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ABSTRACT

It is standard practice to monitor clinical trials with a view to stopping early if results are
sufficiently compelling. We explain how the properties of stopping boundaries can be
calculated numerically and how to optimise boundaries to minimise expected sample size
while controlling type I and II error probabilities. Our optimisation method involves the
use of dynamic programming to solve Bayes decision problems with no constraint on
error rates. This conversion to an unconstrained problem is equivalent to using
Lagrange multipliers. Applications of these methods in clinical trial design include the
derivation of optimal adaptive designs in which future group sizes are allowed to depend
on previously observed responses; designs which test both for superiority and non-
inferiority; and group sequential tests which allow for a delay between treatment and
response.

Keywords: Clinical trial; group sequential test; Bayes decision problem; dynamic
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INTRODUCTION

It is natural to wish to examine data as they accumulate during the course of a
long-term clinical trial. However, with frequent looks at the data, there is
greater opportunity to make an erroneous decision. Armitage et al. (1969)
report the overall type I error rate when applying repeated two-sided
significance tests at a = 0.05 to accumulating data and show this rises to 0.11
with 3 analysis and 0.14 with 5 analysis. Thus, special statistical methods are
required to avoid inflation of the type I error rate due to over-interpretation of
interim results.

Group sequential designs which require data to be analysed on a small
number of occasions during the course of a study are well suited to clinical trials
(Pocock, 1977). DeMets et al. (1984) report an early application of a group
sequential clinical trial design in the Beta-Blocker Heart Attack Trial which
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compared propanolol with placebo. A stopping boundary of the form proposed
by O’Brien & Fleming (1979) was employed and the trial stopped after the sixth
of seven planned analysis. This stopping rule permitted early termination for a
positive conclusion. In a retrospective analysis of 72 cancer studies conducted by
the U.S. Eastern Co-operative Oncology Group, Rosner & Tsiatis (1989) found
that, if group sequential stopping rules had been applied, the major benefit
would have come from stopping early for a negative outcome, with this
occurring in around 80% of studies. Thus, a good clinical trial design should
allow early termination for either positive or negative results.

Our interest is, therefore, in group sequential designs which achieve specified
type I error rate and power and stop early, on average, under both null and
alternative parameter values. In addition, it is desirable that optimised designs
can be applied to a variety of response distributions to give flexibility of use in
different types of study.

SEQUENTIAL DISTRIBUTION THEORY

The properties of a group sequential design depend on the joint distribution of
the test statistics being monitored at each interim analysis. We consider first the
simple example of a balanced two-sample problem with normal response. Here,
responses X 41, X2, ... from Treatment A and Xp;, Xp, ... from Treatment B
are observed sequentially. Suppose the {X4;} and {Xp;} are independent and
normally distributed with common variance ¢° and means uy and g,
respectively. Then the ‘“‘treatment effect” 6 = uy — pup is the parameter of
primary interest.

At interim analysis & (k=1,...,K), the first n; responses from each
treatment arm are observed. The maximum likelihood estimate of 6 at this
analysis is

nj
O = (Xai — Xgi) /i
i1
and this has the marginal distribution

ék ~ N(Q, ]]\fl),

where I}, = ny/(20%) is the Fisher information for 6 at analysis k.

The standardized test statistic based on the responses available at analysis & is
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03

Zr =Y (Xai— Xg))/(0\/20) = O/

i=1

It is easy to check that the joint distribution of Z,..., Zx has the defining
properties
(i) (Zi,...,Zk) is multivariate normal,
(it) Var(Zy)=1 and E(Zy) =0/, k=1,...,K, (1)

(iii) Cov (Zkl,Z/Q) = \/(Ik1/1k2)7 for I S k] S kg S K.

We refer to the set of properties (1) as the canonical joint distribution for a
sequence of statistics Zj,...,Zx with information levels {/,...,Ix} for the
parameter 6. In fact, Jennison & Turnbull (1997) and Scharfstein et al. (1997) show
this joint distribution arises in a great many situations. Examples include:
unbalanced two-sample comparisons; normal responses adjusted for baseline
covariates; longitudinal data; parallel and crossover designs. The same canonical
joint distribution also holds approximately for binary and survival data. For further
details of how to construct {Z;} and {I;} sequences in specific applications, see
Chapter 3 of Jennison & Turnbull (2000). Our key conclusion is that we can build a
unified theory of group sequential tests since properties of particular decision
boundaries computed using (1) will be applicable to a wide variety of situations.

