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ABSTRACT

The issue of missing data may arise for researchers who deal with data gathering
problems. Bayesian networks are one of the proposed methods that have been recently
used in missing data imputation. The main objective of this research is to improve the
efficiency of the Bayesian networks in nonignorable missing imputation, by adding
missing indicator nodes for incomplete variables and constructing an augmented
Bayesian network. Also, to consider the effect of different kinds of missingness
mechanism (ignorable and nonignorable) on the performance of imputation methods.
Four methods of imputation: random overall hot-deck imputation, within-class random
hot-deck imputation, imputation using Bayesian networks and imputation using
presented augmented Bayesian networks are compared using two indices: (1) a distance
function and (2)Minimum Kullback-Leibler index. Results indicate the high-quality of
the methods based on Bayesian networks relative to other imputation methods.

Keywords: Bayesian networks; imputation; kullback-Leibler information; nonignorable
mechanism; value of information analysis.

INTRODUCTION

The issue of missing data may arise for researchers who deal with data gathering
problems. According to (Rubin, 1976), the assumptions about the missing data
mechanisms may be classified into three categories: (1) missing completely at
random (MCAR):the probability that an entry is missing is independent of both
observed and unobserved values in the data set. For example a patient may
simply forget to post the questionnaire back; (2) missing at random (MAR): the
probability that an entry is missing is a function of the observed values in the
data set; (3) informatively missing (IM) or Non-MAR (NMAR): the probability
that an entry is missing depends on both observed and unobserved values in the
data set. An example is that a person with reduced health condition due to side
effects of a treatment may be less likely to return the questionnaire. In this case,
simply excluding those with missing data from the analysis, will bias the results
if those who did not respond were in significantly lower (or higher) health
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condition than those who did respond.When data are either MCAR or MAR,
the deletion mechanism is said to be ignorable because we can infer the missing
entries from the observed ones. A problem in coping with missing imputation is
the preservation of joint relationships between variables.

Di Zio et. al. (2004) developed an imputation method based on the revised
version of the method proposed by Thibaudeau & Winkler (2002). Its main goal
was to use Bayesian networks for imputation tasks in order to preserve joint
distributions as much as possible. Unfortunately, their method is based on the
assumption that the mechanism of missing data is not IM. This assumption is
hard to test in practice and the decrease in accuracy may be severe when the
assumption is violated.

Recently, Lin & Haug (2008) experimented a method of treating missing
values in a clinical data set by explicitly modeling the absence of data. They
showed that in most cases, a naive Bayesian network trained using the explicit
missing value treatments performed better. Also some approaches have been
designed with a view to be ‘robust’ to the missing data mechanism (Ramoni &
Sebastiani, 2001; Aussem & Rodrigues de Morais, 2010). In Ramoni &
Sebastiani (2001) method, called Robust Bayesian Estimator (RBE), no
assumption about the unknown censoring mechanism is made. Rodrigues de
Morais & Aussem (2009) exploited the missing mechanism using both the
Bayesian networks and the information represented by the absence of data and
they reduced the classification error.

In this study, the main objective is to improve the efficiency of the Bayesian
networks in the task of imputation, especially when the missingness pattern is IM.
We tried to reach this goal, by introducing a novel approach based on an
augmented Bayesian network. To assess the benefits and drawbacks of this
approach, an experimental study was conducted on two data sets. First data set is
extracted through an experimental study on a data set of individual records
obtained from the Iran Statistical Research Centre, and the second data set is
extracted from the study that examines a sample of 405 children within the first
two years of entry to elementary school. We also compare the performance of the
methods based on Bayesian networks (the method introduced by Di Zio et. al.,
2004, and our augmented Bayesian network) with that of random overall hot-
deck imputation and that of within-class random hot-deck imputation with
respect to different stratifications, by a simulation study. In this paper, to evaluate
and compare the performance of these applied methods, in addition to the delta
index of Di Zio et. al. (2004, 2005), we will also introduce the use of
MinimumKullback-Leibler index. A simulation study and a value of information
analysis will be performed to investigate the robustness and sensitivity of the
Bayesian network with respect to the different mechanisms of missing data.
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In Section 2, a brief overview of Bayesian networks is presented. Section 3, is
devoted to the description of the use of Bayesian networks for imputation,
introducing the augmented Bayesian network approach, and the definition of
the measures which will be used for evaluation. Information evaluation and
explanations of the applied experiments are given in Sections 4 and 35,
respectively. Section 6 includes the results obtained and conclusions.

