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Abstract

This paper proposes a new logical rule by incorporating Random Maximum k Satsifiability in the Hop-
field neural network as a single model. The purpose is to combine the optimization capacity of the 
Hopfield neural network with non-systematic behaviour of the Random maximum k Satisfiability for 
classification problem. The energy function of a Hopfield neural network has been considered as a pro-
gramming language for dynamics minimization mechanism. Several optimization and search problems 
associated with machine learning (ML), decision science (DS) and artificial intelligence (AI) have been 
expressed on the Hopfield neural network(HNN) optimally by modelling the problem into variables to 
minimize the objective function corresponding to Lyapunov energy function of the model. The com-
puter simulation has been developed based on RANMAXkSAT logical rule in exploring the feasibility 
of the Hopfield neural network as a neuro-symbolic integration model for optimal classification prob-
lems. The perfromanmce of the proposed hybrid model has been compared with the existing models 
published in the literature in term of Global minimum ratio (zM), Fitness energy landscapes (FEL), Root 
Means square error (RMSE), Mean absolute errors and computation time (CPU). Hence, based on the 
experimental simulation results, it revealed that the RANMAXkSAT can optimally and effectively be 
represented in the Hopfield neural network (HNN) with 85.1 % classification accuracy.

Keywords: Hopfield Neural Network; Logic Mining; Random Maximum Satisfiability;Reverse analysis

1. Introduction
Artificial neural networks (ANNs) are a types of artificial intelligence (AI) and machine learning (ML) 
algorithms that arose from developments in cognitive and computational science research originated 
from the brain modelling structure. It is a computational mathematical model which aims to emulate 
from the computational and functionalities of the biological neural network(Anderson 2014). ANN has 
been clas-sified as intelligence approach to machine learning designed to address nonlinear statistical 
modelling problems and provide the most widely used tools for creating a predictive model for 
dichotomous find-ings in various field including disease detection or classification problem which is a 
modern alternative to logistic regression (Salgueiroet al. 2013). In Artificial Intelligence (AI), 
computational mathematics and optimization, where the target is to find the best representation of set of 
variables to satisfy a set of constraints(Jain and Kumar 2018). ANN offer a variety of advantages, such 
as the capacity to track complex non-linear pattern, the capacity to diagnose all the possible correlations 
among the predictor variables, and the availability of various training algorithms. There are varieties of 
real-world applica-tion found in ANN including Fuzzy logic modelling (Rushdi et al. 2018), data 
science and data mining (Idrees et al. 2020), forecasting problem(Amiri et al. 2018), prediction problem 
(Majid et al. 2021),
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identification and pattern recognition (Gao et al. 2018), classification (Makinde 2019), Electrohydro-
dynamic (EHD) flow(Sabir 2018), diagonosis problem (Almulla 2021), representation (Abubakar et al.
2020a), recognition problem(Al-Hmouz 2020) which are hard to solve using a traditional methods.

This study focused on Hopfield Neural Network (HNN) which is an important type of Artificial neu-
ral network (ANN) that simulates human networks associative memory invented by John J. Hopfield
in 1982 (Skansi 2018). The structure of HNN consists of a single layer with one or more recurrent or
fully interconnected neural networks. The network is known for its use in auto-association and opti-
mization problem(Demircigil et al. 2017). It has a broad range of artificial intelligence application such
as machine learning, associative memory, pattern recognition, VLSI and parallel processing of optical
equipment. Technically, the HNN modelling approach requires the handling of a dynamic system in
which the energy function or the Lyapunov function will describe the behaviour of the network and the
problems to be addressed as minimization problem(Bharitkar et al. 2000).

The Boolean satisfiability problem in logic and computational science is called propositional satisfi-
ability problems usually written in conjunctive normal form (CNF) which can be abbreviated as SATIS-
FIABILITY, SAT, B-SAT or kSAT is the problem of determining if there exists an assignment that can
satisfies a given Boolean formula. Boolean satisfiability, B-SAT or SAT is one of the most fascinating
artificial intelligence tools in mathematical abstractions useful for reasoning and planning purposes. The
classical propositional logic is one of the main approaches in solving planning problem in artificial intel-
ligence and machine learning(Rintanen 2012). The Maximumk Satisfiability problem is the optimization
variant of kSAT, which consists of seeking an assignment that maximizes the number of clauses satisfied
(Abubakar et al. 2020a). Maximum Randomk Satisfiability (RANMAXkSAT) is the optimization vari-
ant of Maximumk Satisfiability problem, which consists of seeking an assignment that maximizes the
random number of clauses satisfied(Abubakar et al. 2020b).