A PROBLEM OF OPTIMAL STOPPING

Consider a clinical trial where 6 denotes the treatment effect and it is desired to
test the null hypothesis Hy: 8 < 0 against the one-sided alternative § > 0 using a
group sequential design with up to K analyses. The type I error rate is set at «
under 8 = 0 and power 1 — § is required when # = 6. A fixed sample size test
would need information for € equal to

v = {®7 (o) + 7' (8)}7/6,

where ® denotes the standard normal cumulative distribution function. In a
group sequential design, the maximum information level has to be higher and
we set this to be

Lyax = Rlﬁx

for a chosen value R > 1. Assuming equal increments in information between
analyses, we have

Iy = (k/K) Lnax, k=1,...,K.
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Figure 1 illustrates a typical stopping boundary on the Z scale for a group
sequential test with five analyses.

Z b b Reject Hy
. — ?27/.23
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a
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/

Fig. 1. Stopping boundary for a group sequential one-sided test with 5 analyses

The lower boundary points a; and upper boundary points b; are plotted for
k=1,...,5. Note that as = bs to ensure a decision is reached at the final
analysis. The example of a sample path stays within the continuation region at
analyses 1 and 2, then crosses the upper boundary at analysis 3, resulting in
termination of the trial to reject Hy at this point.

We shall consider the problem of deriving a boundary satisfying the error rate
requirements, with given values of R and K, which minimises

{Eo(]) + Es(D)}/2, (2)

where I denotes the level of information observed at termination. In our initial
example of a two-treatment comparison with normal responses, information is
proportional to sample size so minimising the expression (2) is equivalent to
minimising the average of the expected sample sizes under § =0 and 6 = 6. In
optimising the group sequential design we can choose the 2K — 1 boundary
points freely subject to the constraints imposed by the error rate requirements
under 6 = 0 and 6. This leaves a high dimensional space of possible boundaries
in which to search. Before considering the optimisation problem, we discuss the
calculation of properties for a particular boundary.

COMPUTATIONS FOR GROUP SEQUENTIAL TESTS

We need to be able to calculate the probabilities of basic events such as the
outcome
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a; < 2 <b1, a2<Zz<b2, Z3>b3

illustrated in Figure 1. Combining such probabilities gives key properties, such
as Py{ Reject Hy}. For a one-sided test with K analyses, define the events

.A]:{Z]<Cl1}, R]:{Zl>b1},

Ar=Ha;<Z; <by, ... a1 < Zk_; <bp_1, Zk < ar}, k=2,...,K,
and
Ri={a;<Z;<by, ... ,ap—) <Zp—j <bi_j, Zr >br}, k=2,....K
Then

Po{Accept Hy} = Po{A;} +... + Po{ Ak}, Po{Reject Hy} = Py{R;} +... + Py{Rg}
and the observed information on termination is
Eg(I) = (Po{ A1} +Po{Ri}) I + ... + (Po{Ax} + Po{Rk}) Ik.

Armitage et al. (1969) present recursive formulae for the densities of statistics
at interim analyses. Working on the Z-statistic scale, the density fi(z;) of Z; is
that of a N(0+/1;, 1) variate and the joint distribution of the Z;s implies that

Z|Zy ~ NO(L—1)/VEh+ Z1y(L/h), (I = 1)/DL).

We denote this conditional density by f3(z2|z1). Since analysis 2 is only
reached if ¢y < Z| < by, the sub-density for Z, is

by
filz) = / Fie) (el de.

In the general recursive step, the sub-density for Z; at analysis k can be
written as

bkfl
Ji(ze) = Ji—1(zr=1) fi(zr|zi—1) dzic—n,
g1

where fi(zx|zx—1) is the density of the distribution

NOU — I—1) [V Ik + Zi1/ (Ie—1 [ Ic), (e = Ix-1) /).
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Numerical quadrature can be used to evaluate each of the functions fi, f,
etc., in succession on a grid of points. Hence, we can compute the probabilities
of specific events, such as

b 0 — L) + 25/, — byy/I
P(;{al < Z <b1, < 7Z) < bg, Z5 > b3} = fz(Zz)@( ( 3 23/(132\/122) 3\/ 3>d22.