BAYESIAN NETWORKS

A Bayesian network is a graphical model that encodes probabilistic
relationships among variables of interest and is defined by three elements
(Jensen, 1996):

o The nodes: each node represents a variable with a finite number of states
e The directed edges: Each edge connects a pair of nodes
e To each variable is attached a conditional probability distribution.

The first two points define the qualitative (structure) part of the Bayesian
network and the third defines the quantitative (parameter) thereof. The
definition of Bayesian networks does not refer to causality, and there is no
requirement that the links represent causal impact. That is when building the
structure of a Bayesian network model, it is not required to insist on having the
links go in a causal direction (Jensen & Nielsen, 2007). However, the model
should not include conditional independences that do not hold in the real world.

By the chain rule given in Pearl (1988), the following formula for the
complete joint probability distribution for a Bayesian network can be derived:

k
P(Xy = x1, Xy = x3,..., Xt = x) = [ [ P{Xi = x| Pa(X;)} (1)
i=1

Where Pa(X;) is the set of variables immediately preceding the variable X;.
This set is called the parent of the variable X;. So, to each variable is attached a
probability distribution conditioning on its parents. This formulation leads to a
dramatic decrease in the number of parameters to be estimated (Lauritzen &
Spiegelhalter 1988; Cowell et. al., 1999).

METHOD

This section outlines the method needed to use Bayesian networks for
imputation. First, a Bayesian network must be specified for the incomplete data
set, and then this specified Bayesian network will be used to impute missing
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items. At the end of this section, the performance of the applied Bayesian
network will be evaluated.

Learning Bayesian Networks from data

The most prominent feature of Bayesian networks is their ability to learn from
data, either parameters (i.e. conditional probabilities) or learning structure or
both. Indeed, considering whether a data set is complete or not, and whether the
network structure is known or not, there are four possibilities for a Bayesian
network to be learnt from data as shown in Table 1. This study falls into the cell
categorized by ‘Incomplete data’ and ‘Unknown structure’, other possibilities
refer to Buntine (1994) and Heckerman (1996).

Table 1. Four possibilities for a Bayesian network to be learnt from data
(the one we deal with indicated by /)

Data
Bayesian Network Structure Complete Incomplete
Known
Unknown %

The unknown structure part is the most usual one (Cowell et. al., 1999).
Furthermore, estimating a Bayesian network from a data set comprises two
steps:

e Structure learning
e Parameter learning.

In this paper, PC algorithm (Spirtes ez. al., 1993) is used for the structure
learning step (Algorithm 1).

1. Start with the complete graph;
2. i:=0;

3. While a node has at least i+ Ineighbors

For all nodes A with at least i + 1 neighbors

For all neighbors B of A

For all neighbor sets x such that |x| = i and x C (neighbor(A)\{B})

If A and B are conditionally independent given x then remove link A — B

- i=i+1
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Algorithm 1: The PC algorithm: test sequence

After the structure learning step, we may condition on it and estimate the joint
distribution of the variables by maximum likelihood estimation. When missing
items are present, the EM algorithm is used. In this research, the procedure
described by Lauritzen (1995) is applied to the parameter learning step.

Imputation based on Bayesian networks

Consider a data set with K variables of interest, X, X, ..., Xz. Among these,
some variables may be completely observed (O), and some variables may have
missing items (M). We denote the whole data set by D =(0O,M).The structure of
a Bayesian network defines a hierarchical ordering among the variables
X1, Xs,...X). As was stated in Section 2, the structure of a Bayesian network is
defined by the edges and their direction. Although edges’ direction is usually
interpreted in terms of causal relationships between two nodes, Di Zio et.al.
(2004) apply a different interpretation: at first, the variables are ordered
according to their ‘reliability’. More reliable variables are those with a lower
percentage of missing items, higher accuracy and greater availability of external
sources. Once a direct statistical relationship between a pair of variables has
been found, the edges’ direction is defined from the most reliable variable to the
least. This ordering defines a partition of the data set D=(0O,M) in v mutually
exclusive subsets P;,j=0,...,v —1 where v is the number of variables in the
longest chain. The first subset Py contains variables with no parents. The second
subset P; includes the remaining variables whose parents are only in Py. The
third subset P, contains the remaining variables whose parents are only in
Py U P;. Generally, once the first j — 1 subsets have been established, the j”
subset P; contains the remaining variables whose parents are only in
-1
U Py j=1,....v(Di Zio et. al., 2004).
h=0

