
Abstract
The specific role of ion heat flux on the characteristics of the linear and nonlinear ion temperature gradient (ηi) driven mode 
in inhomogeneous electron-positron-ion plasma is presented. Inhomogeneity in density, temperature, and the magnetic field 
is considered. A modified linear dispersion relation is obtained, and its different limiting cases are when ηi � 2/3, 
ωD(gradient in magnetic field) = 0 and β(density ratio of plasma species) = 1 are discussed. Furthermore, an expression for 
the anomalous transport coefficient of the present model is obtained. Nonlinear structure solutions in the form of solitons 
and shocks show that mode dynamics enhance in the presence of ion heat flux in electron-positron-ion plasma. The present 
study is essential in energy confinement devices such as tokamak because the heat flux observed experimentally in tokamak 
plasma is much higher than those described by collisions. Further, it could be helpful to understand the nonlinear 
electrostatic excitations in the interstellar medium.

Keywords: Anomalous transport; electron-positron-ion plasma;  heat flux; ion temperature gradient mode; nonlinear 
structures.

1. Introduction

The study of electron-positron and electron-positron-ion (e-p-i) plasmas in the last few years, as reported, has made it a 
popular and interesting in plasma physics due to its applications and presence in astrophysical and laboratory environments 
[1–4]. The concentration of positrons (with the same mass and opposite charge) transforms the electronion plasma to e-p-i 
plasma, with modified dynamics reported by some authors [5–7]. In e-p-i plasma, several low frequencies waves can 
propagate in the presence of ions which otherwise do not exist in electron-positron plasma [8]. The e-p-i plasma study is 
essential and relevant to astrophysics, cosmology, and laboratory experiments [1]. The e-p-i plasma is reported in the 
astrophysical side such as in the early universe, magneto-spheres, solar flares, and in the core of our galaxy, in the 
intergalactic and outer galactic regions [9–11]. On the other hand, in the laboratory, its creation is found due to an 
interaction of high laser pulses with dense solid-state materials. The energetic electromagnetic waves can create such plasma 
[12, 13]. Different properties of e-p-i plasma are studied linearly as well as nonlinearly. Nonlinearity could generate various 
structures, such as solitons, shocks, peakons, cuspons, etc. [14, 15]. In the nonlinear regime, the shock waves are studied 
under the relativistic collision condition is e-p-i plasma [16]. Using the Pseudopotential method, ion-acoustic (IA) solitary 
waves are investigated in superthermal and magnetized e-p-i plasma [8, 17]. The solitary and shock wave profiles have been 
studied in e-p-i plasmas showing that stability range modifies with the positron number density and other plasma parameters 
[18, 19]. The research in e-p-i plasma is extended in different directions by authors such as by Popel et al. considering 
Boltzmannian electron, by Nejoh et al. to the ion-acoustic soliton in unmagnetized e-p-i plasma, and by Mushtaq et al. to the 
effectiveness of positron number density in two-dimensional magnetosonic waves.[2, 4, 20]. It has been observed that as 
thermal energy kBT gets greater in comparison to rest mass energy m0c2 of electron or positron, then pair production and 
inhalation are more important in e-p-i plasma. These observations are noted near the Active Galactic Nuclei (AGN) black 
hole, where the ion temperature is 1013K, and due to short cooling time where the electron temperature is in the order of 
109K [21].