ap

As an alternative approach to the same calculations, we can write
probabilities as nested integrals, for example,

b] bz o0
P@{al <7 <b],6l2<22<b27 Z; >b3} = / / ﬁ(zl)fg(22|21)f3(23|22) d23 de dZ].
a by

)

Applying numerical integration, we replace each integral by a sum of the
form

/hf(z) dz = i w(i
a i=1

where z(1),...,z(n) is a grid of points from « to . Thus, we have

Pg{al <Z1 < bl, < Zr < bz, Z3 > b3} ~

n n n3

DD wili) filzi(in) walia) falza(ia) 21 () wa(ia) fa(z3(03) 22(02) -

11:1 12:1 lg:l

&)

Multiple integrations and summations arise in these calculations and for an
outcome at analysis k£ we need to evaluate a k-fold sum of the form

m

> Z Z wi(in) fi(z1(01)) wa(i2)fa(z2(22) |21 (00)) - - wici) fie(2ie (i) |21 (1))

ii=1 ih=1

However, the structure of the k nested summations is such that the
computation required is of the order of k£ — 1 double summations, much less
than a general k-fold summation. We have found that using Simpson’s rule with
100 to 200 grid points per integral gives probabilities to an accuracy of 5 or 6
decimal places. For details of sets of grid points that will provide accurate
results efficiently, see Chapter 19 of Jennison & Turnbull (2000).
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COMPUTING OPTIMAL GROUP SEQUENTIAL TESTS

We can now apply the methods of efficient computation for group sequential
boundaries described in the previous section to derive optimal group sequential
tests. Recall that we seek a test of Hy: 6 < 0 against § > 0 with type I error rate «
under # = 0 and power 1 — § at § = §. Among all group sequential designs which
achieve this using K analyses at information levels I, = (k/K) Lyax, k=1,..., K,
where L. = R Ifix, we seek the design minimising {E£y(1) + Es(I)}/2.

Following Eales & Jennison (1992) and Barber & Jennison (2002), we deal
with the constraints on error rates by introducing Lagrangian multipliers to
create the unconstrained problem of minimising

{E()(I) + E(s(l)}/z + A P():o{RejeCl H()} + A2 P(;:(s{Accepl H()}.

Once we have developed a method for solving this problem, we search for a
pair of multipliers (A, A\») such that the solution has type I and II error rates «
and (, then this design solves the constrained problem too. The Lagrangian
approach has a Bayesian interpretation. Suppose we put a prior distribution on
6 with

P{O=0}=P{0=6=0.5

and specify costs of: 1 per unit of information observed; 2 A; for rejecting H
when 6 = 0; and 2 \; for accepting Hy when 6 = 6. Then, the total Bayes risk is

{Eo(]) + E5(I)}/2 + A szo{Rejecl H()} + X\ P9=5{Accept Ho},

just as in the Lagrangian problem. The Bayes interpretation of the problem is
useful in understanding how to solve it using the technique of ‘“Dynamic
Programming” or “Backwards Induction”. For each k =1,..., K, we denote
the posterior distribution of # given Z; = z; at analysis k by p®)(6|z;) for § =0
and 6 = 6. In applying dynamic programming to find the optimal Bayes rule, we
work backwards from the final analysis as follows.

At analysis K

There is no further sampling cost once analysis K has been reached, so we
simply compare the two possible decisions

Reject Hy:  E(Cost) = X\ p®(0]zx),

Accept Hy:  E(Cost) = X p®(6)zk).
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The boundary point ak is the value of zx where these expected costs are equal
and the optimum decision rule at analysis K is to reject Hy for Zg > ag and to
accept Hy if Zx < ag.

At analysis K — 1

We now know the optimal procedure to follow if we continue on to analysis K
and we use this information in assessing that option. Consider an outcome in
which the trial has continued to analysis K — 1 where we observe Zx | = zg_,
as shown in Figure 2.

Zy
A ZK—1

Fig. 2. Dynamic programming: State of the process at analysis K — 1

If the trial is terminated at analysis K — 1, there is no further cost of sampling
and the expected additional costs for the two possible decisions are

Reject Hy:  E(Cost) = X\ p5D(0|zx_1),

Accept Hy :  E(Cost) = A\ p®D(6|zx_1).