The major breakthrough in the machine learning and artificial intelligence community is the Neuro-
symbolic integration which combines an artificial neural network with symbolic logic as a single model
that can perform any type of symbolic operations. Neural-symbolic computation tries to generate two
basic cognitive skills that are the ability to learn from the previous experience, and the ability to think
from what has been learned(Donadello et al. 2017). For several years the hybridization of learning and
reasoning through the neural-symbolic computation has been an area of research in the fields of machine
learning (ML) and artificial intelligence (AI) communities. This is because of its capacity to analyze and
evaluate complex non-linear patterns, including statistical, mathematical or engineering models(Khan et
al. 2016; Asadi et al. 2014). The objective of Neural-symbolic computation approach is to reconcile arti-
ficial intelligence under a principled basis with the prevailing symbolic and connectionist paradigm such
as classification and pattern recognition problem. In neural-symbolic computation approach, knowledge
is conveyed in symbolic form, while a neural network computes learning and reasoning(Townsend et al.
2019). Therefore, the fundamental features of neural-symbolic computation make it easier to combine
robust learning and effective inference in neural networks with the interpretability and general ability of
symbolic knowledge extraction and logical system rationale.

The idea of hybridizing a logic program on the Hopfield neural network as a single network was
first proposed by(Abdullah 1992). The purpose was to minimize the logical inconsistency of Hopfield
neural network after the connection strengths have been defined from the logic program. The network
converged to neural states corresponding to the optimal representation. The preserved neuron struc-
tures were measured using the HNN energy function known as Lyapunov function. Various studies have
been conducted by incorporating to Wan Abdullah work to accommodate different variants of symbolic
logic and Satisfiability problem. Horn logic has been integrated into the Hopfield neural network in
(Sathasivam 2010).The effective method of relaxation to produce the optimum final neuron states was
introduced into HNN by(Sarasivam 2010). The First-order logic learning was successfully incorporated
into the artificial neural networks in(Guillame-Bert et al. 2010).The stochastic resonance approach for
logic programming in the Hopfield neural network was proposed(Duan et al. 2020) . This stochastic
approach reduced the neuronal oscillations of the Hopfield Neural Network during the recovery phase.
Some studies have been conducted on the feasibility of Radial basis function neural to be incorporated
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with symbolic logic as a single network model including the work in (Hamadneh et al. 2012;Alzaeemi
et al. 2020). The Maximum random k Satisfiability problem (MAXRANkSAT) is a vital generaliza-
tion of Satisfiability problem. An algorithm for the Maximum Satisfiability problem has been proposed
in (Hansen and Jaumard, 1990). Approximation method to maximum satisfiability has been proposed
(Yannakakis, 1992). Maximum Satisfiability Problem has been integrated with the data mining and con-
strained clustering(Berg and Järvisalo 2017). Exact clustering via integer programming and maximum
satisfiability was presented in(Miyauchi et al. 2018).The development of random satisfiability logic pro-
gramming in the Hopfield network (HNN-RANkSAT) has been proposed in (Abubakar et al. 2020b) .
In a similar study conducted by (Sathasivam et al. 2020), Maximum Random kSatisfiability has been
embedded in the Hopfield neural network. However, the current study upgraded the work of(Abubakar
et al. 2020a) to include high order logick ≤ 3.In this paper, we will utilize the optimization capac-
ity of the Hopfield neural network in finding the optimal representation of the RANMAXkSAT logical
representation. The contributions of our work include:

1. To propose a new logical rule RANMAXkSAT by upgrading to k ≤ 3(Abubakar et al. 2020a).

2. To implement the new logical rule in the Hopfield neural network (HNN-RANMAXkSAT).

3. To explore the performance of the proposed model based classification of medical data set for
real-life application.

The main focused of this paper is to explore the feasibility of Hopfield neural network optimization
capacity on the proposed RANMAXkSAT logic rule. The remaining parts of this paper is organized as
follows: Section 2, is the Research methods which include; the proposed logical rule Random Maxi-
mumksatisfiability and the mapping of the proposed logical rule RANMAXkSAT in HNN as a single
model based on Wan Abdullahi method.Section 3 presented the performance evaluation metrics. In
section 4, the results and discussions have been presented and this papar concluded in section 5.

2. Materials and Methods

2.1 The Proposed Random Maximum k Satisfiability Logic
The satisfiability problem is considered as one of the most well-studied problems in Mathematical

logic and computational theory due to its practical applications in combinatorial optimization. RAN-
MAXkSAT belong to the families of non-systematic Boolean formula that consists of a maximum num-
ber of random literals per clause to be negated with the probability of ½. According to(Yolcu and Póczos,
2019). The general formulation for RANMAXkSAT will be restricted to k ≤ 3 as follows.