To a great extent researchers agree that ion heat transport driven turbulences in Magneto Hydrodynamics (MHD) 
quiescent tokamak H-mode plasmas are controlled mainly by the ion temperature gradient. The temperature gradient is of 
general importance in poloidal flows resulting from radial electric fields. Also, the high-temperature rise is considered the 
central issue in the confinement and transport of plasma species in confinement devices, e.g., in a tokamak. Experimentally it 
is reported that, in the presence of high neutral beam heating, the intensifying density, fluctuations are observed  when Tio 
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becomes more significant than a specific value, typically, Tio > 4 keV [22]. One reason for such fluctuations is the drift wave 
instability, driven by the ion temperature gradient. Experimentally ηi which is defined as ηi = d ln Tio/d ln nio, is an acceptable 
critical parameter in the pellet injection [23, 24]. The ηi nonlinear effect becomes visible due to the saturation of number 
density and energy confinement time. This mode was first observed by Rudakov et al. in the slab geometry [25]. Coppi 
investigated by taking the pressure effect in the background in this mode [26]. The ITG mode has a counterpart known as the 
electron temperature gradient (ETG) mode ( ηe), which accounts for micro instabilities [27]. It is reported that both ηe and ηi 
mode instabilities are very strong compared to the collision-driven fluxes and electron gyroradius ρe effects. The ITG mode 
instability arises as a result of free energy stored in the form of temperature gradients. The toroidal geometry also studies the 
ITG mode, including magnetic field curvature and impurity effects [28]. In toroidal ITG mode ηi > 1. Jerman et al. took the 
Righi-Liduce heat flux in the energy balance equation for ion and observed the change in ITG mode instabilities [24]. In 
connection to localized structure formation, drift mode is one of the primary sources for L-H transition to the region of 
enhanced confinement in tokamak devices, wherever heat flux effects are noticeable. Moreover, ITG, the trapped electron, and 
the pressure gradient are the most promising sources of instabilities. This work investigates the influence of ion heat flux in ion 
temperature gradient driven solitons and shocks in an e-p-i plasma. Furthermore, we also derive the expression for anomalous 
ion-energy transport coefficient in the presence of positron concentration. This study helps to understand small and large 
amplitude electrostatics turbulence and cross field ion energy transport in electron-positron-ion plasma. This work extends the 
very recent investigations done by Zakir et al. in electron-ion plasma [30]. This article is divided into the following sections: in 
section 2, formalism related to ITG mode and the corresponding dispersion relation have been derived. In subsection 2.1 of the 
same area, we derive the anomalous ion energy transport, and in subsection 2.2 discusses some interesting limiting cases. Next, 
in subparts 3.1 and 3.2 of section 3, we discuss the solitary and shock wave solutions in an e-p-i plasma system. Section 4 
gives a brief discussion on the numerical analysis, and in the last section, we present the concluding remarks.

2. Theoretical model and dispersion relation

We are assuming electron-positron-ion plasma having background magnetic field B0(x) ẑ (where ẑ is the unit vector along the 
z-axis). Further, consider gradients in number density, temperature and in magnetic filed are in x-direction i.e., dxni0 and dxTi0 
and dxBi0 for ions (where ni0, Ti0, Bi0 are the unperturbed ion number density temperature and the strength of the external 
field). Comparatively masses of electrons and positrons are very small to that of ions. The dynamical role of ion is taken into 
account and Maxwellian distribution is applied to the assumed plasma species. Adding that the mode frequency is small with 
respect to the ion gyrofrequency ωci = (eB/mic), here e refers to the magnitude of the ion charge, mi mass of ion and c 
designates the speed of light. The model is restricted to electrostatic fluctuations where ∇ × E = 0 and the equilibrium quasi 
neutrality condition is defined as nio(x) + npo(x) ' neo(x). For the dynamics of the considered mode, we use the ion 
momentum equation, given as:

mini(∂t + vi.∇)vi = eni∇φ−∇Pi, (1)

where Ez = −∇φ represents electric filed and φ is the electric potential. The ion number density and the temperature are 
expanded about the unperturbed position in such a way that ni = ni0 + ni1, Ti = Ti0 + Ti1 where ni1 � ni0 and Ti0 � Ti1 
(terms having a subscript “0” represent the equilibrium and those designated with subscript “1” denote the perturbed). In the 
low frequency limits ω � ωci, the ion fluid velocity under drift approximation is written as

vi = vEB + vDi + vpi + vπi + viz ẑ, (2)

where vEB = c
B0

(ẑ ×∇φ) is the E×B drift , vDi = c
eB0ni

(ẑ ×∇pi), is the ion diamagnetic drift, vpi = − c
B0ωci

(∂t +

vi.∇)ẑ× vi is the ion polarization drift and vπi = 1
eniB0

(ẑ×∇.πi) is the stress tensor drift. The different symbols φ,
p, πi, used in these equations referred to the electrostatic potential, pressure and stress tensor and viz is the ion fluid
velocity along the z-axis. Here pi = niTi. The continuity equation for the ion species of the mode is given by