According to Thibaudeau & Winkler (2002), the previous ordering and the
distribution of the corresponding Bayesian network are crucial for the following
imputation procedure. Assume a sample of »n units, a = 1,...,n, the variables
X1, X5, ..., Xi are collected and there are missing items. For the first unit, a = 1,
we check the presence of a missing value starting from the variables in Py. If a
variable X in Py is missing, X is imputed by randomly generating a value from
the marginal distribution of X. If the variables in P;_, (j > 1) are either present
or imputed and a variable X in P; is missing, X is imputed by randomly
generating a value from the distribution of X conditionally on the values
assumed by its parents. Such a procedure is iterated for all the variables in the v
groups and all the units a = 1, ..., n (Di Zio et.al., 2004; Di Zio et. al., 2005).
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Imputation based on Augmented Bayesian networks

According to the method described in section 3.2, first a Bayesian network must
be specified for the original data set D=(O,M), and then the constructed
Bayesian network will be used to impute the missing items (BN method). But
this method relies on the assumption that the missing pattern should be
ignorable (MCAR or MAR).

In order to improve this method when the missingness mechanism is
nonignorable (NMAR), we create an additional dummy Boolean variable R;
(missingness indicator), j = 1,2, ..., k, to represent missingness for each existing
variable X; that was found to be incompletely observed. Actually, for each case
in the incomplete variable X;, the variable R; takes on one of the two values 1
and 0, denoting respectively, that the entry X; is observed or not. Therefore we
have a dataset consisting of the original data set D=(0O,M) and the additional
dummy variables R, Dg=(0O,M,R). In this improved method, learning the
Bayesian network from data has some structural constraints. It means that for
all jin {1,2,...,k}, there must be an edge from the R; node to the related X;
node. The graphical structure of the Bayesian network representing the joint
probability distribution of the variables in the Dg =(0O,M,R) can be used to help
improve the performance of BN method when the missingness mechanism is
IM. Our approach is based on the imputation method described in section 3.2,
but the visual inspection of the graph induced from the augmented data set, Dy,
will account for the missing pattern, and hence will improve the performance of
the Bayesian network in imputation (BNz method).

Performance evaluation

The main purpose of using Bayesian networks for imputation is to preserve the
variables’ relationship as much as possible. To see whether the mentioned goal is
achieved, we check the joint distribution. This joint distribution checking is
entitled statistical consistency by Di Zio et. al. (2004).

To evaluate the preservation of distributions, two indexes are applied. A delta
index which is described in the next subsection and a modified version of the
index Kullback-Leibler information (Kullback & Leibler 1951; Kullback 1959;
Kullback 1987) called Minimum Kullback-Leibler information which is outlined
in subsection entitled: ‘Minimum Kullback-Leibler index’.

Delta index

Beginning with a complete data set (i.e. a single variable X with total number
of n records), missing values of size n* were artificially produced. The relative
frequency of category x of X in the original data set, is denoted by f,, and the
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frequency of the same category x of X after imputation is denoted by fr. A
distance function that can be defined for these two frequencies is:

A=3Y il @

Where the sum is over all categories of X. The above index takes values
between 0 and 1. This index can be extended easily to a multivariate context in
order to check the preservation of joint distributions. For example, consider two
variables X; and X;. Then the delta-indicator assumes the form:

A= %Z Z Vi _/;thj|‘ (3)

X X j

Minimum Kullback-Leibler index

One way of studying the effect of imputed missing items on the distribution of
data (and hence on the joint relationship of variables) is to measure the distance
between two distributions, which are the above explained f, and f.

