets in the relative -ts 
 and -open (resp. -open, -open) -sets of 

, as the following corollary says:

Corollary 3.13. Let  be an -ts,  ,  
Then

(i) .

(ii) .

(iii) .

In the following result,  ( ) and  ( ) will denote 
the -fuzzy unit interval and the -fuzzy real line, 
respectively; for some undefined symbols here we refer to 
(Höhle & Šostak, 1999) and (Liu & Luo, 1997).

Theorem 3.14. For every F-lattice  which has a subset 
 satisfying  ,  and 

neither  ( ) nor  ( ) is . In particular, Neither  ( ) 
nor  ( ) is .

Proof. Consider the mappings  and  
defined by

Then [ ], [ ]   [ ] with [ ]  [ ]. To show that  ( ) 
is not , it is sufficient to see that  is not open 
in  ( ). It is known that    

 is a base for  ( ). For every ,   [ , ],  
([ ])   ([ ])   ([ ])    . Suppose there 
exists  such that   , then  
([ ])  , also, as   , then  

 and thus  ([ ])    . We proved 
that  is not open in  ( ). Similarly, we can see 
that  ( ) is not .

The following result follows directly by Theorems 3.3 
and 3.14.

Corollary 3.15. Let  be an F-lattice which has a subset 
 satisfying   and  

If  ( )   or  ( )  , then ,  
and  .

The following question is natural:

If we take  instead of   in 
Definition 3.1, what would happen?

In the following definition we take  
instead of  in Definition 3.1.

Definition 3.16. Let  be an -ts and let .

(i)  is called an  -open (resp.  -open) -set in 
, if for every  with , there 

exist  and  (resp. ) such 
that  and .

(ii)  is called a  -open -set in  if for every 
 with , there exists  such 

that .

It is clear that every  -open (resp.  -open,  -open) 
-set in an -ts  is -open (resp. -open, -open). 

In the rest of this section, we are going to show that notions 
-open (resp. -open, -open) and  -open (resp. 

 -open,  -open) in an -ts  are equivalent.

For an -ts  denote the family of all  -open 
(resp.  -open,  -open) -sets in  by   (resp. 

, ).

Lemma 3.17. Let   be an -ts. Then

(i) ,   and .

(ii) If   (resp. ,  ), then 
  (resp. , ).

Proof. (i) We only prove that , the others are 
similar:
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Let  and let  with 
. Then  and  . Thus, we 

have  and  such that  and 
. Hence, .

(ii) The proof of each is similar to that used in proving 
that  is closed under arbitrary join in Theorem 3.2 (iv).

Theorem 3.18. Let  be an -ts. Then , 
 and .

Proof. We only prove that , the others are 
similar:

 is obvious. On the other hand, by Theorem 3.2 
(v) and Lemma 3.17, we can easily seen that 

4. Covering properties in L-topological spaces

We start by the following essential definition:

Definition 4.1. Let  be an -ts,  , . 
 is called an -open (resp. -open, -open) cover of , 

if  (resp. , ) and  is a cover of .

An -ts  is called compact (Chang, 1968), if 
every open cover of  has a finite subcover.

The following definition generalizes Chang’s 
compactness to include general -ts’. It also uses the new 
kinds of -sets to define three kinds of compactness in 

-ts’.

Definition 4.2. An -ts  is called compact (resp. 
-compact, -compact, -compact) if every open (resp. 
-open, -open, -open) cover of  has a finite 

subcover.

The following characterizations of -compactness, 
-compactness, and -compactness follow directly from 

the definitions:

Theorem 4.3. Let  be an -ts. Then

(i)  is -compact if and only if  is 
compact.

(ii)  is -compact if and only if  is 
compact.

(iii)  is -compact if and only if  is 
compact.

An -ts  is neither -compact nor -compact 
when  is an infinite set:

Theorem 4.4. Let  be an -ts. Then

(i) If   is -compact, then  is finite.

(ii) If  is -compact, then  is finite.

Proof. (i) Suppose  is -compact. Since  
 is -open cover of  , then there exists 

 such that  is 
a cover of . Thus,  and hence 

 is finite.