∂tni +∇.(nivi) = 0. (3)

For temperature calculations, we use the energy equation that is given by

3

2
(∂t + vi · ∇)Ti

+Ti(∇ · vi)ni =
1

ni
∇.[(5cTi/2eB0)ẑ ×∇Ti], (4)
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(5cTi/2eB0)ẑ × ∇Ti called the Righi-Leduce heat flux term for ions. Our conditions of quasineutrality is restricted
to the first order as

ni1 = ne1 − np1 . (5)

Equations (1), (3) and (4) along with Eq. (5) form a complete set which we will use for closing our system. In
the following part of this section we derive the dispersion relation of our model. For this purpose neglecting the
nonlinearities by considering small amplitude limits: assuming ni = ni0 + ni1, Ti = Ti0 + Ti1 where ni1 � ni0 and
Ti0 � Ti1. Thus we can write Eq. (3) with drift approximation as

Di
tN + τ(vni.∇Φ)− 1

2
ρ2
i τ
−1∂t∇2(Φ + T +N) + ∂zviz = 0. (6)

In Eq. (6) different terms introduced have the following representations: Di
t = (∂t + vE .∇), vni = ( cTio

eB0
)∇ lnnio × ẑ,

τ = Teo

Tio
, Φ = ( eφTeo

), T = Ti1

Tio
and N = nio1

nio
. Restricting our model to electrostatic limits and by plugging in the value

of pi in the ion momentum equation we get

Di
tviz = −c2s∂zΦ− τ−1c2s∂z(T +N)− viz∂zviz, (7)

here cs = ρsωci and ρs is plasma species gyroradius. Using the drift approximation in Eq. (4) we obtain the nonlinear
energy balance equation for the ion fluid in plasma as

Di
tT =

2

3
Di
tN + τ(ηi −

2

3
)vni.∇Φ +

5

3
vB .∇T. (8)

Since we in this model assume that our plasma species follow Maxwellian distribution for which density expression is
written as

ns = ns0 exp(
eφ

Ts
), (9)

where s = e, p for electron and positron and s = i for ion, the electron with charge (−e) and positron with charge
(+e) in exponent of Eq. (9). In linear limits, a wave provides valuable information about the mode phase velocity. So
to check this we consider small amplitude perturbations where the different perturbed quantities vary exponentially
in Fourier space as exp(ikyy + ikzz − iωt) (where ky, kz is the perpendicular, parallel components of the wave vector
and ω is the angular frequency). Equations (6)-(8) are written in linearized form by using Fourier transformation as

ωN − τωniΦ +
1

2
ρ2
i τ
−1ωk2Φ +

1

2
ρi

2τ−1ωk2(N + T ) − kzviz = 0, (10)

viz =
c2skz
ω

(Φ + τ−1(N + T )), (11)

and

T =
2

3

ωN

(ω − 5
3ωD)

− τ
(ηi − 2

3 )

(ω − 5
3ωD)

ωniΦ, (12)

where ωD = (k.vB), k is a wave vector and vB = ( cTio

eB0
)∇ lnB0 × ẑ, which is the ion ∇B0 drift. The normalized

density expression can be written by using Eq. (9) in Eq. (5).