FMAXRANkSAT =
n
∧
i=0

FMAXkSAT
m
∧
i=0

FRANkSAT (1)

where FRANkSAT and FMAXkSAT described in Equation 2) and 3) respectively as follows;

F RANkSAT =
w
∧
i=0

C
(3)
i

n
∧
i=0

C
(2)
i

m
∧
i=0

C
(1)
i (2)

FMAXkSAT =
r
∧
i=0

ψ
(3)
i

n
∧
i=0

λ
(3)
i

m
∧
i=0

ϕ
(3)
i (3)

where ∀ r,m, n ∈ N , r > 0, n > 0 and m > 0. The clauses in FRANkSAT and FMAXkSAT

defined as follows;

C
(k)
i =


(Ti ∨ Ii ∨ Li) , if k = 3
(Ti ∨ Ii) , if k = 2
Li , if k = 1

(4)

T
(3)
i =


(T1 ∨ T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ T3) ∧ (T1 ∨ ¬T2 ∨ T3) ∧
(T1 ∨ T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ ¬T3)
∧ (T1 ∨ ¬T2 ∨ ¬T3) ∧ (¬T1 ∨ T2 ∨ ¬T3)∧ (¬T1 ∨ ¬T2 ∨ ¬T3)

(5)
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I
(2)
i = (I1 ∨ I2) ∧ (¬I1 ∨ I2) ∧ (I1 ∨ ¬I2) ∧ (¬I1 ∨ ¬I2) (6)

L
(2)
i = (L1 ∨ L2) (7)

where Ti ∈ [Ti,¬Ti], Li ∈ [Li,¬Li], Ii ∈ [Ii,¬Ii] are representing the literals and their nega-
tion in RANMAXkSAT logical clauses respectively. Specifically, C(1)

i denoted the first-order logic, C(2)
i

denoted the second-order and third-order logical clause is denoted by C(3)
i . A

(3)
i andB(2)

i designated
as the second-order clause in FMAXkSAT . In this work, Fα used to represent a Boolean formula in
CNF where logical clauses are chosen uniformly, independently and without any replacement from

2α
(
m+ n+ r
κ

)
non-trivial clause of length α. Ii exists in the C(k)

i , if the C(k)
i contains eitherIi or

its negation (¬Ii) and the mapping of g (Fα) → [−1, 1] defined as a logical interpretation of Boolean
formula. Any Boolean formula for the satisfiability representation can be expressed as 1 for TRUE or
-1 for otherwise. Theoretically from Equation (1), FMAXRANkSAT for k ≤ 3 can be mathematically
presented as follows;

FRANMAX−3SAT=



MAX−3SAT︷ ︸︸ ︷
(T1 ∨ T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ T3)∧(T1 ∨ ¬T2 ∨ T3)∧
(T1 ∨ T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ ¬T3)
∧ (T1 ∨ ¬T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ ¬T3)∧(A1 ∨A2 ∨A3)∧

RANDAM−3SAT︷ ︸︸ ︷
(I1 ∨ I2 ∨ ¬I3) ∧ (L1 ∨ ¬L2) ∧ ¬J

(8)

According to Equation 8, FMAXRANkSAT comprises of Equataion (9) to (12) as follows

C
(3)
1 = (I1 ∨ I2 ∨ ¬I3) (9)

C
(2)
2 = (L1 ∨ ¬L2) (10)

C
(1)
1 = ¬J1 (11)

λ
(3)
i = (T1 ∨ T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ T3) ∧ (T1 ∨ ¬T2 ∨ T3)∧

(T1 ∨ T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ ¬T3)
∧ (T1 ∨ ¬T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ ¬T3) ∧(A1 ∨A2 ∨A3)

(12)

Therefore, the result of Equation 8 is reduced to FRANMAXkSAT = −1 (not satisfiable) if Equation
(13) holds as follows.

(T1, T2, T3, A1, A2, A3, I1, I2I3, J1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (13)

where (1,−1, 1, 1, 1, 1,−1, 1, 1, 1) are one of the representations that will render FRANMAXkSAT =
−1 (unsatisfiable). Hence, Equation (8) is considered as one of the constrained optimizations and search
problems that can be found in maximization problem. It is observed by(Achlioptas et al. 2003; Abubakar
et al. 2021)that RANMAXkSAT is not fully satisfiable, it is therefore considered as a constrained opti-
mization that can be carried out on the Hopfield neural network model for optimal representation.
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2.2 Hopfield neural network model structure

The architecture of HNN model consists of interconnected neurons and a powerful feature of content
addressable memory that are crucial in solving various optimization and combinatorial tasks. The system
consists of structured N neurons, each of which is represented by an Ising variable. The neurons in
discrete HNN are utilized in bipolar representation whereby Si ∈ {1,−1}, which strictly considers
values of 1 and -1 (Sathasivam, 2010). The fundamental overview for neuron state activation in HNN is
shown in Equation 14.