Suppose that 7' is a random variable and f and g are two densities, then the
Kullback-Leibler distance of g to fis defined as:

Kl - | 1og[%1f<z>dz. )

It is crucial to know how much information is lost. The wider the distance
between two distributions, the more information we have lost by imputation.
The logarithm is a transformation which maps small distances to wider ones. So
taking the logarithms of f and g, and subtracting them helps to better observe
the small differences between these two probability distributions. This feature of
the logarithm function leads us to detect better the subtle changes in joint
relationships of variables that may arise by imputation. Again suppose that n* is
the number of artificially produced missing values. f and f; are also defined as
above. The adjusted formula for the two discrete distributions is:

KU?—\‘?.ﬁ‘C} = ZIOg[}%yx, (5)

With the assumption that 0 x log(0) = 0. The Kullback-Leibler information
is not symmetric in f'and g, in other words, K[f, g] # K]g,f].
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A modification, remedies this situation. The minimum of K[f, g] and K]g,f],
denoted by MKL]f, g] and is formulated as follows:

MKL[f, g] = min(K[f, g], K[g, /])- (6)

This helps us to have a symmetric index MKLIf, g| to measure the distance
between two distributions fand g.

INFORMATION EVALUATION

In this paper, Bayesian networks are used for missing data imputation in the
presence of three different missingness mechanisms (Missing At Random,
Missing Completely At Random, Missing Not At Random). But the important
question is ‘Will the performance of Bayesian networks be affected by different
missingness mechanisms?” The question is answered using the evaluation
methods mentioned in subsection 3.3. Use of Entropy and Mutual Information,
also helps to assess better the effect of missingness mechanisms on the
performance of Bayesian networks in the imputation of missing data.

Entropy is a measure of how much the probability mass is scattered around
on the states. In fact, the more random a variable is, the higher its entropy will
be. Let X be a discrete random variable with n states xj,Xx,,...,x, and
probability distribution P(X), then the entropy of X is defined as:

H(X) = —iP(X: x;) X log P(X = x;), (7)
i1

which is greater than zero. If Y is another random variable, then the mutual
information of variables X and Y is computed as:

16,7 =Y P(1) S P(X]Y) log% 8)

The mutual information, I(X,Y), is a measure of the information shared by X
and Y. If X is the variable of primary interest, then I(X,Y) is a measure of the
value of observing Y.

Value of information analysis

Value of information analysis is the task of identifying the values of pieces of
information. Considering a Bayesian network, entropy and mutual information
can be used in defining a value function.



Improving the performance of Bayesian networks in non-ignorable missing data imputation 91

Suppose X is the variable to be analyzed, in order to keep the idea to let high
values be preferred, we let an entropy-based value function be (Jensen &
Jianming 1995):

V(X) = —H(X) )
Also the value of the information after observing a variable Y is:
V(X]Y) = —(H(X) - I(X, Y)) (10)

The reason for computing these values is to identify the variable, which
increases the value of information the most. In order to examine the effect of the
missing data mechanism, we have defined a Mean Value of Information (MVI)
index. Consider a Bayesian network with nodes {X, Y1, ..., ¥,,}, the MVI index
for variable X is defined as:

M=

V(XY

MVI(X) :‘# (11)

This means value of information changes as the pattern of missingness varies
between ignorable ones to non-ignorable ones, and will be most affected by
latter mechanism.

EXPERIMENTAL RESULTS

This section is devoted to apply the Bayesian network based imputation
methods described in Sections 3.2 and 3.3, on two data sets. The first data set is
an experimental study on a data set of individual records obtained from the Iran
Statistical Research Centre, which is about the urban families Household
Income and Expenditure (HIE). The second data set is extracted from the study
that examines a sample of 405 children who are within the first two years of
entry to elementary school. We use HUGIN software (www.hugin.com) and R
(http://cran.r-project.org/) for the analysis of these data.

Description of the urban families HIE data set

Data set of urban families HIE was obtained from the 2005 Iran Statistical
Center census. According to this data set, the seven variables are:

e Sex: man (1) and woman (0);

e Poverty: absolute poverty (1), quasi poor (2), non-poor (3) and quasi rich or
rich (4)
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e Educational level: literate (1) and illiterate (0);

e Occupation status: employed (1), non-employed (seeking a job) (2), students
(3) and others (4);

Marital status: married (1), widow(er) (2), divorced (3) and single (4);

Residential status: proprietor (1), tenant (2) and others(3);

e Family size: one member (1), two members (2),. . ., six members (6).

Description of the antisocial behavior in children data

This data set was collected using face-to-face interviews of both the child and
the mother taken at two-year intervals between 1986 and 1992. The study
examines the measures of emotional support and cognitive stimulation provided
to the child by the mother near the time of school entry and also examines four
repeated measures of both the child’s antisocial behavior and the child’s reading
recognition skills (http://www.duke.edu/~curran/).