N = (
neo
nio
− npo
nio

Teo
Tpo

)Φ = βΦ, (13)

here β = neo

nio
− npo

nio

Teo

Tpo
, where neo, npo are the equilibrium number densities of electrons and positrons while Teo,

Tpo are the equilibrium temperature of electrons and positrons. To get a linear dispersion relation we combine Eqs.
(10)-(13) and after some manipulation we obtain a solution as:

ω3{β +
1

2
ρ2
i τ
−1k2(1 +

5

3
β)} − [{τ +

1

2
ρ2
i k

2(ηi −
2

3
)}ωni

+
5

3
ωD{

1

2
ρ2
i τ
−1k2(1 + β) + β}]ω2 − {c2sk2

z(1 +
5

3
τ−1β)

−5

3
ωDτωni}ω + c2sk

2
z{(ηi −

2

3
)ωni

+
5

3
ωD(1 + τ−1β)} = 0 (14)
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2.1 Anomalous transport

As reported in previous studies that ITG mode is responsible for ion energy transport in the various toroidal device. Thus, this 
section focuses on how ion temperature gradient mode can cause anomalous heat flux across the confining magnetic field. The 
mechanism used here is as: we know that the temperature gradient, which is opposite to the density gradient over a broad 
region, makes the drift wave unstable, producing anomalous heat flux. To obtain a relation for this purpose we assume ω = ωr + 
iωi. First term in this expression represents the real and the second one denotes the imaginary parts of the frequencies. Thus 
expressing Eq. (12) as:

Ti1 =
2

3
Ti0

[
ωN − τ(ηi − 3/2)ωni

(ω − 5/3ωD)

]
Φ. (15)

and by using ω = ωr + iωi, we can write the above equation as

Ti1 =
2

3
Ti0

[
ωr + iωiN − τ(ηi − 3/2)ωni

(ωr + iωi − 5/3ωD)

]
Φ. (16)

Since ion motion is mostly dominated by E×B force, for which the heat flux is written as

〈Γx〉 = vET
∗
i1 + v∗ETi1. (17)

Further, Eq. (16) can be expressed as

Ti1 = X + iY (18)

where X =
2
3Ti0

((ωr− 5
3ωD)2+ω2

i )
[(ωrβ−τ(ηi− 2

3 )ωni)ωi+iωiβ(ωr− 5
3ωD)+ω2

i β]Φ and Y =
2
3Ti0

((ωr− 5
3ωD)2+ω2

i )
[τ(ηi− 2

3 )ωniωi−
5
3ωDωiβ]Φ. From Eq. (17) one can write

〈Γx〉 = −2

3

cTe0
eB0

ωikyTi0

[ 10
3 ωDβ + 2τ(1− 2

3ηi)ωni

(ωr − 5
3ωD)2 + ω2

i

]
|Φ|2. (19)

The ion excursion length is defined as ∂tξ = vE , where ξ = π/k. It gives the saturated wave amplitude in the limit
Φ ≤ π(ωrωci)/k

2
⊥v

2
th. As the Fourier transform of electromagnetic drift is vE = iZΦ with Z = (cTe0/eB)ky. Thus

incorporating these definitions and using Fick’s law we can write the ion thermal conductivity as

χi =
8π2

3

ωiωci
Te0k2

⊥kyv
2
th

[ 10
3 ωDβ + 2τ(1− 2

3ηi)ωni

(ωr − 5
3ωD)2 + ω2

i

LT

]
ω2
r . (20)

3

From the expression obtained above we see that thermal conductivity of the mode show the effect of positron number
density, which in turns may influence the ion energy thermal transport.

Equation (14) is a third-order linear dispersion relation of the ITG driven mode in electron-positron-ion plasma. The above 
dispersion relation shows that the plasma waves modify in ion temperature gradient and heat flux. The dispersion relation is 
cubic in ω.  Experimentally it has been found that this solution describes a propagating wave that can be destabilized because of 
the presence of an ion temperature gradient [31]. Furthermore, the additional term in the dispersion relation shows an apparent 
effect of the ion heat flux.