Si =

{
1 , if

∑
j TijSj > ω

−1 , Otherwise
(14)

where Tij is the synaptic weight from unit j to i. Sj is the state of neuron j and ω is the predefined
threshold value. The connection in Hopfield neural net contains no connections with itself as follows

T
(3)
ijk = T

(3)
kij = T

(3)
kji (15)

T
(2)
ji = T

(2)
ij (16)

T
(1)
i = T

(1)
j (17)

Tjj = Tii = 0 (18)

In resulting, HNN holds symmetrical features in terms of architecture. HNN model has similar intri-
cate details to the Ising model of magnetism (Sathasivam, 2010). As the neuron state is termed in bipolar
Si ∈ {1,−1} representation, the spin points follow in the direction of a magnetic field. This causes each
neuron to flip until the equilibrium is reached. Thus, it follows the dynamics Si → sgn [hi(t)] where hi
is the local field of the connection of the neurons. The sum of the field induced by each neuron is given
as follows.

hi =
N∑
k

N∑
j

TijkSjSk +
N∑
j

TijSj + Ti (19)

The task of the local field is to evaluate the final state of neurons and generate all the possible RAN-
SAT induced logic that was obtained from the final state of neurons. One of the most prominent features
of the HNN network is the fact that it always converges to stable states (Hopfield, 2007) and (Sathasivam,
2010). The Lyapunov energy function (LEF) utilized in HNN for RANkSAT logic programming is
presented as follows,

Si (t+ 1) =

{
1 , hi =

∑N
k

∑N
j WijkSjSk +

∑N
j WijSj +Wi ≥ 0

−1 , hi =
∑N
k

∑N
j WijkSjSk +

∑N
j WijSj +Wi < 0

(20)

The energy function of the HNN model is especially critical, it will decide the interoperability of the
network. The value obtained from the equation will be verified as global or otherwise. The network
would generate the right response when the induced neurons state reached global minimum energy.
There are minimal works to integrate HNN with RANkSAT as a single computational network.

2.3 Mapping of RANMAX-kSAT in the Hopfield neural networks

The computational architectures of HNN have the synaptic connection between HNN network learns
patterns thneurons that are symmetrically represented as W (3)

ijk = W
(3)
kij = W

(3)
kji , W

(2)
ji = W

(2)
ij and

W
(1)
i = W

(1)
j . The at are N-dimensional vectors from the space Si ∈ [−1, 1] conform to the dynamics

Si → sign(hi). The dimensionality of the pattern space prensented into HNN is reflected in the number
of nodes, such that the net will have N nodes Si(t) = x1, x2...xn.
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Fig. 1. Architecture of Hopfield neural network.

Figure 1 is the training architecture of Hopfield neural network algorithm. WhereWij is the synaptic
weight vector from starting from j neuron to i neuron. We defined Sj as the state of the neuron j in
HNN and ς is the predefined value. The value of ξ = 0 has been specified in(Abubakar et al. 2020a;
Abubakar et al. 2020b; Abubakar et al. 2020c; Sathasivam et al. 2020) to certify that the network’s
energy decreases to zero. The synaptic weight connection in the discrete HNN contains no connection
with itself, zero self-connectivity i.e W (3)

iii =W
(3)
jjj =W

(3)
kkk = 0 and Wjj =Wii =Wkk = 0. The HNN

model has similar intricate details to the Ising model of magnetism as described in(Neelakanta and De
Groff 2018). The neurons status is the expression on in a bipolar form, the spin points implement the
magnetic field trajectory. This will compel each neuron to flip until the equilibrium state is maintained
as follows,

Si → sgn [hi(t)] (21)

where hi is the local field that connects all neurons in HNN. The sum of the field is induced by each
neuron state as follows,

hi =
N∑
k

N∑
j

WijkSjSk +
N∑
j

WijSj +Wi (22)

The task of the local field is to evaluate the final state of neurons and generate all the possible
RANMAX3SAT induced logic that was obtained from the final state of neurons. One of the most promi-
nent features of the HNN network is the fact that it always converges. The generalized fitness function
EFRANMAXkSAT

that controls the combinations of neurons in HNN and FRANMAXkSAT is presented as
follows.