Here, applying some preliminary analysis on the original data set, the
following three variables collected at year 1986 were chosen to be worked on:

e Anti: child’s antisocial behavior, not true (0), sometimes true (1) or often true

)

e Homecog: child’s cognitive stimulation at home, if the family gets a daily
newspaper (1), if the family encourages their child to start and keep doing
hobbies (2), if the mother often reads stories to her child (3)

e Homemo: child’s emotional support at home, the mother encouraged the
child to contribute to the Conversation (1), the mother answered the child’s
questions or requests verbally (2), the mother’s voice conveyed positive
feelings about the child (3).

Application of methods and results

Let us use the following abbreviations for the variables of the first data set: 1.
Sex: sex, 2. Marital status: mar, 3. Occupation status: occ, 4. Residential status:
acc, 5. Educational level: edu, 6. Family size: fsize and 7. Poverty level: pov.
These abbreviations are used in the estimated Bayesian network of the families
HIE data, to indicate the nodes’ names (see Fig. 1.(a)). Also in Fig. 1(b) you can
find the Bayesian network constructed from the antisocial behavior data set.
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)

(a) (b)

Fig.1. (a) The estimated Bayesian network from the complete data set of “‘urban families HIE’ data
and (b) The estimated Bayesian network from the ‘antisocial behavior in children” data.

To implement the imputation method based on Bayesian networks, following
two steps should be done. At first we randomly generate artificial missing items
in the set of complete sample data, then the Bayesian network is learnt from the
perturbed data set, D=(0O,M), and finally it is used for imputing missing items
(BN method).

To apply the imputation method based on augmented Bayesian networks,
after artificial perturbation of the data, the Indicator nodes (R) should be added
to the perturbed data set to obtain the Dg=(0O,M,R). Then the Bayesian
network is learnt from Dy and used for the imputation process (BN method).

For the urban families HIE data set, just the poverty node is contaminated.
But in the antisocial behavior data, missing items are generated in all nodes. So
we have the augmented data sets Dr= (0 =(sex,occ,mar,edu,fsize,acc),
M =(pov), R=(Rpov) and Dr=(M =(anti, homecog, homemo), R=(Ranti,
Rhomecog, Rhomemo)) for urban families HIE and antisocial behavior data
sets, respectively.

Applying the above steps, three experiments were carried out. In the first
experiment, only missing completely at random (MCAR) items are generated.
In the second, missing at random (MAR) items are generated and in the third
experiment, not missing at random (NMAR) items are generated.
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e

(@) (b)

(c) (d

Fig.2. Bayesian networks in parts (a) and (b) are based on the perturbed data sets D= (O,M),
according to the MCAR mechanism, Bayesian networks in parts (c) and (d) are based on the
augmented data sets Dg =(0O,M,R) and according to the MCAR mechanism (R, is the observed
indicator variable for variable ., e.g. Rpov is the missing indicator variable for the pov node)

Figure 2 is devoted to the Bayesian networks constructed from data sets D
and Dy in the presence of MCAR mechanism, D as in (a) for urban families
HIE and (b) for antisocial behavior data, and Dy as in (c) for the urban families
HIE and (d) for antisocial behavior data.

The aim of this part is to evaluate the effects of different missingness
mechanisms on the performance of the BN and BNy method and to compare it
with that of hot-deck methods using two indices, delta and minimum Kullback-
Leibler.

According to the definition of ‘reliability order’, and having contaminated
just the poverty node of the urban families HIE data, it is not allowed to have
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any edges from poverty to the other variables. For the antisocial behavior data
the whole data set is contaminated and it also obeyed the ‘reliability order’ rule.

Benchmarking the BN and BNy imputation method, two kinds of hot-deck
imputation were carried out: random overall hot-deck imputation and within-
class random hot-deck imputation. Random overall hot-deck imputation is a
technique where a respondent is chosen at random from the total respondent
sample, and the selected respondent’s value is assigned to the non-respondent.
The second method differs in that a donor respondent is chosen at random
within the same class as the recipient non-respondent.