Case I. From Eq. (14) if we remove the Larmor radius effect and by letting ηi � 2 , then one obtain

ω3β − (τωni +
5

3
ωDβ)ω2

−{c2sk2
z(1 +

5

3
τ−1β)− 5

3
ωDτωni}ω

+c2sk
2
z{ηiωni +

5

3
ωD(1 + τ−1β)} = 0. (21)

2.2  Limiting Cases

4
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Case II. Ignoring the ion heat flux such that considering homogeneous magnetic field (ωD = 0), we can get the
dispersion relation for the e-p-i plasma without heat flux as

βω3 − τωniω2 − (1 +
5

3
τ−1β)c2sk

2
zω + c2sk

2
zηiωni = 0. (22)

This Eq. (22) is the same as obtained in Ref. [29].
Case III. Further by putting β = 1 the above relation reduces to the electron ion dispersion relation as

ω3 − τωniω2 − c2sk2
z(1 +

5

3
τ−1)ω + c2sk

2
zηiωni = 0. (23)

Which is the same dispersion relation obtained in Ref. [23] by Eq. (5.151). The dispersion relation given in different
limiting cases shows that the driving term here is ηi and the instability is given by ω3 = −c2sk2

‖ηiωni.

In this section of our work, we obtain a set of nonlinear equations, the combination of which give a nonlinear partial
differential equation known as the Korteweg-de-Vries (KdV) equation and its solution, in turn, generates the ITG-mode
driven solitary waves in the presence of ion heat flux in inhomogeneous e-p-i plasma. To get a solitary wave solution, the
amplitude of the waves here is assumed large enough. For the derivation of solitary wave equation a co-moving frame ξ
= (y +αz − ut), is introduced. Here u represents the nonlinear wave speed and α is a small angle along the z-axis in a
dispersive medium. Equations (6), (7) and (8) transform in the new frame as:

∂ξN −
τvni
u

∂ξΦ−
1

2
ρ2
i τ
−1∂3

ξ (Φ +N + T )− α

u
∂ξviz = 0, (24)

viz =
c2sα

u
[{Φ + τ−1(N + T )} − 1

2

c2sα
2

u2
{Φ + τ−1(N + T )}2], (25)

T =
1

(1− 5
3
vB
u )
{2

3
β − τ

u
(ηi −

2

3
)vni}Φ = LΦ, (26)

where L = 1
(1− 5

3

vB
u )
{ 2

3β −
τ
u (ηi − 2

3 )vni}. Combination of equations (24)-(26) produce the following nonlinear partial

differential equation as

{β − τvni
u
− c2sα

2

u2
{1 + τ−1(β + L)}}∂ξΦ

+
c4sα

4

u4
{1 + τ−1(β + L)}2Φ∂ξΦ

−{1

2
ρ2
i τ
−1(1 + β + L)}∂3

ξΦ = 0, (27)

which in more simple form becomes

A1∂ξΦ +A2Φ∂ξΦ +A3∂
3
ξΦ = 0, (28)

with the values of A1, A2 and A3 are given by

A1 = {β − τvni
u
− c2sα

2

u2
− c2sα

2

u2
τ−1(β + L)},

A2 =
c4sα

4

u4
{1 + τ−1(β + L)}2,

3. Nonlinear structures

3.1. Solitons
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A3 = −1

2
ρ2
i τ
−1{1 + β + L},

or in more compact form

∂ξΦ +AΦ∂ξΦ +B∂3
ξΦ = 0, (29)

here A = A2

A1
and B = A3

A1
� 1. A general solution of Eq. (29) has the form

Φ = φm sec h2(
ξ

W
), (30)

where φm = 3u/A and W =
√

4B/u. The amplitude and width parameters in the solution given by Eq. (30) clearly
shows that solitary waves driven by ITG mode get modify in the presence of ion heat flux, electron-positron density
and temperature ratios. From the potential relation obtained in this section, we are now in a position to get the
expression for the electric field. This can be done by using Eq. (30) which gives

E = E0 sec h2(
ξ

W
) tanh(

ξ

W
), (31)

here E0 = 6u
A . The corresponding surface charge density for the solitary wave is given by

σ = σ0 sec h2(
ξ

W
) tanh(

ξ

W
), (32)

where σ0 = 3u
2πA , and the pressure of the solitary wave is

P = P0 sec h4(
ξ

W
) tanh2(

ξ

W
), (33)

w[ln(
√

2+1√
2−1

)] is the maximum pressure point of the solitaryin this equation P0 = 2πσ0
2. The point at which ξ = 1

2 
wave.