EFRANMAXkSAT
=

NN∑
i=1

V∏
j=1

Tijk (23)

where V and NN are the number variables and the number of neurons generated in FRANkSAT
respectively. We defined the inconsistency of FRANMAXkSAT representation as follows.

Tij =

{
1
2 (1− Sρ) , if ¬ρ
1
2 (1 + Sρ) , otherwise

(24)

The value EFRANMAXkSAT
is proportional to the value of “inconsistencies” of the logical clauses.

The rule for updating the neural state is,

Si (t+ 1) =

{
1 , hi ≥ 0
−1 , hi < 0

(25)
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The following equation represents the Lyapunov energy function of HNN model.

H = −1

3

N∑
i=1,

N∑
j=1,

N∑
k=1,

WijkSiSjSk−
1

2

N∑
i=1,

N∑
j=1,

WijSiSj −
N∑
i=1

WiSi (26)

Equation (26) has been applied to classify whether a solution is a global or local minimum energy.
The HNN will generate the optimal assignment when the induced neurons state achieved global mini-
mum energy. To best knowledge of the author, there is no work that utilized the optimization capacity
of Lyapunov energy function of the Hopfield neural network(HNN) for optimal representation to RAN-
MAXkSAT when the value of k ≤ 3. Consequently, the quality of the final neuronal state can be
maintained according to Equation (27) as utilized in(Abubakar et al. 2020a; Abubakar et al. 2020b;
Abubakar et al. 2020c; Sathasivam et al., 2020) as follows.∣∣∣HFRANMAXkSAT

−Hmin
FRANMAXkSAT

∣∣∣ ≤ ξ (27)

where ξ is the pre-determined tolerance value.The value ξ = 0.001 was taken in(Abubakar et al.
2020a; Abubakar et al. 2020b; Abubakar et al. 2020c; Sathasivam et al. 2020).If the FRANMAXkSAT

logical representation embedded in HNN does not satisfy criteria state in Equation (20), then the final
state the neurons has been trapped in the wrong pattern. If the fitness requirement is not realized, the
pattern will continue recursively, else the system will be stopped and presented. The fitness specification
of HNN is accomplished if the network output coincides to a certain steady-state, which means that no
further searching occurs in the fitness (objective) function.

2.4 Synaptics Weight Computation

The Random Maximumk Satsifiability (RANMAXkSAT) can be use as a logical rule in the Hopfield
neural network for optimization problem. Depending on logical inconsistencies, Wan Abdullah methods
(Wan Abdullah, 1992) has become one of the pioneer approach in synaptic weight extraction. Fitness
function(objective function) that corresponds to RANMAXkSAT clauses is the minimization of logical
inconsistencies.

min
i∈[1, −1],FMAXRANKSAT=1

¬FMAXRANkSAT (28)

As the number of “wrong” assignment decreases, the number of satisfied FRANMAXSAT clauses will
increase. Wan Abdullah is one of the earliest methods of learning to derive synaptic weight based on log-
ical inconsistencies(Sathasivam 2012). This can be achieved by storing atom truth values and generating
a minimized cost function while satisfying random maximum logical clauses. Finding inconsistencies of
Equation (8) can be represented in form of its negation. The cost function is defined as follows;

EFRANMAXkSAT
= 1

2(1−WT1)
1
2(1−WT2)

1
2(1−WT3)+

1
2(1 +WT1)

1
2(1−WT2

)12(1−WT3
)

+1
2(1−WT1

)12(1 +WT2
)12(1−WT3

) +1
2(1−WT1

)12(1−WT2
)12(1 +WT3

)

+1
2(1 +WT1

)12(1 +WT2
)12(1−WT3

) +1
2(1 +WT1

)12(1−WT2
)12(1 +WT3

)

+1
2(1−WT1

)12(1 +WT2
)12(1 +WT3

) +1
2(1 +WT1

)12(1 +WT2
)12(1 +WT3

)

+1
2(1−WA1)

1
2(1−WA2)

1
2(1−WA3) +

1
2(1−WI1)

1
2(1−WI2)

1
2(1 +WI3)

+1
2(1−WL1)

1
2(1 +WL2) +

1
2(1 +WJ)

(29)
The acceptable synaptic weight of HNN-RANMAXkSAT can be achieved by equating the cost func-

tion EFRANMAXkSAT
in Equation (29) with energy function in Equation (19). In this experiment, the

training process yields the optimum value of the cost function, which determines the system’s accurate
synaptic weights.The optimized global minimum energy estimation necessitates appropriate interpre-
tations and synaptic weight adjustments. Since consistent interpretation cannot be found leading to
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EFRANMAX−3SAT
= 0 the concentration of the model will be decided to move by finding the correspond-

ing value of FRANMAX−3SAT
. Applying the cost function (29) to energy function in (19), the respective

synapses of EFRANMAX−3SAT
can be calculated and the result is presented in Table 1.

