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ABSTRACT

Bayesian methods for exact small-sample analysis with categorical data in 7 xJ
contingency tables are considered. Point null hypotheses versus two-sided hypothesis are
tested concerning log odds ratios in these tables with fixed row margins. The conditional
distribution of the sufficient statistics for interesting parameters conditional on sufficient
statistics of other nuisance parameters in the model is obtained and used to eliminate the
effect of nuisance parameters. This distribution is Fisher’s multivariate noncentral
hypergeometric distribution. Three Bayesian approaches, hierarchical Bayes, empirical
Bayes, and noninformative Bayes are considered and compared by simulation studies.

Keywords: Bayes Factor; Bayesian P-value; hierarchical Bayes; important
sampling; noncentral hypergeometric distribution.

INTRODUCTION

To test for independence in two-way contingency tables by use of classical
methods, one may use the Pearson’s Chi-squared test, the likelihood ratio test or
tests based on a divergence measure (see for instance Cressie & Read, 1984;
Pardo, 2006). But when the sample sizes are small, these approximate methods
are not valid and other methods for exact inference should be used (Cochran,
1954). For some discussion about the robustness of tests see Casella & Moreno
(2009). In this paper, we shall use a conditional Bayesian approach. Previously
Altham (1969,1971) presented Bayesian analogs of small-sample frequentist
tests for 2 x 2 tables using prior information. An alternative approach using
normal priors for logit received considerable attention in the 1970s by Leonard
(1972). For a review of Bayesian inference for categorical data see Agresti &
Hitchcock (2005).

Here, we will condition on all row totals of 7 x J tables, i.e., the experimental
design will be the same as that of Fisher in his famous example for 2 x 2 tables.
Under independence, conditioning as well on column totals to eliminate the
nuisance parameter yields Fisher’s multivariate noncentral hypergeometric
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distribution. This is a member of the exponential family. Here, we consider
different Bayesian approaches such as, empirical and hierarchical Bayes to make
inference about the parameters of interest [log odds ratios, a matrix of
dimension (/ — 1) x (/ — 1)]. Then we present a Bayesian test of independence.
For testing hypothesis the Bayes factor and Bayesian P-value will be used as
Bayesian evidence.

Consider testing independence (Hj) against having correlation (H;) between
two variables of an I x J contingency table with given row margins. Suppose
Nj,i=1,2,...,I;j=1,2,....,J, is the variable which shows the number of events
in the i th row and jth column, and N; = (N,-I,N,-z,....,N,-J)’, fori=1,2,...,1,
denote independent multinomial random variables with parameters
Niy = Zj Njj = n;; and probability vector m; = (m;, 7, ....,71’1'])/ (Z]-JZI =1
for all i). The conditional distribution of N = {N;;} given N,; =n,; (where
Nyi= ZleNij) for j=1,2,....,J under H, is a multivariate hypergeometric
distribution with probability mass function,
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where n = {n;}, M =3 ;n;. =3 ;ny; and ny’s are the observed counts of the

(1)
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table (Agresti, 2002). The non-null (dependence) conditional distribution of
N = {Nj;} is given by:
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where O is the vector of all odds ratios ; > 0 and nonnegative integers n;; are
the observed values of random variables N;’s consistent with the marginal
totals. Also in (2) n;’s, i = 1,2, ..., 1, are row margins, ny;’s, j = 1,2,.....J, are

TijTLJ

the column margins, M is the sample size, and 60,; = and take values 1

T g,
under the null hypothesis of independence. This is the multivariate Fisher’s

noncentral hypergeometric distribution (McCullagh & Nelder, 1989).

2. Bayesian Approaches in I x J Contingency Tables

In this subsection empirical, noninformative and hierarchical priors for 7 x J
contingency tables are presented for testing independence.
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Let us reparametrize the conditional distribution of the vector N using
b =In(6y), i=1,2,..,1—1;j=1,2,..., J—1, in order to provide a natural
prior distribution for A = (611, ..., 61(y_1), ---» r—1ys1))- When the two variables
are independent the vector of log odds ratios A is 0. In general A is symmetric
about 0.