6

4. Numerical Results

The obtained linear and nonlinear dispersion relations are solved numerically for the purpose to show the visible 
effects of new terms on the considered mode. For qualitative behavior of the numerical analysis we use the data 
given in (Qamar et al., 2003; Davydova & Pankin 1998; Zakir et al., 2016), some of these are: mi = 1.67 × 10−24g, 
ne = 1014cm−3, B = 1.4 × 104G, Teo = 105eV , Tio = 0.1Teo, npo = 0.001neo, TP o = 0.1Teo, ηi = 2, cs = 106cm/s, ion 
gyrofrequency ωci = 104rad/s, in new coordinates u = 106cm/s and α = 0.1rad. Based on various derived relations 
of our study we here discuss the linear and the nonlinear outcomes of our work.

3.2. Shocks

This is another kind of nonlinear structure that appears in the large amplitude limit and exist in fluids as a result of 
dissipative effects. For modelling this we introduce neutrals effect in the system and neutral-ion collision term νnvi (νn is 
the neutral collisional frequency), that in turns produce the collisional drift as vc = cνn/B0ωci∇φ in the momentum 
equation. Solving our model equations in the new introduced frame we finally obtain the following expression

∂ξΦ +AΦ∂ξΦ− C∂ξ2Φ = 0, (34)

with C =
ρ2i νnα
u . Equation (34) denotes Burger equation which has solution of the form

Φ =
2C

A
[1− tanh ξ] , (35)

where C = A3 . The profile of the shock wave strictly depends on the sign and magnitude of C/A ratio. Looking atA1

the values of A, A1 and A3 one may observe the effect of ion heat flux on the shock structures.
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Plasma with heat flux effect (Blue line)

Plasma without heat flux effect (Red line)

0.00 0.02 0.04 0.06 0.08 0.10

0.045

0.050

0.055

0.060

0.065

0.070

kz

R
e
(

Fig.1. Shows real part of frequency of the mode (Eq. 15 and Eq.16) against kz ,
using parameters as mentioned in text.

In the first figure, we numerically investigated the effect of ion heat flux on ITG mode in electron-positron-ion plasma.
In this case, based on Eq. (14), we have shown that the phase velocity of the present mode in the absence of ion heat flux
is maximum compared to the situation, where ion heat flux is considered. It is clear from this figure that ion heat flux is
significant, means result in an increase in the phase velocity in linear mode.

np = 0.1 ne (Blue line)

np = 0.2 ne (Red line)

np = 0.3 ne (Black line)

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

LT

χ

Fig.2. Shows the thermal conductivity based on Eq. (20) against LT ,
using parameters as mentioned in text.

Figure 2 shows the effect of positron to electron number density ratio on the thermal conductivity. This illustration of
the analytical relation (Eq. (20)) depicts that ion energy thermal transport decreases on the increase of this ratio. The
change becomes more clear for large value of ∂xlnTi0. In figure 3 the effect of positron to electron temperature ratio (Tpo/
Teo) is shown on the phase velocity of the mode. We see here that phase velocity of the mode modifies. Our numerical
results also depict that in comparison to a large value of Tpo/Teo, the variation in phase velocity is high for a smaller
value of Tpo/Teo.

Tp = Te (Blue Line)

Tp = 0.05 Te (Red line)

Tp = 0.01 Te (Black Line)

0.00 0.02 0.04 0.06 0.08 0.10

0.022

0.024

0.026

0.028

0.030

0.032

0.034

kz

R
e
(

)/
c
i

Fig.3. Shows real frequency plot of the mode (Eq. 15) against kz . Fixed other parameters and changing Tp = 
Te (the blue line), Tp = 0.05Te (the red line) while Tp = 0.01Te (the black line).

