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On logarithmic averages of sequences and its applications
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Abstract

In this paper, we investigate summability methods of logarithmic averages of the numerical sequences and its applications 
such as Tauberian type theorems. 
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1. Introduction

The main objective of Tauberian theory is to obtain 
convergence of such sequences out of the existence 
of certain limits by some summability methods and 
some additional conditions, which are called Tauberian 
condition. Furthermore, a Tauberian theorem is a theorem, 
which deduces convergence of sequences follow from a 
summability method and some Tauberian conditions. One 
of the summability methods, which is used in theorems is 
the logarithmic summability method. Recently, there have 
been many studies about some summability methods and 
Tauberian theorem (Çanak, 2015; Çanak & Totur, 2015; 
Et et al. 2014a; Et et al. 2014b; Totur & Okur, 2015)).

The logarithmic summability method was first 
introduced by Hardy (1949). Naturally, Tauberian type 
theorems of this method were established by various 
authors (Kwee, 1966; Móricz, 2013). The logarithmic 
average or logarithmic mean of a sequence is more general 
than its arithmetic average. So, Tauberian theorems in this 
paper are more general than their arithmetic analogues.

Here, we introduce the logarithmic summability 
methods.

Given a sequence (un) of real numbers, the logarithmic 
mean of order 1 of (un) is defined (Hardy, 1949) by

where

A sequence (un) is said to be logarithmic summable of 
order 1, in short, ( ,1) converges, to a finite number s if

                            
 (1)

Now, we introduce the ( ,2) summability method. The 
logarithmic mean of order 2 of (un) is defined (Móricz, 
2006) by

where

A sequence (un) is logarithmic summable of order 2, in 
short; ( ,2) converges, to a finite number s if 

                             (2)

The convergence of (un) to s implies that the limits (1) 
and (2) also exist. In other words, the logarithmic methods 
of order 1 and 2 are regular methods. Additionally, every 
( ,1) summable sequence is ( ,2) summable to same value 
(Móricz, 2006). These implications can be summarized as 
in the following diagram:
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However, the converse implications are not always 
true. Namely, the ( ,1) convergence of (un) doesn’t imply 
convergence of (un), and the ( ,2) convergence of (un) 
doesn’t imply ( ,1) convergence of (un).

Example 1.Consider the sequence  
The sequence is ( ,1) convergent but not ordinary 
convergent. If we get the arithmetic mean of (un), we 

obtain that . Then, the 

logarithmic mean of order 1 of a sequence can be written 
in terms of  as follows:

             (3)

Hence (un) is ( ,1) convergent to 0.

Example 2. Consider the sequence  
 The sequence is ( ,2) convergent 

but not ( ,1) convergent. If we get the arithmetic mean of 
(un), we obtain that  If we write  
in (3), then we have  and we obtain that 
(un) is not ( ,1) convergent. Also, the logarithmic mean of 
order 2 of a sequence can be written in terms of  
as follows:

          (4)

Therefore, the sequence (un) is ( ,2) convergent to 0.

We are interested in the “converse” case of these 
assertions. The converse cases are true under suitable 
Tauberian conditions. The first classical Tauberian 
theorem for the logarithmic summability method of order 
1 obtained by Ishiguro (1963).

Theorem 3. If (un) is ( ,1) convergent to s and 
 where  then (un) converges 

to the same value. 

Later, Kwee (1966) proved the following theorem that 
was generalized to Theorem 3.

Theorem 4. If (un) is ( ,1) convergent to s and

then (un) converges to the same value.  

Notice that Tauberian condition in Theorem 4 is the 
slow decrease of (un) with respect to ( ,1).

As the (C,1) summability method, the classical one-
sided Tauberian condition  for some C > 0 
implies that the slowly decrease of (un) with respect to 

( ,1). Indeed, 

Taking liminf of both-sides when  and 

, it is obtained that (un) is slowly decreasing 

with respect to ( ,1).

Móricz (2013) presented that a sequence (un) is 
slowly decreasing with respect to ( ,1) if and only if the 
condition

Note that the conditions  and  
 are equivalent.

Móricz (2013) improved Kwee’s Tauberian condition 
as follows:

 

where [.] denotes integer part.

A slowly decreasing sequence (un) with respect to 
( ,2) is defined (Móricz, 2004) by

             
 (5)

It can be easily seen that the conditions  
and  are equivalent.

The condition (5) can be equivalently reformulated as 
follows: 

              
 (6)

The de la Vallée Poussin means of (un) with respect to 
( ,2) are defined by 

for , and
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for , where [.] denotes integer part.

The main goal of this paper is to establish some 
Tauberian theorems for the logarithmic summability 
method order 2 with a different viewpoint and to 
generalize above-mentioned classical Tauberian theorems 
and Móricz’s theorem for the logarithmic summability 
method order 1 and 2.

2. Main results for ( ,2) summability method

In this section, we give Tauberian theorems for the ( ,2) 
summability method. First of all, we represent the most 
prominent Tauberian theorem. 

Theorem 5. If (un) is ( ,2) convergent to s and

 
then (un) converges to the same value.  

Proof. It is sufficient to show the following identity in 
order to prove the theorem. The difference of a sequence 
and its logarithmic mean order 2 is represented by the 
identity

                       (7)

Indeed,

where  After multiplying both sides of equality 

by , we obtain

and

Therefore, the identity (7) is satisfied.

By the identity (7) and the convergence of the sequence 
, the proof is completed. 

Next corollary generalizes Kwee’s Tauberian theorem 
to the ( ,2) summability method.  