It is also known that the empirical estimates of the log odds ratios based on
the observed data is approximately normally distributed in studies of even
moderate sample sizes. This reparametrization helps us because we can use the
multivariate normal distribution as a natural prior distribution for the vector of
log odds ratios (McCullagh & Nelder, 1989).

In this paper, we consider the test of independence against any kind of
association which is the test of Hy : A = 0 against H; : 6;; # 0; at least for one
ij),i=12,..,I-1;=12..J—1

2.1 Empirical Bayes approach

Empirical Bayes prior approximates the prior distribution by frequentist
methods when the prior information is too vague. For Fisher’s exact test in 7 x J
contingency tables let us assume a multivariate normal distribution with mean
and covariance matrix X, i.e.,

(A, )~ Ny -1y (s, X).

to compute the empirical estimate of (u, ), we have to obtain the marginal
density of (N|u, %) which is

<f(N|H7Z):A.f(an+7"'7nl+7n+17"'7n+./7 M7A)W(A|E>E)dAa

where A* is RU"DU=D_ In computing f(N|u,¥), we shall use importance
sampling (Srinivasan, 2002). So we estimate (M,_E) by the classical methods such
as maximum likelihood or other estimation methods by using f(N|u, ). This
prior is denoted by 7gp(.) where in this situation is N(u, ). -

For this prior, the Bayes factor for testing independence is given by

_ <f(N:n|N1+7°”7N1+7N+17"'7N+J7M7A:0)
fA*.f(N: n|N1+7 "-7NI+7N+17 --'7N+J7M7 A)T‘-EB(A)dA

Bo1

— f(N:n|N1+7°”7N1+7N+17”'7N+J7M7A:0)
[ae BTL2UAN = 0| Nigy ooy Npgy Not ooy Ny, M A)p(S3712(A — p))dA

b
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where ¢(.) is the density function of the standard multivariate normal
distribution. This form helps us to approximate the mean of f{N = n|Ny., ...
s Ny, Nyty ..oy Nyy, M, A) by Monte Carlo method, using sample means of the
simulated values of the multivariate normal distribution with mean p and
covariance matrix 3. So the denominator of By gp can be calculated and the
value of By gp can be obtained.

2.2 Hierarchical Bayes approach

For the hierarchical Bayesian approach, as a prior distribution at the first stage
we consider m(A|u,Y) as the multivariate normal distribution with unknown
mean and unknown covariance matrix and at the second stage, we consider the
following priors for p and .

p~ N0,

by NW([_I)X(J_I)(UOI, (1— 1)(]— 1)),
where 0}21 and vy are known constants and these values may be chosen to reflect
noninformativeness of priors for p and .

The resulting Bayes factor is given by

B _ .f(n|nl+7"'7n1+7n+17"'7n+J7M;A:0) (3)
Ol fAf(n|nl+a s By g 1y ooy Ry M7 A>7T(A)dA

where

(D) = / /E (A, )r()(S) dSdp.

The denominator of (3) is computationally intractable. We shall use
numerical methods such as Monte Carlo to approximate it. This form helps us
to approximate the mean of f(n|n.,...,nr,ny1, ..., nyy, M; A) with respect to the
joint distribution of (A, u, 32).

2.3 Noninformative prior

For a noninformative Bayesian approach, § (the vector of log odds ratios) is
assigned the Jeffreys’ prior; this is one of the popular noninformative priors for
parameters of interest. So for determining Jeffreys’ prior (by definition), at first
we find the Fisher’s information matrix for the multivariate Fisher’s noncentral
hypergeometric distribution.
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Fisher’s information matrix assuming the multivariate Fisher’s noncentral
hypergeometric distribution is

I(A) = Cov(N).
Then Jeffreys’ prior for A in a 2 x 2 contingency table is
1
s (A) o |Cov(N)|2.
The resulting Bayes factor is given by

f(n|n1+7 sy Mgy Mg 1y ooy Ry, Ma A= 0)
fA*f(n|nl+7 vy B N 1y ey Ny, M7 A>7-‘-N.](A)dA .