In figure 4 we see the effect of positron to electron density ratio on the phase velocity of the ITG driven mode. In
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this case, we see an increase in the phase velocity of the mode. We can say that the slope of the mode, in this case,
increases for larger kz value.

np = 0.1 ne (Blue line)

np = 0.2 ne (Red line)

np = 0.3 ne (Black line)

0.00 0.02 0.04 0.06 0.08 0.10

0.025

0.030

0.035

0.040

kz
R
e
(

)/
c
i

Fig.4. Showing phase velocity variation against kz . Keeping other parameters fixed and changing np = 0.1ne (the 
blue line), np = 0.2ne (the red line) while np = 0.3ne (the black line).

ηi = 1 (Blue line)

ηi = 2 (Red line)

ηi = 2.5 (Black line)

0.00 0.02 0.04 0.06 0.08 0.10

0.025

0.030

0.035

kz

R
e
(

)/

Fig.5.  Shows normalized phase velocity against kz . Fixed other parameters and changing ηi = 1 (Blue), ηi = 2 (Red) 
while ηi = 2.5 (Black).

The mode parameter ηi effect on phase velocity is shown in figure 5. From our numerical analysis here it is clear that the
phase velocity of the mode strongly depends on this parameter. Giving larger value to this parameter phase velocity of
the ITG mode in (e-p-i) magnetized plasma reduces.

Ti = 0.1 Te (Solid)

Ti = 0.15 Te (Dashed)

Ti = 0.2 Te (Dotdashed)

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

ξ

Φ

Fig.6.  Result of ion to electron temperature ratio on the propagation of solitary wave in ion temperature gradient 
mode (φ vs ξ). Fixed other parameters and changing Ti = 0.1Te (Solid line), Ti = 0.15Te (Dotted line) while for Ti = 

0.2Te (Dotdashed line).

Next, we discuss numerical results of the ion temperature gradient driven mode nonlinear waves in e-p-i plasma. In
figure 6 we have tried to see the influence of ion to electron temperature ratio on solitary waves. It is observed in this
case that, a minimum value of this ratio (Tio/Teo) results in high potential pulses and for the higher value, we
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see that these nonlinear structures are going to disappear. It might happen due to the reason that the ion-acoustic
wave in fluid theory exist for small ratio (Tio/Teo).

B = 1×104G (Solid)

B = 1.5×104G (Dashed)

B = 2×104G (Dotdashed)

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

ξ

Φ

Fig.7.  Magnetic field gradient effect of the mode on solitary waves (φ vs ξ). Fixed other parameters and changing B = 

1 × 104G (Solid line), B = 1.5 × 104G (Dotted line) while for B = 2 × 104G (Dotdashed line).

Figure 7 reflects the effect of the background magnetic field. It is clear that this parameter strongly contributes to the
dispersive properties of nonlinearity. From this, we can also say that the magnetic field plays the main role in confining.
Comparing these results with the previous study of Ref. [30], we observe an increase in the width and amplitude of the
solitary waves in e-p-i plasma having heat flux effect. Adding here that these nonlinear structures spread out with a
constant speed as noted. In figure 8 we show how the width and amplitude of the solitary structures change with the
ratio of the positron to electron number density. Looking to the numerical results in this case we see that an abrupt
change occurs at np = 0.25ne, in the solitary structures, where the hump type soliton inverts to dip type. A noticeable
point is that both the amplitude and dispersive properties of the solitary wave modify but major change occur in the
amplitude of the soliton.

np = 0.1 ne (Solid)
np = 0.2 ne (Dashed)
np = 0.3 ne (Dotdashed)

-4 -2 0 2 4

0.00

0.05

0.10

ξ

Φ

Fig.8.  Positron density variation effect on solitary waves in ion temperature gradient mode (φ vs ξ). Fixed other 
parameters and changing np = 0.1ne (Solid line), np = 0.2ne (Dotted line) while for np = 0.3ne (Dotdashed line).