If we let the trial continue on to analysis K, the expected additional cost is

1x (Ig — Ix-1) + M pE(0|zx-1) Poco{Zk > ax|Zk-1 = zk1}

+ X p &V (Slzx-1) Pos{Zk < agx|Zx—1 = zx_1}.
Equating the costs of pairs of decisions gives the optimal boundaries. The
upper boundary point bg_; is the value of zx_; for which
E(Cost of continuing) = E(Cost of stopping to reject Hy)
and the lower boundary point ax_ is the value of zx_; where

E(Cost of continuing) = E(Cost of stopping to accept Hy).
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After determining the optimal values of ax_; and bg_;, we set up a grid of
points for use in numerical integration over the range ax_; to bg_1, as illustrated
in Figure 3.

V4
LN bx—1

Fig. 3. Dynamic programming: Completed calculations for stage K — 1

For each grid point zgx_;, we sum over the posterior distribution of 6 to
calculate

BE=D(zx_1) = E(Additional cost when continuing to analysis K | Zx_| = zx_1)

and store this information. We are now ready to move back to analysis K — 2.

At analysis K — 2

Analysis K — 2 has all the features of a generic analysis k. Calculating the
expected additional cost when continuing on to the next analysis involves an
integral over values zg | between agx_| and bx_;, but we have already set up a
grid of points covering this interval, as seen in Figure 4, and stored values of the
expected future cost S5~V (zx ) on reaching zx_; and proceeding optimally
thereafter.

Zy

A bk_1
ZK-2
X oK
T T >
I » i Ix I
ag-—1

Fig. 4. Dynamic programming: State of the process at analysis K — 2

If the trial is stopped at analysis K —2 with Zg ; = zg 5, the expected
additional costs for the possible decisions are
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Reject Hy:  E(Cost) = X\ p52(0|zx_»),

Accept Hy:  E(Cost) = My p* 2 (6)zg_»).
If the trial continues on to analysis K — 1, the expected additional cost is

I x (Ig—1 — Ix-2) +

M pE2(01zx-2) Pomo{Zk-1 > br—1|Zk-2> = zxg2} +
X pED(8)zk2) Po—s{Zk1 < ak-1|Zk-—2 = zk2} +
Job P S 0lz-2) /6 (eron|zx2) +

ag—1
PED(Elzx2) S5 (2t xa)} BED (zxor)dzkor,

where /,,Kfl)(zK_l |zx—2) is the conditional density under 6 of Zgx_; given
Zx » = zg_». As before, equating the costs of the decisions to reject Hy and to
continue sampling gives the optimal upper boundary point bx_» and equating
the costs of accepting Hy and continuing sampling gives the optimal lower
boundary point ax_,. It remains to set up a grid of points for use in numerical
integration over the range ax_» to bgx_, and calculate

B&-2) (zx—2) = E(Additional cost when continuing | Zg_» = zx_»)

at each of these points. The dynamic programming process then moves back to
analysis K — 3, and so on all the way back to analysis 1, at which point we have
the full solution to our problem.

We can now return to the original problem of finding an optimal group
sequential test with the specified type I and II error probabilities. Having set up
a method of finding the Bayes optimal design for a particular pair of costs
(A1, A2), we add another layer and search for a pair (A, A;) such that the type I
and type II error rates of the Bayes optimal design are « and [, respectively. The
resulting design will be the optimal group sequential test, with the required
frequentist error rates, for our original problem. It is important to remember
that the output of the dynamic programming routine will be fed into a
numerical search algorithm, so results should not only be of high accuracy but
also possess the continuity properties, etc., that the higher level search algorithm
expects. This continuity requirement has implications for the definition of the
grids of points used in numerical integration if discontinuities in the calculated
values are to be avoided as the range of integration varies.

That the solution of a frequentist problem is found by solving a Bayes
problem is in keeping with the general principle that good frequentist
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procedures should be similar to Bayes procedures. For further discussion of the
relation between admissible group sequential procedures, in the frequentist
sense, and solutions of Bayes problems, see Jennison & Turnbull (2006a).

The methods we have described are of broad applicability. In financial
mathematics, dynamic programming arguments are commonly used to establish
theory underlying the pricing of financial derivatives, but their use in direct
computation of optimal strategies for executing an option has been more limited.
In considering the translation of methods, it is important to note that the name
“optimal stopping problem” is used with a specific meaning in probability theory:
the quantity being optimised is a function of the sample path observed prior to the
stopping time. This definition includes the unconstrained problem we have just
solved but does not extend to the original problem of finding an optimal group
sequential test with given type I and II error probabilities.