Once the qualitative and the quantitative parts of the Bayesian network have
been estimated, each missing item can be imputed according to the BN based
methodology, BNz based method and the above hot-deck imputation methods.
The Mean Square Error (MSE) of delta (A) and Minimum Kullback-Leibler
(MKL) indices, have been approximated through a Monte Carlo experiment
consisting of ¢t =1, ..., 1000 replications of the Bayesian network and hot-deck
imputation algorithms on the perturbed data set. The approximations are:

MSE(A) = E(A — A)? = E(A = AP + (A = A? = Var(A) + A%, (13)

3 1 1000 1 1000 .,
8= 1000; B Var(2) = 1500 1 ;(A’ — &

where A is the real value of the A and since,

Vi e {1, ..., 1000}, A,:%Zyx—fq:o. (14)
And:
MSE(MKL) = E(MKLf..f.| - MKL[f../.])’
= E(MKLIf. /] - MKL[f..f])’
+(MKL[f..fx) = MKL[f:. f3])?
= Var(MKL[fy,f]) + MKL2[fy,f],

(15)

1000

_ S ,
MELf. ] = 3555 2 Tl f:
=1

1 1000

Var(MKLf. /) = 15507 2 (MKLlfe. /] = MKL[f . 1))’
=1



96 P. Niloofar, M. Ganjali and M.R. Farid Rohani

- - 1000
where again MKLIf,,fy] = MKLI[f.,f] = IO]R > MKL,[f,fy] =0 is the real
=1

value of the MKL][fx, /], since for all 7 € {1, ..., 1000} :

MKLt[ﬁwfx] = min(Kl[fx‘va]vKt[fxvfx]) = Kf[fxvfx] = ZIOg%M‘C =0. (16)

The results of the urban families HIE data set and the antisocial behavior in
children is reported, respectively, in Tables 2 and 3. These results indicate the
high efficiency of Bayesian network-based method compared to that of the
augmented Bayesian network method and those of other hot-deck methods, in
the field of imputation.

Table 2. Mean Square Error (MSE) of Minimum Kullback-Leibler (MKL) index and
Delta (A) index for the Bayesian Network (BN), augmented Bayesian Network
(BNR), stratified hot-deck (HD str) and random overall hot-deck (HD)
procedures considering different missing mechanisms
for the urban families HIE

Mechanism

Method MCAR MAR NMAR
BN MSE(A) 0.027443 0.023547 0.172683
MSE(MKL) 0.005112 0.003399 0.248500
BN MSE(A) 0.045512 0.030052 0.057911
. MSE(MKL) 0.006759 0.002639 0.007838
MSE(A) 0.214174 0.244689 0.283522

HD (str sex)
MSE(MKL) 0.199882 0.258929 0.586604
MSE(A) 0.212764 0.236859 0.281741

HD (str mar)
MSE(MKL) 0.206698 0.240846 0.585196
MSE(A) 0.195537 0.211987 0.246394

HD (stracc)
MSE(MKL) 0.181578 0.207850 0.466240
MSE(A) 0.211724 0.227452 0.273990

HD (str sex-mar)

MSE(MKL) 0.199471 0.225150 0.497904
MSE(A) 0.234104 0.160303 0.320000

HD
MSE(MKL) 0.235156 0.270339 0.640070
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Table 3. Mean Square Error (MSE) of Minimum Kullback-Leibler (MKL) index and
Delta (A) index for the Bayesian Network (BN), augmented Bayesian Network (BNg),
stratified hot-deck (HD str) and random overall hot-deck (HD) procedures considering

different missing mechanisms for the antisocial behavior data set

Mechanism

Method MCAR MAR NMAR
N MSE(A) 0.243170 0.194110 0.619878
MSE(MKL) 0.504991 0.497553 3.486397

B, MSE(A) 0.357831 0.282882 0.467079
MSE(MKL) 0.546900 0.542372 1.447663

D MSE(A) 0.377957 0.342103 0.682530
MSE(MKL) 1085293 1288636 5.303826

o MSE(A) 0.392962 0.348107 0.685602
MSE(MKL) 1.403290 1.963572 5.319799

As far as the MAR and MCAR mechanisms are concerned, both indices indicate
preferences for Bayesian network instead of augmented Bayesian network and hot-
deck methods, although the BN and BNzmethods are comparable. It can also be
concluded that the small (large) distances between distributions of the original (fy)
and the imputed (f;) data sets, are mapped in the smaller (larger) distances by the
Minimum Kullback-Leibler index. This feature of the Minimum Kullback-Leibler
index, makes the differences more prominent.