Influence of Tpo/Teo on solitary structures is shown in figure 9. Here we see that temperature effect is very effective
because for a very small change in temperature change in amplitude is drastic.
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Tp = 01 Te (Solid)

Tp = 0.01 Te (Dashed)

Tp = 0.04 Te (Dotdashed)
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Φ
Fig.9.   Shows positron to electron temperature ratio on propagation of solitary waves(φ vs ξ). Fixed other parameters 

and changing Tp = Te (Solid line), Tp = 0.05Te (Dotted line) while for Tp = 0.01Te (Dotdashed line).

ηi 1.5 (Solid)

ηi 2 (Dashed)

ηi 3 (Dotdashed)
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Fig.10.   Shocks potential variation with respect to ion temperature gradient. Fixed other parameters and changing ηi 
= 1.5 (Solid line), ηi = 2 (Dashed line) while ηi = 3 (Dotdashed line).

Based on Eq. (35) we here show the effect on ion temperature gradient coefficient on shock structure. In our numerical
investigations, we found that ITG coefficient has an effective influence on the structure of shocks as shown in figure 10. It
shows the importance of the present study. In this case, we observe that change in amplitude of the shocks is large in the
beginning but small later on. The positron to electron temperature ratio on the shock amplitude is shown in figure 11. We
see that a sharp fall is seen in the amplitude of the shock structure in this case. In figure 12 we have shown the effect of
npo/neo.The potential pulses are shown in this figure modify for different ratios of the positron to electron number
density. We see that for step difference of 0.05, the change in potential pulse in the beginning is small, but it seems that
for some higher value its contribution becomes viable as shown.

Tp = 0.01 Te (Solid)

Tp = 0.02 Te (Dashed)

Tp = 0.03 Te (Dotdashed)
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0.06

0.08

0.10

0.12

ξ

Fig.11. Shows shock potential variation with respect to the positron to electron temperature ratio on the 
propagation of shocks. Fixed other parameters and changing Tp = 0.01Te (Solid line), Tp = 0.02T e (Dashed 

line) while Tp = 0.03T e (Dotdashed line).
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np = 0.1 ne(Solid)

np = 0.15 ne(Dashed)

np = 0.19 ne(Dotdashed)
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ξ

Fig.12. Result of positron to electron number density ratio on propagation of shock waves. Fixed other parameters 
and changing np = 0.1ne (Solid line), np = 0.15ne (Dotted line) while for np = 0.19ne (Dotdashed line).

5. Conclusion

The present work investigated the linear/nonlinear ITG mode-driven solitary and shock waves in electron-positron-ion 
plasma. The influence of different ratios such as density and temperature of (electron/positron) are shown on the 
characteristics of linear/nonlinear mode in electron-positron-ion plasma generally and the consequences of ion heat flux on 
these modes particularly. In the linear regime, we concluded from our numerical results that propagation of the mode 
strongly depends on ion heat flux. The expression obtained for the thermal conductivity of the mode shows that ion energy 
thermal transport is modified in positron concentration and ion heat flux. This effect is noted in the large-amplitude limit, 
where the ion heat flux influences the solitary and shock wave solutions. We in this work observed that hump-type solitary 
waves turn into a dip type for an increase in the positron to electron density ratio, which is noted for numerical  value npo/
neo = 0.25, as shown. Conclusively, we can write that positron presence is essential in plasma from this tipping point of the 
positron number density. We can say that inclusion of this component changes the plasma dynamics. Our findings may help 
understand the role of ion heat flux term driven by ion temperature exhibits similar behavior as predicted by theory and 
confirmed by gyrokinetic modelings such as in ASDEX upgrading H-mode devices and astrophysical plasma [34]. In 
conclusion, we stress that the present investigations are prime for understanding the salient features of fluctuations and 
crossfield energy transport in magnetically confined devices with positron concentration.
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