Corollary 6. If (un) is ( ,2) convergent to s and 
 then (un) converges to the 

same value.  

Proof. We need to show that the condition 
 implies  as 

. In fact, for a sequence (un), since we take  
and  in Totur & Çanak (2012, Lemma 1), we obtain 
the identity

                      (8)

Since , the condition 
 as  is satisfied from the regularity 

of ( ,2) summability method. 

Notice that the Tauberian condition in Theorem 5 can 
not be replaced with the conditions  or 

, for some C > 0. Although the following 
one-sided condition is a Tauberian condition for the ( ,2) 
summability method.

Theorem 7. If (un) is ( ,2) convergent to s and

for some C > 0, then (un) converges to the same value.  

It is clear that the Tauberian condition of Theorem 7 is 
more general than the condition in Corollary 6. Indeed, if 
we write the term  instead of  in the 
identity (7), then the identity 

is obtained by the identity (8).

Therefore, the condition 
implies  as .

Corollary 8. If (un) is ( ,2) convergent to s and 
, then (un) converges to 

the same value.

Now, we give a Tauberian theorem which generalize 
Theorem 7. In the next theorem, we show that we obtain 
the convergence of the sequence (un) under the condition 
of slow decrease of the difference of (un) and its ( ,2) 
mean sequence  instead of being the slow decrease 
of (un).  
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Theorem 9.  If (un) is ( ,2) convergent to s and  
is slowly decreasing with respect to ( ,2), then (un) 
converges to the same value.

A natural corollary of Theorem 9 is given as follows.

Corollary 10. If (un) is ( ,2) convergent to s and   
is slowly oscillating with respect to ( ,2), then (un) 
converges to the same value. 

In the last theorem, we extend Móricz’s theorem 
(Móricz, 2013) to ( ,2) summability method.  

Theorem 11. If (un) is ( ,2) convergent to s and the 
conditions 

are satisfied, then (un) converges to the same value.  

Theorem 11 can be proved by using the same steps 
as that Theorem 2.1 in (Móricz, 2013). So, the proof of 
Theorem 11 is omitted.

3. A Lemma

In the proofs of main theorems, the following lemma will be used.  

Lemma 12. (i) For , 

(ii) For ,

Proof. (i) From the definition of the logarithmic de la Vallée Poussin mean of (un) with respect to ( ,2), we have 
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Substracting n,2 (u) from the last identity, we get 

                                      (9)

Also the sequence (un) can be written as 

 

           
  (10)

Substracting n,2 (u) from the identity (10), we obtain 

Writing (9) in the last identity, we obtain 

This completes the proof.

(ii) The proof of Lemma 12 (ii) is similar to that of Lemma 12 (i).

4.  Main results for ( ,1) summability method

All the main theorems established above can be given in 
the form below according to the ( ,1) summability method. 
We omit the proof of the theorems since the theorems are 
proved with similar steps.

Theorem 13. If (un) is ( ,1) convergent to s and 
, for some , where 

, then (un) is convergent to s.

Corollary 14. If (un) is ( ,1) convergent to s and 

, then (un) is convergent to s. 

Theorem 15. If (un) is ( ,1) convergent to s and the 
sequence  is slowly decreasing with respect to 
( ,1), then (un) is convergent to s.  

Corollary 16. If (un) is ( ,1) convergent to s and the 
sequence  is slowly oscillating with respect to 
( ,1), then (un) is convergent to s. 

We require the following lemma to be used in the  
proofs of main theorems. 

Lemma 17. (i) For , 

(ii) For ,
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5. Proofs

In this section, we give the proof of the main theorems of the paper which are Theorem 7 and Theorem 9 for the 
logarithmic summability method of order 2.

Proof of Theorem 7

Suppose that  for some  Then, we obtain 

From Lemma 12 (i), we have 
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for some C1 > 0. Taking limsup of both sides of the inequality above as , and using that 

we get

Since (un) is logarithmic summable of order 2 to s, we 
have ( n,2 (u)) is convergent to s. Because of regularity of 
the ( ,2) summability method, ( n,2 (u)) is ( ,2) convergent 
to s. Therefore,  is convergent to 0.

Hence the first term on the right-hand side of the 
inequality above vanishes and we obtain 

After taking the limit of both sides as , we get  

 
       

 (11)

On the other hand, from Lemma 12 (ii) and the hypothesis  for some C > 0, we 
have 
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for some C1 > 0. After taking liminf of both sides as  and using that

we get

Since  is convergent to 0, the first term on the right-hand side of the inequality above vanishes and we 
obtain

Taking the limit of both sides as , we get

                                                                                                               
 (12)

Combining (11) and (12), we obtain  By Theorem 5, we obtain 

Proof of Theorem 9

From Lemma 12 (i), we have

and
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After taking limsup of both sides as , we have

Since ( n,2 (u)) converges to s, the first term on the right-hand side of the equality above vanishes and we obtain

After taking the limit of both sides as , we get 

 
                                                        

 (13)

On the other hand, from Lemma 12 (ii), we have 
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After taking liminf of both sides as , we get 

 

Since ( n,2 (u)) converges to s, the first term on the right-hand side of the equality above vanishes and we obtain 

After taking the limit of both sides as , we get 

 
                                                       

(14)

Combining (13) and (14), we have  Hence, we obtain that 
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6. Conclusion

A convergent sequence is both logarithmic summable of 
order 1 and 2 to the same limit. But the converse of the 
both statements are not true in general. Our main results 
in the present study answer the question under which 
conditions logarithmic summable sequences of order 1 or 
2 are convergent, and improve some classical Tauberian 
theorems.
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