PROPERTIES OF OPTIMAL DESIGNS

Inspection of the properties of optimised designs shows the potential benefits of
group sequential testing. As an example, consider one-sided tests with
a=0.025 1-p8=0.9, a maximum of K equally spaced analyses and
Lyax = R, Table 1 presents the values of {Ey(I)+ Es(I)}/2 achieved by
designs minimising this criterion for a variety of values of K and R.

Table 1. Minimum values of {Ey(f) + Es(I)}/2 expressed as a percentage of I,

R Minimum
K 1.01 1.05 1.1 1.2 1.3 over R
2 80.8 74.7 73.2 73.7 75.8 73.0 atR=1.13
3 76.2 69.3 66.6 65.1 65.2 65.0 at R=1.23
5 72.2 65.2 62.2 59.8 59.0 58.8at R=1.38
10 69.2 62.2 59.0 56.3 55.1 542atR=1.6
20 67.8 60.6 57.5 54.6 53.3 51.7atR=1.8

The results show that the minimised expected information (or, equivalently,
expected sample size) decreases as the number of analyses K increases, but with
diminishing returns. Similarly, expected information decreases with increasing
values of R, up to a point. Given the costs associated with conducting interim
analyses and the desire to avoid too high a maximum sample size, designs with
between 3 and 5 analyses and R around 1.05 or 1.1 appear attractive options.

The methods we have described can be applied with a variety of optimality
criteria. We have used them to minimise general criteria of the form ), w;Ey, (1) or
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/ 110) Eal1) db

for a normal density f{6). As well as providing specific designs directly, optimal
procedures serve as benchmarks for other methods which may have additional
useful features, for example, “‘error spending tests” which are designed to
handle unpredictable information sequences.

RELATED PROBLEMS

The methods we have described for optimising a group sequential design can be
applied to more general forms of group sequential procedure. We shall
summarise three examples.

Adaptive choice of group sizes in a group sequential test

It is intuitive to think that a group sequential design might benefit from taking a
smaller group size when the current test statistic lies close to the stopping
boundary and a larger group size when the test statistic is mid-way between the
boundaries. Schmitz (1993) proposed such procedures in which the group sizes
are chosen adaptively. These designs are most easily defined in terms of the
score statistics Sy = Zy/Ix, k=1,..., K. For the first group of subjects, I is
fixed and we observe

Sy ~ NOL, I).

The next group size, and hence I, is then chosen as a function of S| and the
statistic S, is observed. The increment S, — S| is conditionally independent of
S| given I and

Sy —Si|L ~ NO(L-1),(L—1)).

The procedure continues with data-dependent choice of each I; until stopping
occurs with a decision to accept or reject Hy, or the final analysis K is reached.
The sampling rule and stopping rule are pre-specified and defined so as to
achieve the desired overall type I error rate and power.

Various methods have recently been proposed for modifying sample size
during the course of a clinical trial in response to interim estimates of the
treatment effect. The paper of Cui et al. (1999) addresses the problem of
“rescuing” an under-powered study but other authors have recommended this
approach as a prospective strategy for dealing with uncertainty about the likely
treatment effect when planning a study. The resulting ““adaptive’” methods fall
into the general class of procedures proposed by Schmitz (1993).
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Jennison & Turnbull (2006a) derive optimal versions of these adaptive group
sequential tests in order to assess the efficiency gains they can offer. Their
findings are disappointing. Measuring expected sample size as a percentage of
that required in a fixed sample size design, optimal adaptive designs improve on
the efficiency of optimal non-adaptive group sequential tests with equal group
sizes by about 2 percentage points. If the group sizes of the non-adaptive test are
allowed to be unequal, but still fixed in advance, this difference reduces to about
1 percentage point.

The positive message is that standard group sequential designs offer a simple
and efficient methodology for interim monitoring of clinical trials and their
properties cannot be significantly improved on by more complex adaptive
designs. Trials can be designed to achieve power over the range of effect sizes of
possible interest: if the treatment effect is particularly high, this is likely to lead
to early stopping for a positive conclusion and a smaller sample size (Jennison &
Turnbull, 2006b).