(ii) Suppose  is -compact and suppose to 
the contrary that  is infinite. If  is countable, then by 
Corollary 3.8 (i),   and by Theorem 4.3 (i) and (iii), 
it follows that  is -compact which contradicts (i). 
If  is uncountable, then choose a countable infinite set 

, say . Consider the sequence of 
subsets of  defined by  
Then  is an -open cover of  which 
has not a finite subcover. This contradicts the assumption 
that  is -compact.

-compactness and -compactness are coincident to 
each other:

Corollary 4.5. Let  be an -ts. Then the following 
are equivalent:

(i)  is -compact.

(ii)  is -compact.

Proof. (i)  (ii) Follows because by Theorem 3.2 (i), 
.

(ii)  (i) Suppose  is -compact. Then by 
Theorem 4.4 (ii),  is finite. Thus by Corollary 3.8, it 
follows that , and hence  is -compact.

We have the following relations among these kinds of 
compactness in -ts’:

Theorem 4.6. The following implications hold in -ts’:

-compactness  -compactness  compactness.

Proof. Follow since by Theorem 3.2 (i), we have  
.

Moreover, each of the implications listed above is 
strict just as the following examples show:

Example 4.7. There exists an -compact -ts which is 
not -compact.

Take  be any F-lattice and  be any ordinary infinite 
set. Then the -ts  is clearly -compact. On 
the other hand, by Theorem 4.4 (ii), it is not -compact.

Example 4.8. There exists a compact -ts which is not 
-compact.
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Take , , and  
. If  is an open cover of , then 

 and so  is a finite subcover of . Hence 
 is compact. On the other hand, the -open cover 

 of  has not any finite 
subcover, and hence  is not -compact.

Remark 4.9. Example 4.8 also shows that none of the 
implications in Theorem 4.4 is reversible.

In an -ts  for which  is finite, -compactness 
and -compactness are coincident to each other:

Theorem 4.10. Let   be an -ts such that  is finite. 
Then the following are equivalent.

(i)   is -compact.

(ii)   is -compact.

(iii)   is -compact.

Proof. Corollary 3.8 (ii) and Theorem 4.3.

The following definition will be used to give a sufficient 
condition for which -compactness and compactness are 
coincident to each other:

Definition 4.11. Let  be an -ts.  is called a 
crisp open cover of  if,  is a cover of   and 
for every  there exists  such that 

 is called crisp under open covers (in short cuoc) if, 
every open cover of  is a crisp open cover.

Proposition 4.12. If  is a compact -ts and 
, then  is cuoc.

Proof. Suppose   is compact and  . Let 
 be any open cover of . By compactness  has 

a finite subcover, say . Let . Then  
, and as , there exists  such 

that . This ends the proof that  is cuoc.

Even when , cuoc -ts’ are not compact in 
general. As an example, take  to be any infinite ordinary 
set,  be any F-lattice with , then  is 
cuoc but not compact.

The following example shows that the condition 
 in Proposition 4.12 cannot be dropped:

Example 4.13. Let  be the diamond-type lattice, i.e. 
, where , ,  

, , , . Take  be a doubleton 
, . Since  is finite, then  is 

compact. On the other hand, since  is an 
open cover of  which is not a crisp open cover, then 

 is not cuoc.

Theorem 4.14. Let  be an -ts. If  is compact 
and  is cuoc, then  is -compact.

Proof. Let  be an -open cover of  with    
say   where  and  is 
a finite subset of  for every . Then  
is an open cover of . Since  is compact, there 
exist    such that   

Put . Since  is cuoc, for every  

we can choose  such that   
. Therefore,   

 is a finite  subcover  of  . It follows 
that  is -compact.

An -ts  is called Lindelöf (Wong, 1973), if 
every open cover of  has a countable subcover.

The following definition generalizes Wong’s 
Lindelöfness to include general -ts’. It also uses -open 

-sets to define another stronger type of Lindelöfness in 
-ts’.