Table 1. HNN-RANMAXkSAT Synaptic Weights

Synaptic Weight C1 C2 C3 C4 FRANMAXkSAT

WT1WT2WT3
1
8 0 0 0 1

8
WT1WT2 −1

8 0 0 0 −1
8

WT2WT3 −1
8 0 0 0 −1

8

WT1WT3 −1
8 0 0 0 −1

8
WT1

1
8 0 0 0 1

8
WT2

1
8 0 0 0 1

8
WT3

1
8 0 0 0 1

8
WI1WI2WI3 0 −1

8 0 0 −1
8

WI1WI2 0 1
8 0 0 1

8
WI2WI3 0 1

8 0 0 1
8

WI1WI3 0 −1
8 0 0 −1

8
WI1 0 −1

8 0 0 −1
8

WI2 0 1
8 0 0 1

8
WI3 0 1

8 0 0 1
8

WL1WL2 0 0 1
4 0 1

4
WL1 0 0 1

4 0 1
4

WL2 0 0 −1
4 0 −1

4
WJ 0 0 0 −1

2 −1
2

The synaptic weight displayed in table 1, has been computed using on Wan Abdullah method which
will be stored in a HNN associative memory called Content Addressable Memories (CAM) and later
restored the corrected pattern.

2.5 Experimental Setup

The objective is to incorporate a HNN in searching for optimal RANMAXkSAT logic representation. A
real data sets, medical fertility data set (MFDS) were used in the in generating RANMAXkSAT logical
clause. HNN-RANMAXkSAT simulations were conducted on Windows 8.1, Intel Core i3, 1.7 GHz
4 GB RAM processors with Dev C++ release version 5.11. Initially, the neuron has been randomized
based on the objectives of this study and represent RANMAXkSAT to HNN. The algorithms in Figure 2
displays the execution of the HNN model within the network system. Table 2 indicates the appropriate
control parameters utilized during each HNN model implementation.

3. Performance Evaluation

The RANMAXkSAT with large number of neurons as the input may achieve good results based on
the training data used in this study; however, this could lead to a bad generalization (Alzaeemi and
Sathasivam, 2020). In our experiments, we assess the performance of proposed logical rule model on
a different number of neurons 10 ≤ NN ≤ 90. In our experiments, different evaluate metrics have
been adopted based on the logical rules. The measurements are evaluated based on the model accuracy,
and errors accumulation that reflects the network complexity based on the number of neurons using the
following formula.

zm =
1

bρ

n∑
i

NF
RANMAXkSAT

(30)
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Table 2. List of Parameters

Parameter Name
ft Number of clauses
fc Number of satisfied clause
n Number of iteration
ρ Number of trials
b Number of neuron combinations

NFRANDk−SAT
Number of Zm

NPtest Number of testing data
PCorrectinduced Correct induced logic

MAE =
n∑
i=1

1

n
|ft − fc| (31)

RMSE =
n∑
i=1

√
1

n
(ft − fc)2 (32)

where ft and fc are the the output value and target output value respectively, and n is a number of
the iterations.

SBC = n ln(MSE) + p ln(n) (33)

where p is the defined as number of the literals. The mean square error (MSE) define as:

MSE =

∑n
i=1 (oi − fc)

2

n
(34)

Accuracy (Q) =
PCorrectinduced

NPtest

× 100% (35)

The performance of the Hopfield neural network for Random maximimu kSatisfiability logical rule is
preanted in Table 3.

3.0.1 Landscape Evaluation
If the RANMAXkSAT logical clauses mapped to HNN as one of the stored patterns ξv as an initial

state, the neuron state may rotate. The final state of the neuron must be similar to the original state to
make the HNN act as an associative memory. Time’s similarity function is defined in (Kauffman and
Weinberger, 1989) as follows,

mv(t) =
1

N

n∑
i=1

ξvi s
v
i (36)

The fitness function is computed by taking the average values according to the given RANMAXkSAT
pattern.

f =
1

t0.p

to∑
t=1

v∑
v=1

mv(t) (37)

In this case, t0 is twice the number of neurons (2N); and p is based on neuronal status. The fitness energy
landscape value depends on the storage capacity of the model. Since the Hopfield network (HNN)
is concerned about the energy model’s flatness; consideration must be extended to the fitness energy
environment. The quality of the fitness energy system is based on the concept of Kauffman in(Kauffman
and Weinberger, 1989).
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Fig. 2. Implementation of RAN3-SATRA for various models.