(4)

By, =

In (4), the denominator is computationally intractable, in which case we shall
use numerical methods such as Monte Carlo to approximate it. This form helps
us to approximate the mean of f(n|nyy,...,n5,n.1,...,n. 5, N; A) with respect to
mns(A). As generating random values from 7y is difficult, one may use the
following acceptance-rejection algorithm (Robert \& Casella, 2004). In this
algorithm, suppose there exists a density function g(A) and a constant ¢ > 1
such that my;(A) < cg(A) for all A € R"DU=D_ Typically, g is a density such
that Monte Carlo sampling from g is easy, for instance, a multivariate uniform
distribution.

Acceptance-rejection sampling may be performed as follows:

1. Simulate A from g(A), and U uniformly on (0,1).
v (A)
cg(A)
A and try again.

2. IfU<

, then accept A as a draw from the 7y, (A). If not, reject

The algorithm is repeated until the desired sample size is obtained.

3. Simulation studies

In this section, we present a simulation study to consider and compare the
performance of the three Bayesian approaches (empirical, hierarchical and
noninformative Bayes) for independence test, in a 2 x 3 contingency table with
given margins. Four different values of © = (#;,6),) and different values of m
with assumption n;, = 2m and ny, = n.p, = ny = m are chosen. The results of
these simulation studies are given in Tables 1 and 2.

In Table 1, to compare the three Bayesian approaches (empirical,
noninformative and hierarchical Bayes), posterior probabilities of null
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hypothesis, P(© = 1|N = n) are computed for each contingency table generated
in each simulation iteration. Table 1 reports the mean of these posterior
probabilities for different values of m and © = (;,,0;,) over all simulations. In
this study we consider 8;; = 6;,. The results of Table 1 show that, when © = 1,
for all values of m, the empirical Bayes is the most conservative approach
(although its posterior probability for m = 2 is near 0.52). When sample size
increases and the true values of © are equal to 1, noninformative and empirical
Bayesian approaches perform in a similar manner, and these are better than
empirical Bayes. But, when the true values of © are far from 1 as the posterior
probability of © = 1 is the smallest for empirical Bayes, this method performs
the best for all values of m. In general, one may say that empirical Bayes
performs well for any value of © and any value of m.

In Table 2 the percentage of times the various two-sided tests reject Hy (or
power) is recorded for all observed simulations from the noncentral (© # 1) or
central [© = (0;1,612) = (1,1)] multivariate Fisher’s distribution, assuming
various values of the true value O.

The guidelines discussed in Jeffreys (1961) and in Kass & Raftery (1995)
concerning the use of Bayes factors in testing hypotheses will be used here,
which is an upper bound cutoff for the Bayes factor of at most 0.1 for
rejecting Hy (The former states that By, between 0.1 and 0.3162 indicates
moderate or substantial evidence against H,, By between 0.01 and 0.1
indicates strong evidence against Hy, and By, less than 0.01 indicates decisive
evidence against Hy).

The results of Table 2 show that, for small samples m =2 (N =6, M is
sample size), the three Bayesian approaches are very conservative. When the
sample sizes are increased, for m =4, the hierarchical and noninformative
Bayes methods are more conservative than empirical Bayes. But for m = 8,16
and 32, when © is far from 1, the empirical Bayes is the best because the
powers of rejecting Hy in favour of H, is greatest for this approach. Also in
this table for all values of © in ©; and large m, noninformative Bayes is the
most conservative approach. In general, Table 2 shows that empirical Bayes
performs well for any value of © and any value of m > 2. This is consistent
with the results of Table 1.
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Table 1. Mean of simulated posterior probabilities of Hy for 3000 generated
contingency tables for different values of m and © = (011, 612) = (0,0)
[*: Value of © in which Hj is true.]