Generally Bayesian network method gives more acceptable results when the
missingness mechanism is MAR or MCAR showing the sensitivity of Bayesian
networks to the missingness mechanism. In NMAR, in contrast to the MAR and
MCAR mechanisms, there is no such improvement in indices for Bayesian
network based imputation. But we observe a significant increase in the efficiency of
the augmented Bayesian network method relative to that of Bayesian network
method and those of hot-deck imputation methods, when the mechanism is IM.

Tables 4 and 5 are devoted, respectively, to the results of the value of information
analysis of the urban families HIE data set and that of the antisocial behavior of the
children data set. From Table 4, we can conclude that in all missing patterns, the
most informative node for poverty level is the family size. But in the Bayesian
network constructed from the contaminated data by the NMAR mechanism in the
poverty node, a decrease of mutual information of ‘fsize’, ‘acc’ and ‘edu’ with ‘pov’
(which is not desired) has been compensated by a decrease in the entropy of ‘pov’
(which is seemingly desired) and results in a significant increase in MVI index for
‘pov’ (from -1.3432 for the complete data set to -1.2283). It is because of the non-
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random contamination in categories of the poverty variable, which leads to a

decrease in uncertainty (entropy) of the variable.

Table 4. Value of information analysis for poverty node of the urban families HIE data
set; H(.): entropy, I(.,.): mutual information and MVI(.): Mean Value of Information

Mechanisms
Complete data MCAR MAR NMAR
H(pov) 1.3600 1.3600 1.3500 1.2400
I(fsize, pov) 0.0800 0.0900 0.1000 0.0700
I(acc, pov) 0.0200 0.0200 0.0000 0.0000
I(edu, pov) 0.0004 0.0006 0.0000 0.0000
I(mar, pov) 0.0000 0.0000 0.0000 0.0000
I(occe, pov) 0.0000 0.0000 0.0000 0.0000
I(sex, pov) 0.0000 0.0000 0.0000 0.0000
MVI(pov) -1.3432 -1.3415 -1.3333 -1.2283

In Table 5, when the missing pattern is NMAR, again we can see an obvious
decrease in the entropy and the mutual information for all nodes, which leads to a
significant increase in the M VI indices of the nodes. One of the consequences of this
seemingly good event (the increase in MVI) is the wrong decisions which might be
taken on the basis of this increased MVI. For the other two mechanisms, the MVI

index is approximately the same as the one for the complete data.

Table 5. Value of information analysis for all nodes of antisocial behavior; H(.): entropy,
1(.,.): mutual information and MVI(.): Mean Value of Information

Mechanisms
Complete data MCAR MAR NMAR
H(anti) 0.7300 0.7400 0.7300 0.6700
H(homecog) 0.9000 0.9000 0.9000 0.6900
H(homemo) 0.8700 0.8500 0.8700 0.7400
I(anti, homecog) 0.0300 0.0400 0.0500 0.0000
I(anti, homemo) 0.0200 0.0009 0.0200 0.0300
Iﬁifnn;:gg 0.0500 0.0500 0.0500 0.0000
MVI(anti) -0.7050 -0.7190 -0.6950 -0.6550
MVI(homecog) -0.8600 -0.8550 -0.8500 -0.6900
MVI(homemo) -0.8350 -0.8240 -0.8350 -0.7250
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CONCLUSION

To assess the benefits and drawbacks of the BNy approach, an experimental
study was conducted on two data sets in order to compare the introduced
method, BNy, with other three methods of missing data imputation methods:
random overall hot-deck imputation, within-class random hot-deck imputation
and Bayesian network based. Compared to the Bayesian network based
imputation method (BN method) of Di Zio et. al. (2004) and other traditional
imputation methods, BNgzmethod performed much better in the presence of
NMAR mechanism. But in ignorable mechanisms although BNz method
performs better than hot-deck methods, BN method is still preferable.

Imputation by means of Bayesian networks seems to be a reasonable
approach to improve the consistency of imputed data sets (BN for ignorable and
BN for nonignorable mechanisms). This conclusion was reached because of the
good results obtained in terms of the preservation of joint distributions. The
preservation of joint distributions was evaluated by means of the delta index
defined in the literature and the Minimum Kullback-Leibler index introduced
here for the probability distribution distance. As can be seen from Tables 2 and
3, the latter index is more convenient for comparing small differences. Besides,
the use of Bayesian networks when the contamination mechanism is
nonignorable causes the value of information, which in this study is measured
by the M VI index, to wrongly increase the entropy.
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