In this paper, a medical data set has been occupied in RANkSATRA for analysis namely the medi-
cal fertility dataset (MFDS). The MFDS data was collected from the UCI machine learning repository
website(Gil et al. 2012). It contains information about each data set for different purposes. The original
MFDS has 100 instances, each with nine attributes and two classes. Normal fertility rate and abnormal
fertility rate are the two classes. However, feature selection algorithms are employed to MFDS in order
to extract more relevant features from the dataset. It reached the conclusion that some features have a
lower influence on the entire quality of the data, and that non-serious data can sometimes act as noise
in the data, highlighting the size of the features(Dua and Graff 2019). Some data points may have less
impact on predicting fertility rates, both experimentally and medically. As a result of the foregoing, the
final experimental dataset contains eight rather than nine attributes. The goal of this experiment is to
conduct a thorough comparison of accuracy between them. The proposed RANMAXkSAT, MAXkSAT
and RANkSAT using the same data set. The details of MFDS is shown in Table 3. The output will
classify whether particular person is fertile or not.

4. Result and Discussion

The trend of the global minimum ratio (zM) of HNN model performance in searching for optima rep-
resentation to RANMAXkSAT, MAXkSAT and RANkSAT logical clauses for MFDS classification has
been presented in figure 3. The efficiency of the searching capacity of HNN can be observed by test-
ing the consistency of the model energy. If the network global minimum energy is closer to one, that
means, during the recovery phase, nearly all neurons achieved the required final state (100 percent sat-
isfiable).The proposed logical rule model, HNN-RANMAXkSAT in comparison with existing models
have entrenched with the real-life data sets. The investigation of a model’s performance is separated into
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Table 3. List of Attributes for MFDS (Gil et al. 2012)

logic Details of each attributes
T1 Frequency of alcohol consumption
T2 Age at the time of Analysis
T3 Childish diseases
I1 Accident or serious trauma
I2 Surgical Intervention
I3 High fevers in the last
L1 Smoking habit
L1 Smoking habit
L2 Diagnosis

two parts. The first significant part is to examine the quality of solution generated by different searching
techniques by employing suitable training errors. Secondly is to analyze the robustness and efficiency
of the proposed model based on implementation time and accuracy during the training and retrieval pro-
cess. Therefore, this research main contribution is to explore the competency of HNN-RANMAXSAT
in comparison with the existing models for the classification of medical fertility data set (MFDS).

Fig. 3. zM for HNN Performance.

Table 4. Medical fertility data set (MFDS)

Logical rule MAE RMSE Accuracy
RANMAXkSAT 0.3888 0.802 82.5 (%)

RANkSAT 0.3611 0.030 79.6(%)
MAXkSAT 0.25 0.6944 68.1(%)

The trends of all model performances have been displayed in term of the Global minimum ratio(Zm)
for classification of medical fertility data set(MFDS)in figure 4. A model is considered a better model
when it Zm is close to 1. It can be seen from figure 4 that Zm are closer to 1 even by manipulating a
different number of neurons from 10 ≤ NN ≤ 90 for classification of MFDS. The trend reveals the
capability of the proposed model to attain global minimum energy by having Zm closer to 1. Based on
the findings of Zm for all models achieved indistinguishable results.

Figure 5 to 7 displayed the Fitness landscape, MAE and RMSE during the training and retrieval pro-
cess of all model understudy for classification of MFDS. It can deduce that all models exhibit lower Fit-
ness landscape and minimal MAE and RMSE errors compared to the assigned threshold time. The gen-
eral trend of MAE for HNN-RANMAXkSAT classification behaviour was reported to increase rapidly
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Fig. 4. Fitness landscape for HNN performance.

Fig. 5. RMSE for HNN performance.

with neurons complexity but still managed to achieve EFRANkSAT
= 0, lower MAE accumulation than

HNN-MAXkSAT and HNN-RANkSAT. The FEL was supported by MAE and RMSE displayed in fig-
ure 6 and 7 for MFDS classification problem. HNN-RANkSAT classification behaviour was reported to
increase rapidly with neurons complexity. The proposed HNN-RANMAXkSAT was able to achieve the
best global solution with lower FL, RMSE and MAE and accumulation than the existing one in classify-
ing the MFDS. Figure 8 displayed the behaviours of models under study in terms of implementation time
during the simulation cycle. The proposed HNN-RANMAXkSAT was faster than the existing models in
classifying MFDS. Computational time is predefined as the expanse of time needed for the network to
complete the overall computational process. Table 4 outlined the accuracy of all models for MFDS classi-
fications problem. It can observe observed that, HNN-RANMAXkSAT and HNN-RANkSAT enumerate
the closer of accuracy with 82.5% and 79.6% respectively while HNN-MAXkSAT achieved an accuracy
of 68.1%. This revealed the optimal capability of both models in attaining optimized induced logic for
MFDS classification. The accuracy for both methods was promising, particularly HNN-RANMAXSAT,
due to optimized induced logic generated at the end of the executions. By executing the simulation
of HNN-RANMAXkSAT for data set classification, we can see the induced logic attained according to
Equation (38) as follows.