O =0p=10
Valueofm  Valueof?d (1) ®) (10) (20) (50)
6 = In(6)
(0%) (1.6) (2.3) (2.99) (3.91)
Empirical Bayes 0.5256 0.4292 0.3455 0.2404 0.1970
Noninformative

m=2 (Jeffery’s) Bayes 0.5276 0.4995 0.4032 0.3296 0.2934

Hierarchical ) o300 04862 03792 02007 02793
Bayes
Empirical Bayes  0.5621  0.4045 02840  0.1989  0.0883
Noninformative

m=4 (Jeffery’s) Bayes 0.5638 0.4726 0.3481 0.2901 0.2006

Hierarchical ) soo0 (4855 04529 03576 0.2494
Bayes
Empirical Bayes  0.5862 03073 0.1805  0.0691  0.0211
Noninformative

m=8  (Jeffery’s) Bayes 0.5912 0.4326 0.2741 0.1972 0.0847

Hierarchical ) (2o 04500 02969 01667  0.0767
Bayes
Empirical Bayes  0.5979  0.1623  0.0422  0.0147  0.0008
Noninformative

m—16 (effery's) Bayes 0.6023 0.3423 0.1813 0.0894 0.0046
Hierarchical

0.7385 0.3295 0.1114 0.0399 0.0037
Bayes

Empirical Bayes  0.6009 0.0495 0.0040 5.01x10° 1.42x107

Noninformative

-5
m=32 (Jeffery's) Bayes 0.6307 0.1732 0.0873 0.0079  4.23x10

Hierarchical

0.7675 0.1314 0.0112 0.0003  2.88x10°
Bayes
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Table 2. Percentage of simulations out of 3000 in which Hy : © = 0,
is rejected in favor of Hj : © # Oy when Bayes factor is less than 0.1 for different
values of m and © = (6,1,612) = (6,0) [*: Value of © for which Hy is true. ].

0 =01p=10
Value of m Value of 0 (1%) ®) (10) (20) (50)
6= In(6)
(0%) (1.6) (2.3) (2.99) (3.91)
Empirical Bayes 0 0 0 0 0
Noninformative
m =72  (Jeffery’s) Bayes 0 0 0 0 0
Hierarchical 0 0 0 0 0
Bayes
Empirical Bayes 0.81 5.12 17.00 33.62 61.75
Noninformative
m=4  (Jeffery’s) Bayes 0 0 0 0 0
Hierarchical 0 0 0 0 0
Bayes
Empirical Bayes 0.70 27.12 57.20 77.62 95.00
Noninformative
m—8  (Jeflery's) Bayes 1.11 6.48 13.41 28.93 56.76
Hierarchical 1.81 6.04 10.66 34.66 72.02
Bayes
Empirical Bayes 0.40 46.9 82.87 98.12 99.70
Noninformative
m—=16 (Jeffery's) Bayes 0.98 10.78 41.31 60.12 78.19
Hierarchical 1.53 18.03 67.09 82.06 98.10
Bayes
Empirical Bayes 0.20 85.12 99.01 99.99 99.99
Noninformative
m—32  (Jeffery's) Bayes 0.87 59.53 95.046 98.92 99.99
Hierarchical 1.10 61.02 98.01 99.99 99.99
Bayes

4. Real application

Table 3, taken from Graubard & Korn (1987) which refers to a prospective study of
maternal drinking and congenital malformations, has 32574 observations. For
testing independence of alcohol consumption and malformation, corrected Pearson
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statistic gives x> = 12.0821 (P — value =0.0377), likelihood ratio statistic gives
G?> = 6.2019 (P — value =0.18456) and corrected likelihood ratio statistic gives
G? = 4.0835 (P — value =0.3948). These values illustrate that different statistics and
approximations can give quite different results.

Table 3. Maternal drinking and congenital malformations (Graubard & Korn, 1987).
Choice of column scores for testing independence in ordered 2 x k tables.
Biometrics 43: 471-476.

Alcohol consumption (average no. of drinks/day)

Malformation 0 <1 1-2 3-5 >6 Total
Absent 17066 14464 788 126 37 32481
Present 48 38 5 1 1 93

Total 17114 14502 793 127 38 32574

Using empirical, noninformative and hierarchical priors for [6); = n(61),
812 = In(012), 613 = In(013), 614 = In(A14)] in testing independence
(Ho : (511 = (512 = 613 = 614 = 0), we found BOlEM = 228363, BOIHB =9.04001
and By;,, = 7.4637. The results of Bayesian analysis show that there is not any
evidence against the null hypothesis. Between these, empirical Bayes gives more
support to Hy in a manner like the corrected likelihood ratio test. So
consumption of alcohol and malformations are independent. So, our Bayesian
final result agrees with that of likelihood ratio test statistic.
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