Definition 4.15. An -ts  is called Lindelöf (resp. 
-Lindelöf) if each open (resp. -open) cover of  

has a countable subcover.

Definition 4.16. An F-lattice  is called Lindelöf if, for 
each  with , there exists a countable set 

 such that .

The F-lattice  is Lindelöf. As an example of an 
F-lattice that is not Lindelöf, let  be the power set of 

, equip it with the inclusion order, then  is an F-lattice. 
However, as , but there is not 

 such that  and , it follows that  
is not Lindelöf.

For the case  is Lindelöf, by means of -open 
and -open -sets, the next main result gives two 
characterizations of Lindelöf -ts’.

Theorem 4.17. Let  be an -ts where  is Lindelöf. 
Then the following conditions are equivalent:

(i)  is Lindelöf.

(ii) Each -open cover of  has a countable 
subcover.

(iii) Each -open cover of  has a countable 
subcover.

Proof. (i)  (ii) Suppose that  is Lindelöf. It is 
sufficient to see that each open cover  has a 
countable subcover. Let  be an -open cover of   
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with , say  where 
 and  is a countable subset of  for every  

Then  is an open cover of  Since 
 is Lindelöf, there exists a countable set  

such that  covers . Put . 

Then  is countable. For every ,  
 and as  is Lindelöf, there exists a 

countable set  such that   

 Therefore,  

is a countable subcover of .

(ii)  (iii) Follows because .

(iii)  (i) Follows because .

Corollary 4.18. Let  be an -ts. Then the following 
conditions are equivalent:

(i)  is Lindelöf.

(ii) Each -open cover of  has a countable 
subcover.

(iii) Each -open cover of  has a countable 
subcover.

Problem 4.19. Is it true that the condition ‘L is Lindelöf’, 
in Theorem 4.17 can be dropped?

Remark 4.20. It is clear that every -Lindelöf -ts is 
-Lindelöf. However, it is not difficult to check that 

 is an -Lindelöf -ts which is not -Lindelöf.

Theorem 4.21. If  is a -Lindelöf -ts, then  
countable.

Proof. Since  is a -open cover of 
 then there exists a countable set  such that 

 is a cover of . Thus, . Hence  
is countable.

The implication in Theorem 4.21 is not reversible, as 
the following example shows:

Example 4.22. Take ,  the power set of  
equipped with the inclusion order, and . Then 

 is an open cover of  and has no 
countable subcover, hence  is even not Lindelöf.

The condition ‘  is Lindelöf’ is sufficient for the 
implication in Theorem 4.21 to be reversible:

Theorem 4.23. Let  be an -ts where  is Lindelöf. 
Then  is -Lindelöf if and only if  is countable.

Proof. . Theorem 4.21.

 Let  be an open cover of . For every 

, , and since  is Lindelöf, 
there exists a countable subfamily  of  such that 

. Thus,  is a countable 
subcover of , and hence  is -Lindelöf.

As three -topological properties, we know that each 
of compactness and -Lindelöfness is stronger than 
Lindelöfness. The question about relationships between 
compactness and -Lindelöfness is natural. The -ts in 
Example 4.7 with the restriction that  is uncountable is 
compact and by Theorem 4.21, it is not -Lindelöf. The 
following is an example of a -Lindelöf -ts that is not 
compact:

Example 4.24. By Theorem 4.23, the -ts  
where  is the set of natural numbers, is -Lindelöf, 
however, it is clear that it is not compact.

5. Conclusion

We introduced and investigated -open, -open, and 
-open as three weaker notions of open -sets in -ts’ 

where  is an F-lattice. Then we used these notions to 
introduce several types of Chang’s compactness and 
Wong’s Lindelöfness. We introduced many results related 
to these types and we raised a question in Problem 4.19. 
By means of -open (resp. -open, -open) -sets in 

-ts’, we hope to point out that a continuation of this 
paper should deal with reasonable modifications of 
-compactness (Aygün, 2000), fuzzy compactness (Wong, 
1973), paracompactness and Lindelöfness (Liu & Luo, 
1997) and others.
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