PCorrectinduced=



MAX−3SAT︷ ︸︸ ︷
(T1 ∨ T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ T3)∧(T1 ∨ ¬T2 ∨ T3)∧
(T1 ∨ T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ T3) ∧ (¬T1 ∨ T2 ∨ ¬T3)
∧ (T1 ∨ ¬T2 ∨ ¬T3) ∧ (¬T1 ∨ ¬T2 ∨ ¬T3)∧(A1 ∨A2 ∨A3)∧

RANDAM−3SAT︷ ︸︸ ︷
(I1 ∨ I2 ∨ ¬I3) ∧ (L1 ∨ ¬L2) ∧ ¬J

(38)
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Fig. 6. MAE for HNN performance.

Fig. 7. CPU TIME for HNN Performance.

The attributes T1, I3, and J2 in Equation (38) are trivial enough not to be analyzed. However, at-
tributes like L1 and J1 will result in out-of-tune convergence. Considerably from table 3, the generated
induced logic by HNN-RANkSAT in the testing stage accomplished an accuracy of 82.5%. This finding
set forth HNN-RANMAXkSAT ability to acquire an optimized induced logic that could best represent
the MFCDS data set classification. Contrary to that, HNN-RANkSAT, and HNN-MAXkSAT methods
which achieved lower accuracy compared to HNN-RANMAXkSAT. This is due to the fact of the RAN-
MAXkSAT mechanism has improve the clause satisfaction process which could lead to a better training
stage in resulting in a construction of an optimized induced logic. From Equation (26), we can distin-
guish whether a Persons is fertile or not such attributes like A1 and I1 could exhibit fair fertility status.
Other than that, the induced logic could reveal insignificant and trivial attributes, like I3 and J2 to sort
out between fertile or not.

Based on the findings in table 4, we can infer that RANMAXkSAT is critical in our proposed model
for producing better-induced logic that represents the precision of our changed network. The reason why
RANMAXkSAT will fulfill such a factor is that the optimization operator in RANMAXkSAT introduces
a random searching space and variance of the solution, which leads to a strong training point. The main
drawbacks of RANMAXkSAT are the lack of satisfiability of generated induced logic which causes the
tendency of overfitting. To overcome such an aspect, the alteration of the data sets is crucial. Rearrange-
ment and permutation of the attributes, with a randomized selection of attributes, should be implemented.
The no-free lunch theorem stated that there are no absolute or specific algorithms that can be utilized to
solve every problem. However, in this research, we discovered that RANMAXkSAT works exceptionally
well for MFDS in term of FEL, MAE, RMSE and accuracy in classifications.

5. Conclusion

Artificial neural network (ANN) possesses a comprehensive structure of training and testing stages, that
made it one of the most efficient tools in patterns and knowledge extraction in solving real-life applica-
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tions. This include classification, forecasting, risk analysis, detection and quantitative analysis. There-
fore, we presume that this research contributes to amplifying the efforts to represent RANMAXkSAT in
HNN for optimazation purpose. In this paper, a hybrid framework has been proposed which incorpo-
rated Hopfield neural network (HNN) in performing RANMAXkSATRA to assist logical rule in govern-
ing the behaviour of the data set. The algorithm has been compared by analytical tests on MAXkSAT
and RANkSAT using different numbers of neurons to confidently confirm the performance of the pro-
posed algorithm. The results confirmed that the RANMAXkSAT outperformed the existing logical rule
techniques on the preponderance of datasets substantially. The HNN-RANMAXkSATRA effectively to
classify MFDS with a diverse number of features and training samples. The simulation results it has
been proven that the RANMAXkSAT logical rule complied effectively with the Hopfield neural network
for optimal representation in term of Fitness energy lanscapes (FEL), mean absolute error (MAE) and
Root mean square error (RMSE) with able to classify 85.1 % of MFDS of the test samples better than
MAXkSAT and RANkSAT. Our future work, research is planned to be prolonged in two main lines.
First, the proposed HNN-RANSATRA could be investigated for other data mining tasks like time series
prediction and classifications problems.
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