Testing for either superiority or non-inferiority

When an accepted treatment for a medical condition is already available, it is
not appropriate to test a new treatment against placebo. In comparing a new
treatment against an active control, there are two types of positive outcome: the
new treatment may be shown to be superior to the current standard; or the new
treatment may be shown to be non-inferior to the standard. Demonstrating
non-inferiority is achieved by rejecting a null hypothesis of the form Hy ny:
0 < —d in favour of € > —d, where 0 is a measure of the difference in effect
between the new treatment and the standard and d is the accepted ‘“‘non-
inferiority margin’’, which should be set (and agreed with regulators) before the
trial begins.

Adaptive trial designs have been proposed for such a situation. If a trial is
instigated with the intention of demonstrating superiority of a new treatment
over the standard, this goal may be adapted to proving non-inferiority if results
are not as good as anticipated. The fact that there are two null hypotheses is not
an issue since these are nested: the null hypothesis for non-inferiority, Ho y;:
0 < —d, is a subset of that for superiority, Hys: 0 < 0. A more important issue is
that the two hypothesis tests may require different sample sizes. Wang et al.
(2001) note the non-inferiority margin d is often smaller than the effect size § = ¢
at which power for declaring superiority is specified and, hence, a larger sample
size is needed to give adequate power at § = 0 in the test for non-inferiority.
Thus, if early data indicate that the key issue is to test for non-inferiority, there
may be reason to increase the trial’s sample size at an interim stage.
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However, a non-adaptive group sequential approach is also possible. Ohrn &
Jennison (2010) embed tests for both superiority and non-inferiority in a group
sequential design with fixed group sizes. The example of a stopping boundary
displayed in Figure 5 shows three outcomes are possible: to reject Hys: 6 <0
(establishing superiority); to reject Hy y; but not Hy s (showing non-inferiority
only); or to accept Hy n;: @ < —d (failing even to show non-inferiority).

Zk ) S .
erior
— up

I Non-inferior

¢ —eo \. .

! ! ! l o I

P
S

Not effective

Fig. 5. A four-stage group sequential design to test for both superiority and non-inferiority

Early stopping is allowed for each outcome. It is significant that the lower
arm of the continuation region, which involves discrimination between no effect
and non-inferiority, is longer than the upper arm which tests between non-
inferiority and superiority. Ohrn & Jennison (2010) derive tests which minimise
expected sample size while satisfying two type I error rate constraints and two
power requirements. This is achieved by defining related Bayes decision
problems, solving these by dynamic programming, and searching for a set of
costs such that the optimal procedure has the specified error rates and power.

Group sequential tests for a delayed response

In many trials, the clinical response is measured some time after each patient is
randomised and the allocated treatment administered. Delays can also occur
while validating and analysing responses. Thus, after a group sequential test
stops, additional data will accrue from ““pipeline” subjects who have entered the
study but not yet responded.

Hampson (2009) presents a framework for group sequential testing which
recognises a delay in observing responses and models this appropriately.
Formally, termination of the trial proceeds in two stages: first, recruitment of
new patients ceases; then, after waiting to observe responses from all subjects
enrolled at this time, a final decision is made. Again, it is possible to derive an
optimal design which minimises a stated efficiency criterion by creating related
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Bayes problems and solving these by dynamic programming. A search for the
costs in the Bayes decision problem that produce a procedure with the required
type I error rate and power gives the optimal frequentist design for a delayed-
response.

Examination of optimised designs reveals the extent to which the benefits of
lower expected sample sizes usually provided by group sequential tests are
reduced when response is subject to delay. However, there may be opportunities
to recover these benefits. For example, if a second, more rapidly observed
endpoint has a high correlation with the primary endpoint, a stopping rule
based on the joint analysis of this pair of endpoints can mitigate the effects of
the delay in observing the primary endpoint. A full account of this work is
presented by Hampson & Jennison (2013).

CONCLUSION

We have seen that the monitoring of clinical trials poses a range of problems of
statistical inference and optimal design. A general distribution theory gives a
basis for generic methodology with wide applicability. Moreover, efficient
computational methods, based on iterated numerical integration, are available
to calculate properties of group sequential clinical trial designs.

The optimisation of a group sequential test for a specific sample size criterion
is an important issue. Such problems can be tackled by using Dynamic
Programming to solve related Bayes decision problems and searching for a set
of costs so that the optimal Bayes procedure also solves the original problem
with frequentist error rate constraints. The examples we have presented
illustrate the versatility of this methodology for tackling a variety of problems of
practical significance.
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